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ABSTRACT

The relation of pressure torques and mountain torques is investigated on the basis of observations for the polar

caps, two midlatitude and two subtropical belts, and a tropical belt by evaluating the lagged covariances of these

torques for various isentropic surfaces. It is only in the polar domains and the northern midlatitude belts that the

transfer of angular momentum to and from the earth at the mountains is associated with pressure torques acting

in the same sense. The situation is more complicated in all other belts. The covariances decline with increasing

potential temperature (height). The role of both torques in the angular momentum budget of a belt is discussed.

1. Introduction

Angular momentum budgets have a long tradition in

general circulation research (Lorenz 1967; Gallimore

and Johnson 1981; Oort and Peixoto 1983; Johnson

1989) as a tool to understand the zonal circulation of the

atmosphere. This technique is particularly attractive

because axial angular momentum (AAM) changes are

described by a conservation equation where the AAM

of a zonal annulus can be altered only by fluxes of AAM

through its boundaries and by torques. Mountain and

friction torques are the main torques to be included if

height and isobaric coordinates are used in the analysis.

They act at the earth’s surface. If, however, isentropic

coordinates are chosen, there are vertical fluxes due to

the heating but also internal atmospheric torques, the

pressure torques, which are important.

While the atmospheric ‘‘response’’ to mountain and

friction torques attracted much attention, there was so

far little interest in the isentropic pressure torques (see

Egger et al. 2007 for a review). In particular, the relation

of mountain and pressure torques has not been investi-

gated at all. One may argue that results should not differ

too much from those of traditional Eulerian analyses

because the underlying physical processes are the same.

However, isentropic analysis involves specific features

(see Andrews 1983) as can be seen by looking at the

zonally and vertically integrated AAM equation in is-

entropic coordinates:

›

›t

ðu1

u
s

m du 1
1

a cosu
›

›u

ðu1

u
s

cosumy du 1 m _u
��u1

5 p
›h

›l

����
u1

u
s

,

(1.1)

where

m 5�g�1 ›p

›u
(u 1 Va cosu)a cosu (1.2)

is the axial angular momentum per unit volume, us is the

surface potential temperature, and u1 is a constant poten-

tial temperature. Hence (1.1) is the budget of an atmo-

spheric layer extending from the surface to the isentropic

surface u 5 u1. The bar in (1.1) stands for a zonal integral

and the term on the right-hand side is the difference of the

pressure torque:
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per unit width acting at the surface u 5 u1 and the

‘‘mountain torque’’:
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per unit width, where h1 is the height of the upper is-

entropic surface and h is the topographic profile. The

derivation of (1.1) invokes the surface potential tem-

perature equation:
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where vs is the wind at the surface (e.g., Egger and

Hoinka 2008). The friction torque is neglected in (1.1)

because we will consider mountain torques only. Thus

isentropic AAM analysis differs substantially from stan-

dard coordinate analyses because heating is able to trans-

port angular momentum across the top surface u 5 u1.

Pressure torques act in addition. Moreover, u surfaces are

sloping strongly in the meridional directions. This affects

the role of the meridional transports. It is therefore not so

obvious what to expect for the relation of pressure and

mountain torques that must be explored by analyzing

mountain torque events. Note that the torques (1.3) and

(1.4) represent the same physical mechanism. The pres-

sure is acting on corrugated surfaces.

The mechanisms behind the pressure torques in gen-

eral have been considered by Johnson and Downey

(1975), Townsend and Johnson (1985), and Johnson

(1989), who pointed out that the structure of baroclinic

systems with their westward tilt with increasing height

implies positive pressure torques. Juckes et al. (1994)

argued along similar lines that there is a close relation

between pressure torques and transient meridional heat

transports. However, there appears to be no generally

accepted model for the impact of mountains on pressure

torques so that we have to turn to data to learn more

about that. As for mountain torque events it has been

found by Egger and Hoinka (2004) for the global situ-

ation that they are short lived and felt quickly even in the

stratosphere. Mountain torque events for individual

belts are always linked to meridional angular momen-

tum transports across the boundaries of the belts (Egger

and Hoinka 2005). This implies that the related pressure

torques per belt will decrease with increasing u1.

In principle, isentropic data analysis is to be preferred

when compared to conventional analyses where vertical

motions are needed to estimate the vertical AAM fluxes.

These vertical motions are not directly observable in the

atmosphere. In particular, estimates of the vertical flux

of the so-called mass term ;(›p/›u)Va cos2u in (1.2)

require extreme accuracy so that investigations of the

relation of mountain torques and vertical angular mo-

mentum fluxes are plagued by uncertainties. On the

other hand, the evaluation of pressure torques is fairly

straightforward and accurate. There is, however, the

caveat that modern analysis schemes are not based on

isentropic coordinates so that interpolations are re-

quired that reduce the accuracy. Moreover estimates of

heating are notoriously difficult but are not needed here.

It is the main purpose of this paper to provide an ob-

servational analysis of the typical variations of pressure

torques during mountain torque events. We have to look

for correlations of both torques for various values of u1.

Do the torques generally act in the same sense? Which

torque is more important? How does the answer to these

questions vary with latitude?

2. Results

The results to be presented are based on 40-yr Euro-

pean Centre for Medium-Range Weather Forecasts

Re-Analysis (ERA-40) data for the years 1958–2001.

The height and pressure of selected u surfaces are daily

means, and the torques
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are determined for seven belts where the belts 1 (lati-

tude u1 5 908S, u2 5 728S) and 7 (u1 5 728N, u2 5 908N)

represent the polar caps, the belts 2 (u1 5 588S, u2 5

408S) and 6 (u1 5 408N, u2 5 588N) are at midlatitudes,

the belts 3 (u1 5 338S, u2 5 158S) and 5 (u1 5 158N, u2 5

338N) represent the subtropics, and belt 4 (u1 5 98S,

u2 5 98N) covers the inner tropics. Pressure torques are

evaluated for various u surfaces that cover the tropo-

sphere and lower stratosphere. We adopt in (2.1) the

convention that a positive pressure torque adds AAM to

the layer underneath. It would be consistent to have

positive torques to act also downward at the lower

boundary, but the sign of the mountain torque is es-

tablished so firmly that we decided to use the standard

negative sign in (2.2) instead of the positive one in (1.4).

The evaluation of Tp becomes problematic when the

orography intersects the u1 surface. In principle, the

right-hand side of (1.1) can be adapted to this situation.

However, the interpolations needed to calculate the

additional terms cannot be carried out at the required

level of accuracy. It appears better to replace the torque

term in (1.1) below the topography by that at the u level

available just above it.

The covariance of a leading variable b and a further

variable c at lag t is denoted by C(b, cjt). In what follows
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the covariances C(Tm, Tpjt) are presented for these

seven belts and for the selected u surfaces that cover the

troposphere and lower stratosphere. It is convenient to

normalize the mountain torques by their respective

standard deviations so that the covariances have the

unit Hadley (1 Hadley 5 1018 J) and may also be called

regressions. The standard deviation of the mountain

torque is largest in belt 3 in June–August (JJA; see

Table 1). In contrast, there is little variability in the

neighboring southern midlatitude belt 2. The standard

deviations of the pressure torques decrease rapidly

with increasing u (Table 1) for u * 320 K. The tropical

belts exhibit almost no variability. Maximum activity is

seen in the midlatitude belts in the respective winter

season.

Mean values of mountain and pressure torques mostly

at u 5 295 K are presented in Table 2. This isentropic

surface is close to the maximum of positive torques

(Johnson 1989; Egger and Hoinka 2008). Mean mountain

torques are negative at midlatitudes and positive else-

where as is well known (e.g., Oort and Peixoto 1983). The

midlatitude pressure torques at u 5 295 K almost dwarf

the mountain torques. The dominance of the pressure

torque is less pronounced in the subtropical belts.

a. Polar caps

The covariances of mountain and pressure torques for

Southern Hemisphere winter (JJA) are displayed in

Fig. 1 for the Antarctic belt and 295 K # u # 370 K. Also

given is the autocovariance of the mountain torque. The

decay of this autocovariance is fairly rapid as is well

known from earlier work (e.g., Egger et al. 2007) but with

a small secondary maximum near t ; 3 days. The decay

of the covariances is almost as fast. The covariances are

only slightly asymmetric with respect to t ; 0. Pressure

torques are somewhat larger for negative lags. The

covariances are nearly always negative, at least for lags

#5 days. That means that part of the AAM transferred

to the earth at the mountains is made available by pres-

sure torques. In particular, there is a good dynamical

connection between the perturbations near the ground

and even those in the stratosphere. The torques become, of

course, smaller and smaller the larger u is (see also Table 1),

but the correlation coefficients of mountain and pres-

sure torques vary little with height. We find values of

20.4 for u 5 295 K and 20.35 for u 5 370 K. Since the

AAM of a layer between two isentropic surfaces u 5 u1

and u 5 u2 responds to the difference of pressure torques

at u1 and u2, we learn from Fig. 1 that the AMM reacts to

mountain torques even in the stratosphere.

In December–February (DJF), amplitudes of the co-

variances are smaller (not shown), of course, but the

basic characteristics are the same as in Fig. 1.

The autocovariance of the mountain torque in the

Arctic belt is very similar to that in Antarctica (Fig. 2)

but the cross covariances C(Tm, Tpjt) deviate signifi-

cantly, with a minimum near t 5 21 day and vanishing

values near t 5 1 day. Thus, Fig. 2 suggests that the

TABLE 2. Time-mean values of the mountain torque (first entry) and the pressure torque (second entry) at the lowest u surface available

(u 5 295 K in all belts except the tropical ones where u 5 300 K) in Hadley in JJA and DJF.

SH SH–NH NH

Lat 908–728 588–408 338–158 98S–98N 158–338 408–588 728–908

Belt No. 1 2 3 4 5 6 7

JJA 2.1/0.6 20.6/77.0 20.7/27.4 5.3/24.0 21.8/10.0 25.5/23.9 0.3/2.5

DJF 0.8/0.9 22.2/52.0 27.5/16.2 1.8/22.1 8.5/20.9 26.9/25.7 1.0/1.4

TABLE 1. Standard deviation of the mountain torque (Tm) and the pressure torque in Hadley in JJA/DJF for all belts. The isentropic

surfaces are indicated on the left.

Southern Hemisphere (SH) SH–NH Northern Hemisphere (NH)

Lat 908–728 588–408 338–158 98S–98N 158–338 408–588 728–908

Belt No. 1 2 3 4 5 6 7

370 K 0.4/0.3 3.5/3.0 1.6/1.5 0.5/0.6 1.4/2.2 1.8/4.9 0.2/0.8

350 K 0.5/0.3 4.4/4.6 3.5/3.6 0.8/1.1 3.4/4.7 3.9/6.2 0.3/0.9

330 K 0.7/0.5 6.2/10.9 9.5/6.2 0.7/1.1 3.5/10.0 9.8/8.8 0.6/1.1

320 K 0.8/0.6 10.9/16.1 9.5/4.5 0.5/0.6 3.5/10.8 10.9/15.2 1.4/1.2

310 K 1.0/0.9 20.4/17.9 9.5/4.3 0.6/0.7 3.8/8.7 10.5/23.2 2.1/1.5

300 K 1.7/1.5 26.9/18.4 9.4/6.1 1.9/2.0 4.9/9.0 10.7/28.1 2.2/2.4

295 K 2.3/1.6 28.1/18.4 —/— —/— —/— 10.1/29.5 2.2/3.0

Tm 3.7/1.9 1.6/1.1 10.6/7.6 2.4/2.7 4.4/8.7 5.4/9.3 1.3/2.3
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pressure torques transfer angular momentum downward

before the mountain torque peaks. Again, there is good

vertical coherence.

b. Midlatitude belts

The standard deviation of 1.6 Hadley of the mountain

torque in southern midlatitude belt 2 (JJA) is relatively

small (Table 1). The variability of the pressure torque is

very large, with a standard deviation of ;20 Hadley (see

Table 2), but the covariances of both torques are very

small and positive (Fig. 3), at least near the surface and in

winter. Correlation coefficients are ;0.1 near the surface

and become negative and very small higher up. Thus, there

is hardly any link between the two torques. The mountains

play a minor role in the AAM budget of this belt.

The standard deviation of the mountain torque is fairly

large (9.2 Hadley; DJF) in northern belt 6. The structure

of the covariance functions (Fig. 4) is somewhat more

complicated than has been seen so far in that there are

secondary minima near t 5 23 days and also for t 5

1 day in the midtroposphere and near the ground. The

correlation coefficients are small, and we observe again a

decrease of the covariances with increasing potential

temperature. Thus, Fig. 4 suggests that baroclinic waves

are weakened when crossing mountains to recover after-

ward. In particular, the meridional heat transports appear

to be reduced. Although the interaction of baroclinic

systems with mountains attracted considerable attention

[see Czarnetzki and Johnson (1996) and Davis (1997) for

reviews], as stated above, no simple scheme emerged that

would help us to better understand these curves.

c. Subtropical belts

The mountain torque variance in belt 3 is very large,

but it is only for u1 5 300 K that we find negative co-

variances (Fig. 5). Higher up, the covariances tend to be

positive near t ; 0. This suggests that meridional

transports in the lower troposphere are very important

as is presumably the heating (see also section 3). The

situation in the northern subtropical belt is even more

surprising (Fig. 6) because the pressure torque covari-

ances are very small and mainly positive. There is no

downward transfer of AAM by the pressure torques to

balance the mountain torques.

d. Tropical belt

Pressure torques are small in the tropical belt, with a

standard deviation of ;1 Hadley and mean values from

FIG. 1. Cross covariance C[Tm, Tp(u)jt] of the Antarctic belt in Hadley in JJA where the

mountain torque is normalized by its standard deviation as a function of lag t in days. The

symbol ‘‘295’’ stands for the isentropic surface u 5 295 K, etc. Also given is the autocovariance

of the mountain torque ‘‘Tm’’ of the Antarctic belt in Hadley (normalized).
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FIG. 3. As in Fig. 1, but for the southern midlatitude belt in JJA.

FIG. 2. As in Fig. 1, but for the Arctic belt in DJF.
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FIG. 4. As in Fig. 1, but for the northern midlatitude belt in DJF.

FIG. 5. As in Fig. 1, but for the southern subtropical belt in JJA.
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22 to 24 Hadley (Table 2). The covariance patterns

(Fig. 7) do not show any connections between both

torques.

3. Discussion and conclusions

We found for the polar belts and the northern mid-

latitude belt that the covariances of the mountain torque

and the pressure torque tend to be negative for most

isentropic surfaces and lags jtj , 5 days. Thus, the

pressure torque appears to be dynamically linked to the

mountain torque in the sense that positive (negative)

mountain torques occur in conjunction with negative

(positive) pressure torques. The angular momentum

exchanged at the earth tends to be transferred in the

same direction in the atmosphere above. We find,

moreover, that the pressure torque covariances decrease

with increasing u. This implies that meridional trans-

ports supply the angular momentum, which is then

transferred vertically by the pressure torques. To see

these mechanism more clearly, let us write (1.1) in me-

ridionally integrated abbreviated form:

›

›t
AAM 1 F

h
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1 F
y
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where AAM is now the angular momentum of the belt

and Fh stands for the meridional fluxes through the

boundaries at u 5 u1 and u 5 u2. Moreover, Fy is the

vertical transport at u 5 u1 due to the heating. It is

straightforward (e.g., Egger et al. 2007) to transform

(3.1) into a covariance equation:
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which relates the mountain torque to all other terms.

We found in our analysis that the autocovariance

C(Tm, Tmjt) is always the largest term on the right-hand

side of (3.2). The covariance C(Tm, Tpjt) tends to be

of opposite sign but never matches the autocovariance

of Tm. The relation of the heating to the mountain tor-

ques has never been studied. It is presumably not large

enough to establish a balance, at least at midlatitudes,

nor is the friction torque omitted in (3.2). There is,

however, also the problem discussed above that a rea-

sonably exact evaluation of the pressure torques for u

surfaces that intersect the ground is complicated and can

hardly be done satisfactorily. Czarnetzki and Johnson

(1996) performed such a calculation for a case of lee cy-

clogenesis but had model data of appropriate resolution

and accuracy available. This means that the estimates of

C(Tm, Tpjt) close to the ground in Figs. 1–7 are somewhat

FIG. 6. As in Fig. 1, but for the northern subtropical belt in DJF.
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uncertain. Nevertheless, there is no reason to doubt

the values obtained above the topography, and so our

analysis suggests that much of the angular momentum

transferred at the mountain is balanced by meridional

transports and the tendency term.

The situation in the subtropical belts requires special

attention. The observed situation in belt 3 may be ex-

plained by requiring strong low-level meridional trans-

ports and relatively large low-level tendencies although

the analysis of Egger and Hoinka (2005) does not strongly

support this view. However, Fig. 6 calls for a strong role of

heating. It is difficult to see how else the budget in (3.2)

can be satisfied.
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