Software Tools and Data Formats for Data Exchange in Airplane Predesign

Markus Litz, Holger Cornelsen, Hans-Peter Kersken
Simulation and Software Technology
German Aerospace Center (DLR)

PDE 2008
Noordwijk, The Netherlands
March 27th, 2008
Overview

- Motivation and Background
- Common Data Format
- Software Tools
- Integration Framework
Motivation and Background

➤ The predesign of new airplane configurations involves many different technical disciplines
➤ Goal: Find an optimal design
➤ Strong dependencies exist between the disciplines
 ➤ A combination of discipline-local optima does not lead to a global optimum
 ➤ Necessary: global optimization process
 ➤ Look at the overall system
➤ Therefore: Cooperation between the individual technical disciplines is essential
Situation at DLR

- Many aerospace institutes, each one specialized on its own technical discipline
- Simulation software is institute-specific, proprietary I/O formats
- Interdisciplinary cooperation in some cross-institutional projects

But:

- Ad-hoc definition of interfaces and data formats in each project
- No common data format for all application codes
- No automated process chains
 - Applications used manually and separately from each other
Linking of Discipline-Specific Design Tools

Goal

A DLR-wide system to enable the multi-disciplinary design and analysis of airplane configurations in the predesign phase.

Under development at DLR in the following aeronautics projects:
- TIVA I/II – Technology integration for the virtual aircraft
- UCAV 2010 – Unmanned combat air vehicle
- EVITA – Evaluation of innovative turbine engines

Similar requirements in DLR space projects
System Overview

Central Dataset

TIVA XML Interface (TIXI)

TIVA Geometry Library (TIGL)

CPACSAccess

Application A

Application B

Application …

Input File

Output File

Input File

Output File

Input File

Output File
Structure of the Central Dataset

- configuration
 - header
 - global
 - engines
 - wings
 - airfoils
 - librarypath
 - airfoil
 - file
 - file
 - fuselages
 - missions
Data Export from the Central Dataset

- Central Dataset
- Mapping File
- Application Input File

CPACSAccess
Data Import into the Central Dataset

- Central Dataset
- Mapping File
- Application Output File

CPACSAccess

Updated Central Dataset
Example of a Mapping File

<?xml version="1.0" encoding="UTF-8"?>
<map:mappings xmlns:map="http://www.dlr.de/sistec/tool/mapping">
 <map:mapping>
 <map:source>/result</map:source>
 <map:target>/configuration/application[@name="IBUCK"]/result</map:target>
 </map:mapping>

 <map:mapping>
 <map:source>/result/values</map:source>
 <map:target>/configuration/common/values</map:target>
 </map:mapping>

 <map:mapping>
 <map:source>/result/old_name</map:source>
 <map:target>/configuration/common/new_name</map:target>
 </map:mapping>
 .
 .
 .
</map:mappings>
TIXI – TIVA XML Interface (I)

- **Application A**
- **Application B**
- **Application …**

Central Dataset

TIVA XML Interface (TIXI)

TIVA Geometry Library (TIGL)

Input File

Output File

Input File

Output File

Input File

Output File

CPACSAccess
TIXI – TIVA XML Interface (II)

- Library for XML I/O
- Uses libxml2 of the Gnome project
- Provides simple access to XML content through XPath expressions
 - Functions for reading and writing of
 - Strings
 - Floating point and integer numbers
 - Matrixes
 - 3D-Points
 - Checks for existence of elements
- C, Fortran, and Python interface
TIGL – **TIVA Geometry Library** (I)

Application A
Application B
Application …

TIVA Geometry Library (TIGL)
TIVA XML Interface (TIXI)

Input File
Output File
Input File
Output File
Input File
Output File

CPACSAccess

Central Dataset
TIGL – TIVA Geometry Library (II)

- Reading and processing the geometry information stored in the central dataset
 - Currently only for fuselages and wings
 - Uses Open CASCADE
- Construction of the 3D geometry
 - Creation of surfaces from cross sections
 - Used e.g. for calculation of surface points in absolute Cartesian coordinates
- Export of the airplane geometry in IGES or STL format
- C, Fortran, and Python interface
TIGLViewer – Visualization Tool for TIGL
Framework Integration (I)

- Integration framework used: ModelCenter
- Central dataset and applications components realized as ModelCenter plugins
 - Central dataset component
 - Interface between ModelCenter and central dataset
 - Update of the central dataset
 - Export and import from and into ModelCenter
 - Application wrapper component
 - Generic component that wraps an individual (standalone) application for use in ModelCenter
 - Generation of input files, application startup and mapping of results into central dataset
 - Controller component
 - Coordinates the components of the process chain
Framework Integration (II)
Summary and Outlook

Steps to set-up a framework for collaborative engineering:
- Define a common data format
- Enable applications to use it
- Integrate separate tools into a workflow system

Future work
- Implementation of an interface to STEP
- Extension of the central dataset:
 - Geometry modeling for other construction units
 - Mission control data
- Application of tools and common data format in other projects