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Abstract—In this paper, a novel type of impedance controllers for
flexible joint robots is proposed. As a target impedance, a desired
stiffness and damping are considered without inertia shaping. For
this problem, two controllers of different complexity are proposed.
Both have a cascaded structure with an inner torque feedback loop
and an outer impedance controller. For the torque feedback, a phys-
ical interpretation as a scaling of the motor inertia is given, which
allows to incorporate the torque feedback into a passivity-based
analysis. The outer impedance control law is then designed differ-
ently for the two controllers. In the first approach, the stiffness and
damping terms and the gravity compensation term are designed
separately. This outer control loop uses only the motor position
and velocity, but no noncollocated feedback of the joint torques or
link side positions. In combination with the physical interpretation
of torque feedback, this allows us to give a proof of the asymptotic
stability of the closed-loop system based on the passivity proper-
ties of the system. The second control law is a refinement of this
approach, in which the gravity compensation and the stiffness im-
plementation are designed in a combined way. Thereby, a desired
static stiffness relationship is obtained exactly. Additionally, some
extensions of the controller to viscoelastic joints and to Cartesian
impedance control are given. Finally, some experiments with the
German Aerospace Center (DLR) lightweight robots verify the de-
veloped controllers and show the efficiency of the proposed control
approach.

Index Terms—Compliance control, flexible joint robots,
impedance control, passivity-based control.

I. INTRODUCTION

IMPEDANCE control certainly is one of the core tech-
niques in designing modern robot systems, especially for

the growing field of service robotics. The basic control objec-
tive of impedance control as formulated in the seminal work of
Hogan [1] is the achievement of a desired dynamical relation
between external forces and robot movement.

The classical approach to impedance control concentrates
on robotic systems in which the joint elasticity is neglected.
Consequently, a straightforward application of these techniques
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to a flexible joint robot usually will not lead to a satisfactory
performance.1 In fact, the importance of joint elasticity for the
design of position and tracking controllers has widely been
discussed in the literature [2]–[9].

In this paper, an impedance control law is proposed that is
designed for flexible joint robots. The desired impedance is as-
sumed to be a mass–spring–damper system. Furthermore, only
the achievement of stiffness and damping is considered herein,
while the inertial behavior is left unchanged. In case of a robot
with rigid joints, such a stiffness and damping behavior could,
in principle, be implemented quite easily with a PD-like con-
troller (formulated in the relevant coordinates). In [10], it was
proven that a motor-position-based PD-controller leads to a sta-
ble closed-loop system also in case of a robot with flexible
joints. Furthermore, in [11], a stability analysis of a hybrid
position/force controller for a flexible joint robot without grav-
itational effects was presented. However, it has been shown
that, in practice, often only quite limited performance can be
achieved with a restriction to purely motor position (and ve-
locity) based feedback controllers (without additional noncol-
located feedback) for the case of a flexible joint robot. In some
works, a controller structure based on a feedback of the joint
torques as well as the link side positions was considered, and
it was shown that this leads to an increase of performance (see,
e.g., [12]). This has also already been verified experimentally
with the DLR lightweight robots [13]. From a theoretical point
of view, this approach is usually justified (for sufficiently high
joint stiffness values) by an approximate analysis based on the
singular perturbation theory. The feedback of the joint torques
is therein considered as the control action of a fast inner control
loop that receives its set point values from an outer impedance
controller. Furthermore, an integral manifold approach for de-
signing force and impedance controllers for flexible joint robots
was presented in [14].

In [15] and [16], a controller with a complete static state feed-
back (position and torque as well as their first derivatives) was
introduced, for which (analogously to [10]) asymptotic stability
was shown based on the passivity properties of the controller.
In contrast to the classical PD-controller, the motor inertia and
the joint stiffness are included in the same passive block as the
state feedback controller so that an effective damping of the
joint oscillations could be achieved.

In the present paper, a physical interpretation of the torque
feedback is given, which allows to include the inner loop torque

1In terms of damping out the oscillations due to the flexibility in the joint as
well as absolute positioning accuracy.
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Fig. 1. Sketch of the model for a flexible joint robot.

controller into a passivity-based analysis of the complete closed-
loop system. It is important to notice that the controller being
presented is itself not passive due to the feedback of the joint
torque, but it will be shown that the controlled motor dynamics
in combination with the torque feedback are passive. Together
with the passive (link side) rigid body dynamics, the closed-loop
system can, therefore, be represented as a feedback interconnec-
tion of passive subsystems.

Furthermore, in [10] and [15], a gravity compensation term
based on the desired configuration was used. In case of an
impedance controller, this is not appropriate due to the pos-
sibly large deviations from the desired configuration which may
occur here in case of a low desired stiffness. In this paper, a
gravity compensation term will be designed that is based on the
measurement of the motor position and is better suited for the
use in connection with impedance control. The problem of grav-
ity compensation for flexible joint robots in case of impedance
control was also addressed in some recent papers [17], [18].
However, in contrast to our approach, the gravity compensation
term in [17] and [18] led to additional lower bounds on the
admissible desired stiffness.

Since the controller uses an inner torque feedback loop, a
measurement of the joint torques is needed for the implemen-
tation. This can be achieved either directly by a joint torque
sensor or indirectly by an additional measurement of the link
side position. The DLR lightweight robots [19], [20] (see Fig. 1)
are equipped with joint torque sensors in order to enable fine
manipulation and to enhance the performance when the robot is
in interaction with the environment. Therefore, they are ideally
suited for the implementation of the presented controllers.

This paper is organized as follows. In Section II, the design
idea is described based on a simplified one-dimensional model.
The generalization of the design idea to the complete model of a
flexible joint robot is then presented in Section III. Some details
on the gravity model are given in Section IV. In Section V, an
impedance controller based on a separate design of stiffness im-
plementation and gravity compensation is presented. Based on
the line of argumentation of the gravity compensation design, an
improved controller, which realizes the desired stiffness relation
exactly, is presented in Section VI. For the sake of simplicity,
the complete controller design and analysis is treated in joint
coordinates. The solution, however, is constructed in such a way
that the extension to the Cartesian impedance control problem

Fig. 2. Motor-position-based PD-control of a single joint. Using torque feed-
back, the effective motor inertia is scaled down (dashed line).

is rather straightforward. Section VII is devoted to some fur-
ther extensions of the controller, namely the case of viscoelastic
joints and the generalization to Cartesian impedance control.
Finally, Sections VIII and IX contain experimental results and
conclusions, respectively.

II. DESIGN IDEA

In this section, the basic idea of the proposed controller design
method is described. It is motivated by some simple considera-
tions for a one-dimensional model.

Consider at first the model of a single flexible joint as it is
sketched in Fig. 1 for the second joint of the DLR-Lightweight-
Robot-III. The motor torque τm acts here on the rotor inertia
B of the motor.2 The elasticity of the transmission between the
rotor and the following link3 of the robot is modeled in form of
a linear spring with stiffness K.

The goal of the impedance controller is to achieve a desired
dynamical behavior with respect to an external force Fext acting
on the link side. In the following, it is assumed that this dynam-
ical behavior is given by a differential equation of second order
representing a mass–spring–damper system with mass M , de-
sired stiffness Kθ , and desired damping Dθ . For a robot with
rigid joints, this behavior could be realized by a simple PD-
controller with proportional and derivative controller gains set
to Kc = Kθ and Dc = Dθ , respectively. For a robot with elastic
joints instead, no control law can force the (fourth order) closed-
loop behavior exactly into such a second-order impedance, since
for every joint, four state variables (motor angle θ, link side an-
gle q, as well as their first derivatives) are present. If one uses
a motor-position-based PD-controller in case of a robot with
elastic joints, as shown in Fig. 2 for the one-dimensional case,
then the resulting dynamics will also be clearly influenced by
the joint elasticity and the motor inertia. Intuitively speaking,
the deviation from the desired behavior will be less significant
when the rotor inertia B becomes smaller and the joint stiffness
K becomes larger.

At this point, it should be mentioned that the joint stiffness
values of a typical flexible joint robot are indeed quite large4

but cannot be considered as infinite, and thus, elasticity is not

2The current controlled motors are modeled as ideal torque sources since the
dynamics of the electrical drives are negligible.

3In Fig. 1, it is represented in a simplified form with a constant inertia M .
4For the lower joints of the DLR lightweight robots, these values lie in the

range 10.000–15.000 N·m/rad.
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negligible. By a negative feedback of the joint torque τ , the ap-
parent inertia (of the rotor) can now be scaled down such that the
closed-loop system reacts to external forces Fext as if the rotor
inertia were smaller. By reducing the apparent rotor inertia, the
desired dynamical behavior is approximated. This approach will
be put in concrete terms in the following section for the model
of a flexible joint robot. Furthermore, a method for compensat-
ing the static influence of the spring K will also be presented.
Notice that the design approach presented in this paper thus
does not allow to implement a general second-order impedance
with arbitrary inertia, but refers to impedance relations with un-
changed link side inertia. Its robustness properties due to the
passivity-based design make the controller suitable especially
for autonomous manipulation tasks in contact with unknown
environments. However, for application fields like teleoperation
or haptics, the restriction to an unchanged link side inertia may
of course be more troublesome.

III. EFFECTS OF TORQUE FEEDBACK ON THE FLEXIBLE

JOINT MODEL

In this paper, the so-called reduced flexible joint robot model
is assumed as proposed by Spong [2]:

M(q)q̈ + C(q, q̇)q̇ + g(q) = K(θ − q) + τ ext (1)

Bθ̈ + K(θ − q) = τm . (2)

Herein, q ∈ R
n represents the vector of the n link side joint an-

gles and θ ∈ R
n the vector of the corresponding motor angles.

The joint torques τ ∈ R
n are determined by the linear relation-

ship τ = K(θ − q), in which K ∈ R
n×n is a diagonal matrix

containing the individual joint stiffness values Ki as diagonal
elements, i.e., K = diag(Ki). The diagonal matrix B ∈ R

n×n

consists of the rotor inertias Bi . Furthermore, M(q) ∈ R
n×n is

the (link side) inertia matrix and C(q, q̇)q̇ represents the cen-
trifugal and Coriolis terms of the model. The vector of gravity
torques g(q) ∈ R

n is given by the differential of a potential
function Vg (q), i.e., g(q) = (∂Vg (q)/∂q)T . The motor torques
τm ∈ R

n are considered as the control inputs. Finally, the ex-
ternal torques that act on the robot are summarized in the vector
τ ext ∈ R

n . At this point, moreover, two well-known properties
of the robot model shall be mentioned that will be utilized in the
following sections.

Property 1: The inertia matrix is symmetric and positive
definite:

M(q) = M(q)T > 0 ∀q ∈ R
n .

Property 2: The matrix Ṁ(q) − 2C(q, q̇) fulfills the condi-
tion:

Bq̇T (Ṁ(q) − 2C(q, q̇))q̇ = 0 ∀q, q̇ ∈ R
n .

As already described intuitively in the last section, the apparent
motor inertia can be reduced from B to Bθ by feeding back the
joint torque τ = K(θ − q). This is realized by the feedback
law

τm = BB−1
θ u + (I − BB−1

θ )τ (3)

where u serves as a new control input. The resulting system
dynamics are given by

M(q)q̈ + C(q, q̇)q̇ + g(q) = K(θ − q) + τ ext (4)

Bθ θ̈ + K(θ − q) = u. (5)

These equations of motion will be the basis for the design of
two joint level impedance control laws. The design in Section V
treats the gravity compensation and the stiffness implementation
separately, and is a consequent realization of the design idea
described in Section II. But beforehand, some properties of the
gravity potential are exposed in the next section.

IV. PROPERTIES OF THE GRAVITY POTENTIAL

The gravity term g(q) corresponds to the differential of the
gravity potential Vg (q), i.e., g(q) = (∂Vg (q)/∂q)T . It is well
known that the Hessian H(q) := ∂2Vg (q)/∂q2 of the gravity
potential has an upper bound if the robot has only rotational
joints5 [21]. In case the manipulator also instead has prismatic
joints, it is useful to consider a subset Qp of the configuration
space R

n in which all the prismatic joints are bounded by their
respective workspace boundaries.6 In this subset Qp , the exis-
tence of an upper bound of the gravity Hessian is guaranteed.
From a physical point of view, this bound is a priori not well
defined since it clearly depends on the chosen physical units for
the translational and rotational coordinates. In order to overcome
this problem, particular matrix and vector norms are defined in
the following by a scaling with the joint stiffness matrix.

Remark 1: The design of the gravity compensation in Sec-
tion V-B does not involve the complete dynamics of the ma-
nipulator, but refers rather to the static case. Therefore, in this
case, the stiffness matrix is the appropriate choice for defining
a metric rather than the inertia matrix.

Let R ∈ R
n×n be the square root of the joint stiffness matrix7

K, i.e., K = RT R. Then, a vector norm || · ||K : R
n → R

+

for a vector v ∈ R
n can be defined via the Euclidean vector

norm || · ||2 as:

||v||K := ||Rv||2 =
(
vT Kv

)1/2
.

The matrix R, respectively K, is used herein as a normalization
of the chosen physical units. Corresponding to this vector norm,
the matrix norm || · ||K : R

n×n → R
+ for a matrix A ∈ R

n×n

is defined in the following via the spectral norm8 || · ||i2 . In this
section, we are interested in the Hessian of the gravity potential.
Consequently, it is reasonable to consider the quadratic form
vT Av for a matrix A. For the vector norm || · ||K as defined
earlier, the following inequality holds:

|vT Av| ≤ ||R−T AR−1 ||i2 ||v||2K .

5In this case, the gravity potential can be written as the sum of trigonometric
terms of the joint angles.

6For a robot with rotational joints, only one has Qp = R
n instead.

7Since K is a diagonal matrix, the matrix R is given by R = diag(
√

Ki ).
8The spectral norm is the matrix norm induced by the Euclidean vector norm,

and thus, in our case corresponds to the largest eigenvalue.
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This motivates the choice

||A||K := ||R−T AR−1 ||i2

for the definition of the matrix norm || · ||K .
Remark 2: Notice that the term R−T AR−1 corresponds to

the coordinate transformation of a covariant tensor A of rank
two when R is the Jacobian of the coordinate transformation.
A linear transformation (i.e., a mixed tensor), instead, would be
transformed as RAR−1 .

Applied to the joint stiffness matrix K, this norm clearly gives
||K||K = 1. Based on this definition of the matrix norm, one
further assumption on the gravity potential is formulated next.
This assumption will be useful for the design of the gravity
compensation.

Assumption 1: The Hessian H(q) := ∂2Vg (q)/∂q2 of the
gravity potential Vg (q) satisfies the condition:

αg := sup
∀q∈Qp

||H(q)||K < ||K||K = 1. (6)

Notice that this assumption is not restrictive at all. Intuitively
speaking, it states nothing else than the fact that the manipulator
should be designed properly, in the sense that the joint stiffness
is sufficiently high such that, for a fixed motor position, it can
prevent the manipulator from falling down under the load of its
own weight.

It should also be mentioned that the quantity αg is dimen-
sionless, since it is defined via the norm || · ||K . Also notice that
the existence of this bound αg < 1 implies the following prop-
erty for the gravity potential that will be useful in the stability
analysis in Section V-E.

Property 3: Let αg [as defined in (6)] be an upper bound for
the Hessian of the gravity potential Vg (q) with respect to the
K-norm. Then, the inequality

|Vg (q1) − Vg (q2) + g(q1)
T (q2 − q1)| ≤

1
2
αg ||q2 − q1 ||2K

holds for all q1 , q2 ∈ Qp .
A proof of this statement can be found in [22].

V. SEPARATE DESIGN OF COMPLIANCE AND GRAVITY

COMPENSATION

In this section, a joint level impedance controller for the model
(4)–(5) is proposed. Let the desired impedance at the (constant)
virtual equilibrium point qd be specified by a symmetric and
positive definite joint stiffness matrix Kθ , and a positive definite
joint damping matrix Dθ . Therefore, the target dynamics of the
impedance controller can be written as a mass–spring–damper
system of the form

M(q)q̈ + (C(q, q̇) + Dθ )q̇ + Kθ (q − qd) = τ ext (7)

in which the link side inertia of the robot is the same as in (1).
Consequently, also the corresponding centrifugal and Coriolis
terms are present in the target dynamics.

Remark 3: Note that the flexible joint robot model is a 4n-
dimensional underactuated system in which every joint is repre-
sented by four state variables (θi , θ̇i , qi , q̇i), i = 1, . . . , n. There-

fore, the desired target dynamics (7) of order 2n can never be
achieved exactly by any controller.

Our design approach for approximating this impedance rela-
tion follows the ideas described in Section II. The inner loop
torque feedback reduces the effect of the motor inertia on the
closed-loop dynamics as described in Section III. In addition,
we must eliminate the effects of gravity and implement the com-
pliance according to the desired stiffness and damping matrices
Kθ and Dθ .

The input variable u is thus split up into one term uimp , which
actually implements the stiffness and damping, and another term
ug , which acts as a gravity compensation:

u = uimp + ug . (8)

A. Implementation of the Compliance Behavior

According to the design philosophy outlined in Section III,
the control input uimp is simply chosen as a joint space PD-
controller for the motor angles

uimp = −Kc(θ − θd) − Dθ θ̇ (9)

where the controller gain matrix Kc and the virtual equilibrium
position on the motor side θd are given by:

Kc =
(
K−1

θ − K−1)−1
(10)

θd = qd + K−1g(qd). (11)

Equation (10) makes allowance for the fact that the con-
troller gain matrix Kc acts in series interconnection with the
joint spring K (see Fig. 2). The particular form of Kc in
(10) ensures that in the gravity-free steady state (θ0 , q0) the
demanded stiffness relation τ ext = Kθ (q0 − qd) is satisfied
exactly.

For the analysis in Section V-D, it is required that not only
Kθ but also the controller gain matrix Kc is positive definite.
Therefore, the following assumption is made, which implies that
the controller can implement no joint level stiffness larger than
K.

Assumption 2: The desired stiffness matrix Kθ is assumed to
be symmetric and positive definite, and satisfies the condition(
K−1

θ − K−1)−1
> 0.

So far, the controller (3) and (9) leads to the following closed-
loop equations:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τ ext (12)

Bθ θ̈ + Dθ θ̇ + Kc(θ − θd) + τ = ug . (13)

B. Gravity Compensation

In [10], it has been shown that for a motor-position-based
PD-controller, a feedforward term of the gravity torques in the
desired steady state qd can be used in order to achieve asymp-
totic stability. Indeed this leads, for a position controller, usually
to good performance because the deviations from the desired po-
sition can be kept small. For an impedance controller, however,
this is not the case. Here, a pure feedforward action for the
gravity compensation does not give satisfactory results because
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large deviations from the virtual equilibrium position may oc-
cur in the case of a small desired stiffness Kθ . The problem of
constructing an online gravity compensation term for a flexible
joint robot based solely on the motor position was first treated
in [17]. The solution in [17], however, still leads to lower bounds
on Kθ , limiting the generality of the impedance controller. In
contrast to this, the solution presented herein does not require
such additional constraints [23], [24].

In the following, a compensation for the static effects of the
gravity term g(q) is constructed. This compensation is solely
based on the motor position and can compensate for the link
side gravity torques in a quasi-stationary fashion. Consider first
the set Ω := {(q,θ)‖K(θ − q) = g(q)} of stationary points
(for τ ext = 0) for which the torque due to the joint elasticity
counterbalances the link side gravity torque. The goal of the
gravity compensation is now to construct a compensation term
ḡ(θ) such that in Ω, the equilibrium condition

ḡ(θ) = g(q) ∀(q,θ) ∈ Ω (14)

holds. This means that the gravity compensation term counter-
balances the link side gravity torque in all stationary points.

The equation

K(θ − q) = g(q) (15)

which describes the set Ω, motivates the definition of a function
q̄(θ) that can be understood as a quasi-static estimate of the
link side position. Therefore, notice that (15) can obviously be
solved uniquely for the motor position θ. Let us denote this
solution by:

hg (q) := q + K−1g(q). (16)

Furthermore, by the use of the contraction mapping theorem
(see Proposition 1 given later for more details on this), it can be
shown that the inverse function to hg (q) exists. Then

q̄(θ) := h−1
g (θ) (17)

which is the solution of (15) for q, can be used for the construc-
tion of a gravity compensation term of the form:

ug = ḡ(θ) := g(q̄(θ)). (18)

It is important to notice that, while (14) clearly holds only in Ω,
the function q̄(θ) by construction fulfills the equation K(θ −
q̄(θ)) = g(q̄(θ)) for any θ and independently of q.

Finally, the question about the existence of the function q̄(θ)
is answered by the following proposition.

Proposition 1: If (6) from Assumption 1 holds globally
(i.e., for Qp = R

n ), the inverse function h−1
g (θ) = q̄(θ) of

hg (q) = q + K−1g(q) : R
n → R

n exists globally. Moreover,
the iteration

q̂n+1 = T g (q̂n ) (19)

with T g (q) := θ − K−1g(q) converges for every fixed θ and
for every starting point q̂0 to q̄(θ).

Proof: The proposition can be proven by showing first that
the mapping T g (q) : R

n → R
n is a global contraction (see

[25]) for the vector norm ||·||K . Since the vector space R
n

together with the norm ||·||K is a Banach space, one must only
show that there exists a ρ < 1, such that T g (q) satisfies the
condition:

||T g (q2) − T g (q1)||K ≤ ρ||q2 − q1 ||K ∀q1 , q2 ∈ R
n .

As shown in [22], this is ensured by (6) from Assumption 1. By
the contraction mapping theorem (also called Banach fixed point
theorem), one can, therefore, conclude that the mapping T g (q)
has a unique fixed point q∗ = T g (q∗) and that the iteration of
(19) converges to this fixed point:

lim
n→∞

q̂n = q∗.

By comparing T g (q) with hg (q), one can easily see that (for
each particular value of θ) this fixed point q∗ corresponds to
q̄(θ). �

While, in general, the inverse function h−1
g (θ) cannot be

computed directly in practice, it is thus possible to approximate
it with arbitrary accuracy by iteration. >From a practical point
of view, one or two iteration steps lead to quite satisfactory
results in this approximation. Also notice that by a first-order
approximation with q̂0 = qd , one obtains the online gravity
compensation term of [17].

In the following analysis, it is therefore assumed that the
inverse function h−1

g (θ) is known exactly, although it can only
be approximated in practice.

Another remark about the range in which Proposition 1 holds
is important. The assumption Qp = R

n , which holds, for in-
stance, when the robot has only rotational joints, was needed to
ensure that T g (q) is a global contraction. If instead Qp ⊂ R

n ,
then one must additionally ensure that the points q̂i of the iter-
ation (19) stay in an area, in which ||H(q)||K < ||K||K = 1
holds. While this is not a critical issue from a practical point of
view, it is difficult to be proven in general.

Since ḡ(θ) is the motor torque needed (statically) to prevent
the robot from falling down under the action of its own weight,
one can see that ḡ(θ) must be connected with a potential func-
tion Vḡ (θ) that is related to the potential energy (gravity plus
joint stiffness) of the robot. This potential function will be of
interest for the passivity and stability analysis in the next sec-
tion. A detailed derivation of Vḡ (θ) is given in the Appendix.
Therein, it is shown that Vḡ (θ) can be written as:

Vḡ (θ) = Vg (q̄(θ)) +
1
2
g(q̄(θ))T K−1g(q̄(θ))

= Vg (q̄(θ)) +
1
2
(q̄(θ) − θ)T K(q̄(θ) − θ).

C. Controller Formulation

The complete control law with gravity compensation is sum-
marized as, cf. (3), (8), (9), (18)

τm = BB−1
θ u + (I − BB−1

θ )τ (20)

u = −Kc(θ − θd) − Dθ θ̇ + ḡ(θ). (21)
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Fig. 3. System representation as an interconnection of passive subsystems.

This leads to the closed-loop system

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τ ext (22)

Bθ θ̈ + Dθ θ̇ + Kc(θ − θd) + τ = ḡ(θ) . (23)

D. Passivity

For the passivity analysis, it is assumed that there exists a real
β > 0, such that

|Vg (q)| < β ∀q ∈ R
n (24)

holds. This is, for instance, satisfied for all robots with rotational
joints only (i.e., without prismatic joints). Then also, the gravity
torque vector g(q) is globally bounded. Furthermore, (24) also
implies the boundedness of Vḡ (θ) and ḡ(θ). Notice that the
requirement of a bounded gravity potential is only needed for
the passivity analysis, while the proof of the asymptotic stability
in Section V-E will also be valid for a general potential.

According to [26] and [27], a sufficient condition for a system
(with input u and output y) to be passive is given by the existence
of a continuous storage function S, which is bounded from
below and for which the derivative with respect to time along
the solutions of the system satisfies the inequality Ṡ ≤ yT u.

In the following, it will be shown that the system (22)–(23),
as outlined in Fig. 3, consists of two passive subsystems in feed-
back interconnection. Notice that in connection with impedance
control, it is often assumed that the environment of the robot can
also be described by a passive mapping (q̇ → −τ ext). The pas-
sivity of (22), as a mapping (τ + τ ext) → q̇, is well known due
to physical reasons and can be shown with the storage function

Sq (q, q̇) =
1
2
q̇T M(q)q̇ + Vg (q) (25)

for which (due to Property 2) the derivative along the solutions
of (22) is given by

Ṡq (q, q̇) = q̇T (τ + τ ext). (26)

In a similar way, the passivity of (23), as a mapping q̇ → −τ ,
can be shown with the storage function:

Sθ (q,θ, θ̇) =
1
2
θ̇

T
Bθ θ̇ +

1
2
(θ − q)T K(θ − q)

+
1
2
(θ − θd)T Kc(θ − θd) − Vḡ (θ).

The derivative of Sθ (q,θ, θ̇) along the solutions of (23) is then
given by

Ṡθ (q,θ, θ̇) = −θ̇
T
Dθ θ̇ − q̇T τ . (27)

The passivity of the closed-loop system follows directly from
(26) and (27) and the fact that the feedback interconnection of
passive systems is again passive. It should also be mentioned
that these passivity properties are still valid if the PD-controller
in (21) is replaced by any other passive (with respect to θ̇ →
−u) controller. This structure of a feedback interconnection of
passive subsystems, as depicted in Fig. 3, brings along very
advantageous robustness properties for the closed-loop system.

E. Stability Analysis

Next it will be shown that the closed-loop system is asymp-
totically stable for the case of free motion (i.e., τ ext = 0).

1) Determination of the Steady State: For τ ext = 0, the
steady-state conditions of the system (22)–(23) are given
by

K(θ0 − q0) = g(q0) (28)

K(θ0 − q0) + Kc(θ0 − θd) = ḡ(θ0). (29)

From (14), it follows that

Kc(θ0 − θd) = 0 (30)

must be satisfied in the steady state. Due to Assumption 2,
the matrix Kc is positive definite, and hence, the steady
state is given by:

θ0 = θd

q0 = h−1
g (θ0) = qd

q̇0 = θ̇0 = 0.

2) Lyapunov Function: Consider the sum of the storage func-
tions of the subsystems as a Lyapunov function candidate

V (q, q̇,θ, θ̇) = Sq (q, q̇) + Sθ (q,θ, θ̇). (31)

First, it is shown that this function is positive definite. No-
tice that, due to (63) from the Appendix, V (q0 ,0,θ0 ,0) =
0 holds.
By extracting the kinetic part of V (q, q̇,θ, θ̇)

Vkin(q, q̇, θ̇) =
1
2
q̇T M(q)q̇ +

1
2
θ̇

T
Bθ θ̇

one can see that V (q, q̇,θ, θ̇) is positive definite with
respect to q̇ and θ̇ because the inertia matrices are positive
definite (Property 1). In order to show that V (q, q̇,θ, θ̇)
is positive definite with respect to the complete state, it is
then sufficient to show that the potential part

Vpot(q,θ) = V (q, q̇,θ, θ̇) − Vkin(q, q̇, θ̇) (32)

is positive definite with respect to q and θ.
Consider first only the part of the potential energy due to
K. In order to simplify the notation, in the remaining part
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of this section, the function q̄(θ) is written as q̄:

Vk (q,θ) =
1
2
(θ − q)T K(θ − q)

=
1
2
(θ − q̄ + q̄ − q)T K(θ − q̄ + q̄ − q)

=
1
2
g(q̄)T K−1g(q̄) +

1
2
(q̄ − q)T K(q̄ − q)

+ (q̄ − q)T g(q̄) (33)

Herein, the relationship K(θ − q̄) = g(q̄) was used that
follows directly from the definition of q̄(θ) in (17). In
order to simplify the notation, the deviation of the motor
angle from its steady-state value will be denoted by θ̃ =
(θ − θd) in the following. The potential energy can then
be written [with (63) from the Appendix] as follows:

Vpot(q,θ) = Vk (q,θ) +
1
2
θ̃

T
Kc θ̃ + Vg (q) − Vḡ (θ)

= Vk (q,θ) +
1
2
θ̃

T
Kc θ̃ + Vg (q) − Vg (q̄)

− 1
2
g(q̄)T K−1g(q̄) .

Due to Property 3, the following inequality holds:

Vpot(q,θ) ≥ 1
2
(q̄ − q)T K(q̄ − q) +

1
2
θ̃

T
Kc θ̃

− |Vg (q) − Vg (q̄) + (q̄ − q)T g(q̄)|

≥ 1
2
(1 − αg )||q̄ − q||2K +

1
2
θ̃

T
Kc θ̃.

The right-hand side of the last inequality is nonnegative
for all (q,θ) ∈ Qp , since by Assumption 1, the bound
αg satisfies the inequality condition αg < 1. Therefore,
one can conclude that the considered candidate Lyapunov
function is positive definite in Qp .

3) Derivative of the Lyapunov Function: The change of
V (q, q̇,θ, θ̇) along the solutions of the system (22)–(23)
(for τ ext = 0) is given by:

V̇ (q, q̇,θ, θ̇) = Ṡq (q, q̇) + Ṡθ (q,θ, θ̇) = −θ̇
T
Dθ θ̇.

Due to the fact that the matrix Dθ is positive definite,
it can be concluded that the equilibrium point is stable.
Furthermore, asymptotic stability can be shown by the use
of the invariance principle of LaSalle [25]. According to
this theorem, the system state will converge to the largest
positively invariant set for which θ̇ = 0 holds. From the
system equations, it follows that there does not exist any
trajectory for which θ̇ = 0 holds for all times t > 0 except
for the restriction to the equilibrium point. Therefore, the
following proposition can be concluded.
Proposition 2: Under the Assumptions 1 and 2, the system
(22)–(23) is asymptotically stable for the case of free mo-
tion (i.e., for τ ext = 0). Moreover, if Assumption 1 holds
globally (i.e., for Qp = R

n ), then the system is even glob-
ally asymptotically stable.

Fig. 4. Simulated joint angle for a step-wise excitation of 10 N·m (dash–
dotted line: desired impedance, dotted line: Bθ = B, solid line: Bθ = B/3,
dashed line: Bθ = B/10).

F. Controller Discussion

The passivity analysis in Section V-D shows that the closed-
loop system can be seen as a feedback interconnection of passive
subsystems. In many applications, the environment can also be
treated as a passive system with respect to the input q̇ and the
output −τ ext . Therefore, one can conclude very advantageous
robustness properties of the whole system. Stability is, for in-
stance, also guaranteed for arbitrary errors in the dynamical
parameters of the inertia matrices M(q) and B as long as these
matrices remain positive definite and B remains a diagonal
matrix.

Concerning the formulation of the gravity compensation term,
it should be mentioned that, in contrast to any related previous
works, no lower bounds are imposed on the positive definite ma-
trix Kθ for stability reasons, meaning that the desired stiffness
Kθ can be chosen arbitrarily close to zero.

At this point, it is illustrative to evaluate up to which ex-
tent the controller approximates the desired impedance behav-
ior from (7). Therefore, a small simulation of the 7 degrees-
of-freedom DLR-Lightweight-Robot-II ([19], see also Fig. 6 in
Section VIII) will be shown. In this simulation, the closed-loop
response for a step-wise excitation using an external torque of
10 N·m at joint 2 is evaluated. The simulation was performed
with different values for Bθ in order to demonstrate the role
of the torque feedback in the controller. The desired stiffness
and damping matrices are set to diagonal matrices with an over-
all stiffness of 1000 N·m/rad and the desired damping is set
to Dθ = diag{100, 100, 100, 100, 1, 1, 1} corresponding to the
different effective inertia for the lower and upper joints. In the
following, only the motion of joint 2, onto which the external
force is exerted, will be analyzed in detail. In Fig. 4, the link
side joint angle of this axis is shown. First, the dash–dotted line
shows the step response of the desired impedance (7). Secondly,
the dotted line shows the control action for the controller with-
out any torque feedback, i.e., with Bθ set to B. One can see
some higher frequency oscillations and also a rather huge over-
shoot. Next, the same step response is shown with Bθ = B/3
(solid line) and with Bθ = B/10 (dashed line). The former cor-
responds to a moderate torque feedback while the latter is in the
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Fig. 5. Simulated joint torque for a step-wise excitation of 10 N·m (dotted
line: Bθ = B, solid line: Bθ = B/3, dashed line: Bθ = B/10).

range of the highest gains that could be implemented for this
robot, in practice, considering the noise of the torque sensor.
One can see that for higher torque feedback gains, the desired
dynamics is approximated better. In order to have a closer look at
the oscillation damping performance, Fig. 5 shows the simulated
joint torque. One can see that the torque oscillations, observed
for the case of Bθ = B (dotted line), are already damped out
quite effectively by the lower gain Bθ = B/3 (solid line) and
cannot be observed any more for the higher gain Bθ = B/10
(dashed line).

The solution presented so far, however, has one disadvan-
tage. The stiffness and damping term uimp and the gravity
compensation term ug were designed separately. While the
term uimp guarantees the correct stiffness relation (statically)
for the gravity-free case, the term ug was designed for the
case of free motion, i.e., for τ ext = 0. In the above analysis, it
was shown that these two terms can indeed be combined with-
out jeopardizing the passivity and stability of the system. But
it is not guaranteed any more that the desired static relation
τ ext = Kθ (q0 − qd) holds exactly for all τ ext �= 0. In fact, a
small steady-state error can also be observed for the simulation
shown in Fig. 4.

Therefore, a different impedance controller will be formu-
lated in the next section, which removes this drawback.

VI. COMBINED DESIGN OF COMPLIANCE AND GRAVITY

COMPENSATION

In this section, the design idea for the gravity compensation
from Section V-B is generalized by simultaneously taking ac-
count of the desired stiffness. This will result in an improved
impedance control law that exactly implements the desired static
stiffness relation.

A. Controller Design

Consider the case that a constant torque τ ext acts on the robot
(4)–(5). The equilibrium conditions for this case are

K(θ0 − q0) = g(q0) − τ ext (34)

K(θ0 − q0) = u0 (35)

where u0 is the static value of u. In the following, the desired
stiffness relation

Kθ (q0 − qd) = τ ext (36)

shall be achieved statically. By combining (36) with (34), one
gets the condition:

K(θ0 − q0) = g(q0) − Kθ (q0 − qd). (37)

This condition can be seen as a relationship between the static
motor side position θ0 and the static link side position q0 . In
order to stress the similarity of the following derivation to the
derivation of the gravity compensation term in Section V-B, the
function l(q) is defined as:

l(q) := g(q) − Kθ (q − qd). (38)

The following procedure is then completely analogous to the
design of the gravity compensation term in Section V-B. The
function l(q) now plays the same role as the gravity function
g(q) previously. Notice that (37) can also be written as K(θ0 −
q0) = l(q0) and by defining the function

hl(q) := q + K−1l(q) (39)

the static motor side position θ0 can be expressed as θ0 =
hl(q0). At this point, it is assumed that the inverse function of
hl(q) exists and it will be denoted by

q̄l(θ) := h−1
l (θ) . (40)

A sufficient condition for the existence of this inverse function
as well as an iterative computation procedure will be given later
in Proposition 3. By means of q̄l(θ), a control law combining
the gravity compensation with a statically exact stiffness design
can be designed in the form:

u = l(q̄l(θ)) − Dθ θ̇

= g(q̄l(θ)) − Kθ (q̄l(θ) − qd) − Dθ θ̇. (41)

The function l(q), as defined in (38), is the differential of the
potential function

Vl(q) = Vg (q) − 1
2
(q − qd)

T Kθ (q − qd) (42)

i.e., l(q) = (∂Vl(q)/∂q)T . Instead of the Assumptions 1 and 2,
the following assumption is needed now.

Assumption 3: The Hessian H l(q) = ∂2Vl(q)/∂q2

of the potential function Vl(q) satisfies the
condition:

αl := sup∀q∈Qp ||H l(q)||K < ||K||K = 1. (43)

Notice that this assumption implicitly contains an upper bound
on the desired stiffness Kθ , similar to Assumption 2 for the
previous controller. This is not surprising since, again, the con-
troller basically implements a stiffness, which is in series inter-
connection to the joint stiffness K. The stiffness Kθ , therefore,
must be smaller than K. Assumption 3, however, ensures the
existence of the inverse function h−1

l (θ) as formulated in the
following proposition, which is analogous to Proposition 1.
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Proposition 3: If Assumption 3 holds globally (i.e., for Qp =
R

n ), then the inverse function h−1
l (θ) := q̄l(θ) of hl(q) = q +

K−1l(q) : R
n → R

n exists globally. Moreover, the iteration

q̂l,n+1 = T l(q̂l,n ) (44)

with T l(q) := θ − K−1l(q) converges for every fixed θ and
for every starting point q̂l,0 to q̄l(θ).

Furthermore, by following the same derivation as in the Ap-
pendix [with l(q) instead of g(q)], one can show that the con-
troller term l(q̄l(θ)) can be written as the differential of the
potential function

Vl̄(θ) = Vl(q̄l(θ)) +
1
2
l(q̄l(θ))T K−1l(q̄l(θ)) (45)

i.e., l(q̄l(θ)) = (∂Vl̄(θ)/∂θ)T .

B. Stability Analysis

The closed-loop system for the controller (41) together with
(3) is given by:

M(q)q̈ + C(q, q̇)q̇ + g(q) = K(θ − q) + τ ext (46)

Bθ θ̈ + K(θ − q) = l(q̄l(θ)) − Dθ θ̇ . (47)

Following the same line of argumentation as in the previous
section, one can also prove the asymptotic stability for this
system by using the Lyapunov function

Ve(q, q̇,θ, θ̇) =
1
2
q̇T M(q)q̇ +

1
2
θ̇

T
Bθ θ̇

+ Vg (q) + Vk (q,θ) − Vl̄(θ)

with Vk (q,θ) and Vl̄(θ) given in (33) and (45). This is summa-
rized in the following proposition.

Proposition 4: Under the Assumption 3, the system (46)–
(47) is asymptotically stable for the case of free motion (i.e.,
for τ ext = 0). Moreover, if Assumption 3 holds globally (i.e.,
for Qp = R

n ), then the system is even globally asymptotically
stable. Considering interaction with the environment, i.e., for
τ ext �= 0, the closed-loop system represents a passive mapping
τ ext → q̇.

C. Controller Discussion

Also notice that the control law presented in this section does
not exactly implement the desired impedance (7), cf. Remark
3. However, this yields a good approximation, which improves
with higher inner loop torque feedback. In the experimental
part in Section VIII, some comparisons with a simulation of the
desired impedance are presented, which give an impression how
well the desired impedance is approximated. But in contrast to
the previous solution from Section V, this controller now exactly
fulfills the required steady-state condition. This can be seen by
computing the steady state for a constant external torque τ ext ,
which leads to:

K(θ0 − q0) = g(q0) − τ ext

K(θ0 − q0) = g(q̄l(θ0)) − Kθ (q̄l(θ0) − qd).

Since q̄l(θ) (by construction) satisfies (37), it follows that
q̄l(θ0) = q0 must hold. This implies, as desired, Kθ (q0 −
qd) = τ ext .

At first glance, it might be somehow surprising that the con-
troller is formulated in the coordinates q̄l(θ) but does not require
the Jacobian matrix ∂q̄l(θ)/∂θ explicitly. Notice that the reason
for this is that the function l(q̄l(θ)) is already the differential of
the potential function Vl̄(θ).

VII. GENERALIZATIONS

In the previous sections, two joint level impedance controllers
were presented. Several extensions of these controllers are pos-
sible. Some of them are discussed in the following.

A. Viscoelastic Joints

Since the analysis of the controller was based on a physical
interpretation of the torque feedback, it is also possible to include
joint damping, i.e., gear damping, very easily. The considered
model with joint damping is given by

M(q)q̈ + C(q, q̇)q̇ + g(q) = K(θ − q)

+ D(θ̇ − q̇) + τ ext

Bθ̈ + K(θ − q) + D(θ̇ − q̇) = τm

where the matrix D ∈ R
n×n is a diagonal and positive definite

damping matrix. For this model, the same type of controller
as in the last section can be used, when the control law (3) is
replaced by

τm = BB−1
θ u + (I − BB−1

θ )
(
τ + DK−1 τ̇

)
(48)

with τ = K(θ − q). This leads to the closed-loop system

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ ext + K(θ − q) + D(θ̇ − q̇)

Bθ θ̈ + K(θ − q) + D(θ̇ − q̇) = u

for which the intermediate control input u can be chosen in
the same way as in the previous sections. All the passivity and
stability statements given in this paper also hold for a model
with viscoelastic joints.

B. Cartesian Impedance Control

In many applications, the desired impedance behavior is de-
fined with respect to the end-effector motion rather than in joint
coordinates. In this section, it is shown that the controller from
Section VI can easily be generalized to the implementation of
a desired Cartesian impedance controller. In the Cartesian case,
however, the singularities of the Jacobian matrix clearly pose
a limitation on the achievable region of attraction. Also, for a
Cartesian controller applied to a redundant robot, stability can
only be achieved if the desired Cartesian behavior is augmented
by some nullspace behavior. Despite these general differences
between joint level control and Cartesian control, the general-
ization of the impedance controller to the Cartesian case can
follow the same line of argumentation as in Section VI.

In the following, it is assumed that the forward kine-
matics mapping from the joint space coordinates q to the
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Cartesian coordinates x = f(q) ∈ R
6 as well as the Jaco-

bian matrix J(q) = ∂f(q)/∂q ∈ R
6×n are known. The desired

impedance behavior is specified in terms of a Cartesian virtual
equilibrium position xd , a symmetric and positive definite stiff-
ness matrix Kx ∈ R

6×6 , and a positive definite damping matrix
Dx ∈ R

6×6 . Based on this, one can formulate a desired Carte-
sian stiffness potential in the form:

Vx =
1
2
(x − xd)T Kx(x − xd). (49)

Consider the case that a constant generalized external force F ext
acts on the robot. In steady state at a position q0 , the generalized
external force F ext is related to the external torques τ ext via
τ ext = J(q0)T F ext . The desired static equilibrium condition
for this case is

F ext = Kx(x0 − xd) =
(

∂Vx(x)
∂x

)T

x=x0

(50)

which can be equivalently expressed in joint coordinates as

τ ext =
(

dVx(f(q))
dq

)T

q=q0

(51)

as long as the Jacobian matrix remains nonsingular. By combin-
ing this desired steady-state condition with (34), one now gets
[instead of (37)] the equation:

K(θ0 − q0) = g(q0) −
(

dVx(f(q))
dq

)T

q=q0

. (52)

The terms on the right-hand side of this equation motivate the
definition of the function

c(q) := g(q) −
(

dVx(f(q))
dq

)T

. (53)

which replaces l(q) from Section VI. For completing the con-
troller design, one can then repeat the procedure from the
joint level case using c(q) instead of l(q) as well as Vc(q) =
Vg (q) − Vx(q) instead of Vl(q). Consequently, the controller
can be formulated as

u = c(q̄c(θ)) + Dc(θ)θ̇

= g(q̄c(θ)) −
(

dVc(f(q))
dq

)T

q= q̄c (θ)
+ Dc(θ)θ̇ (54)

where q̄c(θ) corresponds to the solution of the equation K(θ −
q) = c(q) for q and Dc(θ) is a joint level damping matrix
chosen as

Dc(θ) = J(q̄c(θ))T DxJ(q̄c(θ)) (55)

which is positive definite as long as the Jacobian matrix is non-
singular. For ensuring the existence and uniqueness of q̄c(θ),
the following assumption is needed representing an upper bound
of the achievable Cartesian stiffness.

Assumption 4: The Hessian Hc(q) = ∂2Vc(q)/∂q2 of the
potential function Vc(q) satisfies the condition:

αc := sup
∀q∈Qp

||Hc(q)||K < ||K||K = 1. (56)

This assumption implicitly represents an upper bound for the
Cartesian stiffness Kx with respect to the joint stiffness K and
is analogous to Assumption 3 from the joint level controller.
It ensures the existence of q̄c(θ) according to the following
proposition.

Proposition 5: If Assumption 4 holds globally (i.e., for Qp =
R

n ), then the function q̄c(θ), i.e., the solution of K(θ − q) =
c(q) for q, exists globally. Moreover, the iteration

q̂c,n+1 = T c(q̂c,n ) (57)

with T c(q) := θ − K−1c(q) converges for every fixed θ and
for every starting point q̂c,0 to q̄c(θ).

The above description presents the implementation of the
controller so far. Notice that for the implementation, neither sin-
gularities of the Jacobian nor the redundant case are problematic
since no inversion of the Jacobian is needed for the controller
computation. The potential function for the controller is given
by

Vc̄(θ) = Vc(q̄c(θ)) +
1
2
c(q̄c(θ))T K−1c(q̄c(θ)) (58)

for which c(q̄c(θ)) = (∂Vc̄(θ)/∂θ)T holds. The control law
again ensures passivity of the closed-loop system. This can be
seen by using the positive semidefinite9 function

Vf (q, q̇,θ, θ̇) =
1
2
q̇T M(q)q̇ +

1
2
θ̇

T
Bθθ̇

+ V g (q) + Vk (q,θ) − Vc̄(θ) (59)

as a storage function.
For proving stability, however, one must distinguish between

the redundant and the nonredundant case. While (59) becomes
positive definite for a nonredundant robot and can be used for
proving (local10) asymptotic stability, an additional nullspace
control is needed in the redundant case.

Regarding singularities of the orientation representation in
the Cartesian coordinates f(q), it should be mentioned that the
potential function (49) could also be replaced by the potential
of one of the singularity-free spatial springs proposed by, e.g.,
Fasse or Natale (see, e.g., [28], [29]).

VIII. EXPERIMENTS

In this section, some experiments are reported for evaluating
the proposed controllers. The first two experiments were con-
ducted with the 7 DOF DLR-Lightweight-Robot-II, while the
second two were performed with the newer DLR-Lightweight-
Robot-III. These robots are equipped with joint torque sensors
additionally to the motor position sensors, and thus, are ideally
suited for the implementation of the proposed controllers. For
the experiments, the Cartesian control law from Section VII-B
was chosen because it is the most complex controller from the
paper and the interaction with the human user is then more intu-
itive. For the evaluation, a force-torque sensor was additionally
mounted on the tip of the robots.

9The function is positive definite only in the nonredundant case.
10The global case is obstructed by the singularities of the Jacobian.
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Fig. 6. Initial configuration of the DLR lightweight robots (LWR-II left, LWR-
III right) for the experiments.

TABLE I
STIFFNESS AND DAMPING VALUES FOR THE FIRST EXPERIMENT

Fig. 6 shows the initial configuration of the robots for the
experiments. In the first experiment, the achieved compliance
is evaluated. The Cartesian impedance from Section VII-B was
implemented with diagonal stiffness and damping matrices with
the values given in Table I. The three translational coordinates
are denoted by ex , ey , and ez . For the orientation representation,
RPY Euler angles were used. The orientational coordinates are
denoted by φx , φy , and φz .

In the experiment, a human user exerts (generalized) forces
on the robot end-effector by pulling and pushing, mainly in
the horizontal (x- and y-coordinates) directions. The interaction
forces are measured by a 6 DOF force-torque sensor11 mounted
on the end-effector. Notice that this sensor was not used in the
implementation of the impedance controller but is used only for
evaluation purposes. The applied forces in x- and y-direction
over time are shown in Fig. 7. In order to evaluate the resulting
stiffness and damping, the force and displacement in x- and
y-direction are shown in Figs. 8 and 9, respectively. The cor-
responding static characteristic line according to the relevant
stiffness value from Table I is shown by the dashed line. No-
tice that the hysteresis-like deviation from the static value is
caused by the Cartesian damping. Additionally, the dotted line
shows the result of a simple simulation of the desired Cartesian
impedance. In this simulation, the measured contact force is
used as an input and the Cartesian motion is the output. This
simulation contains some further simplifications.12 Notice that
the simulation shows only the desired compliance and no joint
elasticity is included. One can see that the experimental results
fit quite well the simulation of the desired compliance for low
(see Fig. 8) and high (see Fig. 9) Cartesian stiffness values.

11A JR3 sensor was used.
12The inertia matrix was considered constant and, accordingly, no centrifugal

and Coriolis terms were included.

Fig. 7. Applied forces in x-direction (solid line) and y-direction (dashed line)
in the first experiment.

Fig. 8. Applied force versus end-effector deviation in x-direction (solid line).
The dashed line corresponds to the desired stiffness. The dotted line shows a
(simplified) simulation result.

Fig. 9. Applied force versus end-effector deviation in y-direction (solid line).
The dashed line corresponds to the desired stiffness. The dotted line shows a
(simplified) simulation result.

In a second experiment, an impact with a wooden surface
was performed using the controller from Section VII-B with the
parameters from Table II. This experiment shows the robust-
ness of the controller in contact with a passive environment.
The initial configuration is shown in Fig. 6. Fig. 10 displays
the desired and the measured end-effector motion in the vertical
z-direction during the impact. Additionally, Fig. 11 depicts the
impact force. The measured static end-effector deviation and
contact force give a stiffness value of ∼3882 N/m, which corre-
sponds very well to the desired value of 4000 N/m. The peak of
the contact force results mainly from the velocity at the impact.
One can see that the closed-loop system also keeps stable in
contact with this environment having quite a high stiffness, and
that, high impact velocities can also be handled.
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TABLE II
STIFFNESS AND DAMPING VALUES FOR THE IMPACT EXPERIMENT

Fig. 10. End-effector height in the impact experiment. The dashed line shows
the end-effector height of the virtual equilibrium position and the solid line the
measured end-effector position.

Fig. 11. Measured force in the impact experiment.

Two additional experiments with the DLR-Lightweight-
Robot-III were performed in order to analyze the step response
of the Cartesian controller as well as the effects of uncertainties
in the end-effector load. The stiffness values for these experi-
ments were chosen smaller than in the first two experiments and
are given in Table III. In this experiment, a heavy load of about
4.5 kg was attached to the end-effector.

In this evaluation, only the Cartesian position will be ana-
lyzed. In Fig. 12, the step response for a step of 30 mm in ver-
tical z-direction is shown with and without the load attached.
In both cases, the exact load was known for the controller com-
putation. Since the controller does not shape the effective in-
ertia but implements stiffness and damping, the step response
changes accordingly. The remaining end-effector deviation is
in the range of the known friction effects for this robot. Next,
the effects of uncertainties in the load shall be analyzed. Notice
that the controller does only contain the gravity model, while
it does not require the computation of the inertia matrix or the
centrifugal and Coriolis terms. Again, the load of ∼4.5 kg was
attached to the end-effector. At the beginning of the experiment,
the load is included in the computation of the controller. Then,
at time step t = 0.26 s, the load in the controller computation is

TABLE III
STIFFNESS AND DAMPING VALUES FOR THE STEP RESPONSE EXPERIMENT

Fig. 12. Step response for the Cartesian impedance controller. The dashed
line shows the commanded step. The step response with and without load are
shown by the dotted and solid line, respectively.

Fig. 13. Effectof uncertainties in the gravity model. In time period A, the load
(∼4.5 kg) of the end-effector is known and considered in the controller, while
in time period B, this information is not included.

set to zero simulating a huge model uncertainty for the gravity
compensation. Fig. 13 shows the Cartesian position deviations
for the case of the known (time period A) and unknown (time
period B) load. One can see that the deviation in time period B
corresponds very well to the commanded stiffness of 2000 N/m
with an external force resulting from the unknown load. While
uncertainties in the load thus clearly affect the position accu-
racy according to the desired stiffness behavior, the stability of
the system is not affected by this large model error. This goes
in accordance with the theoretically proven (passivity-based)
robustness properties.

IX. SUMMARY

In this paper, we propose two impedance controllers for flex-
ible joint robots. In both controllers, an inner torque feedback
loop is used in combination with an outer impedance control
loop. For the torque feedback, a physical interpretation is given,
such that the complete controllers could be analyzed based on
passivity theory.

The first controller combines a motor-position-based grav-
ity compensation term with a stiffness and damping term. In
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the second controller, these parts are instead merged such that at
steady state, the desired equilibrium condition could be satisfied
exactly. It is shown that both controllers can easily be adapted
to the case of viscoelastic joints. Furthermore, the generaliza-
tion to Cartesian impedance control has been outlined. Finally,
the efficiency of the proposed control approach was verified in
several experiments with the DLR lightweight robots.

APPENDIX

In this appendix, the potential function Vḡ (θ) for the grav-
ity compensation term ḡ(θ) is derived such that ḡ(θ) =
(∂Vḡ (θ)/∂θ)T holds. Remember that for the construction of
ḡ(θ) = g(q̄(θ)) in Section V-B, the function q̄(θ) = h−1

g (θ),
i.e., the inverse of the function hg (q) = q + K−1g(q), was
used. Existence and uniqueness of h−1

g (θ) were established in
Proposition 1 by the use of Assumption 1.

In the following, the Jacobian matrix ∂q̄(θ)/∂θ will be
needed. Consider first the Jacobian matrix of the function hg (q)

∂hg (q)
q

=
(

I + K−1 ∂g(q)
∂q

)
. (60)

Due to hg (q̄(θ)) = θ, one has

∂hg (q̄(θ))
∂θ

=
∂hg (q̄)

∂q̄

∂q̄(θ)
∂θ

= I,

and therefore, the Jacobian matrix ∂q̄(θ)/∂θ is given by:

∂q̄(θ)
∂θ

=
(

I + K−1 ∂g(q̄)
∂q̄

)−1

q̄= q̄(θ)
. (61)

The potential function Vḡ (θ) clearly can be written in the form

Vḡ (θ) = Vḡ (hg (q̄(θ))) =: Vḡh(q̄(θ)).

For the differential ∂Vḡ (θ)/∂θ, one obtains:

∂Vḡ (θ)
∂θ

=
(

∂Vḡh(q̄)
∂q̄

)
q̄= q̄(θ)

∂q̄(θ)
∂θ

.

By substituting V∂ ḡ (θ)/∂θ = ḡ(q) = g(q̄(θ))T and
∂q̄(θ)/∂θ from (61), one gets:

∂Vḡh(q̄)
∂q̄

= g(q̄)T

(
I + K−1 ∂g(q̄)

∂q̄

)

= g(q̄)T + g(q̄)T K−1 ∂g(q̄)
∂q̄

.

This differential can be integrated to Vḡh(q̄) = Vg (q̄) +
1
2 g(q̄)T K−1g(q̄) + c with an arbitrary constant c ∈ R

n and
the gravity potential Vg (q) from Section IV. Setting c = 0 leads
to the gravity compensation potential:

Vḡ (θ) = Vḡh(q̄(θ))

= Vg (q̄(θ)) +
1
2
g(q̄(θ))T K−1g(q̄(θ)).

Also notice that for all stationary points, the potential en-
ergy of the manipulator Vpot(q,θ) = Vk (q,θ) + Vg (q), with
Vk (q,θ) = 1

2 (θ − q)T K(θ − q) as the potential of the joint

stiffness, is identical to the gravity compensation potential, i.e.,

Vpot(q,θ) = Vḡ (θ) ∀(q,θ) ∈ Ω. (62)

>From this, it follows that Vḡ (θ) can also be written as:

Vḡ (θ) = Vpot(q̄(θ),θ) = Vg (q̄(θ)) + Vk (q̄(θ),θ). (63)
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[16] A. Albu-Schäffer, “Regelung von robotern mit elastischen gelenken am
beispiel der DLR-leichtbauarme” Ph.D. dissertation, Technische Univer-
sität München, München, Germany, 2001.

[17] L. Zollo, B. Siciliano, A. D. Luca, E. Guglielmelli, and P. Dario, “Com-
pliance control for an anthropomorphic robot with elastic joints: Theory
and experiments,” ASME J. Dyn. Syst., Meas., Control, vol. 127, no. 3,
pp. 321–328, 2005.

[18] A. De Luca, B. Siciliano, and L. Zollo, “Pd control with on-line gravity
compensation for robots with elastic joints: Theory and experiments,”
Automatica, vol. 41, no. 10, pp. 1809–1819, 2005.
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