
Comparison of Methods for Increasing the Performance of
a DUA Computation

Michael Behrisch, Daniel Krajzewicz, Peter Wagner and Yun-Pang Wang
Institute of Transportation Systems, German Aerospace Center, Germany

Abstract

Computing realistic routes for a given road network and a known demand of vehicles is one
of the most important steps when preparing a road traffic simulation. The approach developed
by Christian Gawron in 1998 which we use for this purpose computes a dynamic user equilib-
rium by iteratively performing the simulation and computing new vehicle routes. The results
are valid, but the computation is very time consuming due to the need to perform both the
complete simulation and rerouting of all vehicles within each iteration step. Herein, we want
to discuss some approaches to reduce the needed time and memory consumption. The results
show that this can be achieved without reducing the algorithm’s quality.

Keywords: microscopic simulation, traffic assignment, SUE, DUA

1 Motivation

The dynamic user assignment method developed by Gawron [1] was implemented as the de-
fault assignment method for the open source microscopic traffic simulation package SUMO
[2-5] from the very begin on. Within the past few years, SUMO has been used in several
large-scale projects where whole cities had to be simulated [6] and Gawron’s algorithm has
proven to be a valid tool, which allows using a demand based on OD-matrices in the micro-
scopically simulated road network. Because of using travel time information from the simula-
tion and iteratively adjusting vehicles’ routes to this, jams are solved automatically and the
generated route set results in realistic simulation.
Nonetheless, the preparation of routes for the simulated scenarios was often painful, due to
the large computation time of up to several days the algorithm needs. Since the algorithm has
to be rerun even after small changes in the network, waiting such a long time for the results is
often unacceptable.
Furthermore, if dealing with even larger scenarios, which include major cities with their sur-
rounding area and over one million vehicle journeys, one further issue arises: as the algorithm
retrieves the edge travel times from the simulation in each iteration step, and initially all vehi-
cles are using the shortest route in the empty network, jams and network deadlocks are quite
common within the first iteration steps. The simulation is then filled with several hundreds of
thousands vehicles which causes severe memory problems.

Due to the above mentioned problems, two approaches for speeding up the computation were
implemented and evaluated. In this publication, Gawron’s DUA algorithm will be presented
first, followed by a description of the observed reasons for large computation times and simu-
lation failures. After this, two modifications are introduced, followed by a comparison of the
original and the modified algorithms. The publication is closed with a conclusion and ideas
for future improvements.

2 Original Algorithm and Proposed Modifications

The dynamic user assignment algorithm developed by C. Gawron is a microscopic approach
meaning that each vehicle has its own route and knows its own travel time through the net-
work when using it. The basic procedure is as follows:
Step 1: Initialize the process by computing the fastest route through the empty network for
each vehicle to simulate. Then add this route to the driver’s list of known routes, set its prob-
ability to be chosen to 1, and choose it as the one to use.
Step 2: Perform the simulation using the currently chosen routes in order to obtain the edges’
travel times over simulation time.
Step 3: Compare the mean travel times to the last run (if any) and quit if the algorithm con-
verges, i.e. if the mean travel time reduction falls below a given threshold.
Step 4: Compute new routes for vehicles using the current travel times within the network for
all drivers. Then add new fastest routes to the respective driver’s route list and update all
routes’ travel times as estimated by the driver and the route choice probabilities for all routes
the driver knows. After that, choose one route regarding the route choice probabilities and
continue with step 2

In the following, we focus on the algorithm that generates new vehicular routes (step 4) and
do not put emphasis on the use of a particular simulation model needed to compute the vehi-
cle’s and edges’ travel times.
At first, the travel times for the routes known by a driver are adapted to the travel times ob-
tained from the simulation:

⎩
⎨
⎧

−+
=

=
otherwisexx

routechosenlastxx
x

dr

s
d)()1()(

__)(
)('

τββτ
τ

τ (1)

where)(),(),(xxx rsd τττ are route x’s prior travel times as estimated by the driver, retrieved
from the simulation, and reconstructed from the edge travel times that were determined by the
simulation, respectively

)(' xdτ is driver ’s new estimation of the duration of route d x
β is a factor affecting the speed of adapting remembered travel times to the current

The choice probability of each route is then recomputed. The probability for each unused
route known by the driver is recomputed by a function that compares its travel time with the
travel time of the route used in the last simulation step. The later route’s probability is also
adjusted, herein. This is done using the following equations:

)()
1

exp()(

)
1

exp())()()((
)('

2

2

sprp

sprprp
rp

d
rs

rs
d

rs

rs
ddd

d

+
−

−
+

=

δ
αδ

δ
αδ

 (2a)

)(')()()(' rpsprpsp dddd −+= (2b)

where is the prior probability to use route)(xpd x by driver d

)(' xp d is the new probability to use route x by driver d
r is the route used in the last simulation run, another route from the list of known s
routes

rsδ is the relative costs difference between routes r and , computed as: s

)()(
)()(

rs
rs

dd

dd
rs ττ

ττ
δ

+
−

= (3)

where)(xdτ is the travel time for driver to complete route d x .

As described before, the list of routes known by a driver is not computed initially. Instead, a
new fastest route is computed in each iteration step and added to the list of known routes, if it
was not known before.
Within the investigations described herein, edge travel times were collected and aggregated
within the simulation for intervals of 900 seconds. These time series were read by the router
and used for computing new routes and the travel times for already known routes. Herein,
each edge’s travel time was determined by looking up in the corresponding time-series gener-
ated by the simulation for the interval that matched interval begin <= entry time < interval
end. If the travel time for an edge is asked for which no matching interval exists, which can
only be the case if asking for times later than the simulation’s end, the last interval’s value
was used. α was set to 0.5, and β to 0.9. These values were found to be proper within previ-
ous projects and generate a valid route set, where “valid” means in this case that using this
route set, all vehicles are simulated, manage to end their route at the end of the simulated day,
and neither large jams nor network deadlocks occur.

3 Observed Bottlenecks

Two processes are responsible for computing the DUA, the first is the routing application
which computes new vehicle routes, and the second is the simulation which determines the
edge travel times using the new vehicle routes. The major cause of computation time is easily
identified if the execution times of both applications are plotted along the iterations as seen in
Figure 1.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 11 21 31 41 5

iteration [#]

du
ra

tio
n

[s
]

1

routing simulation

Figure 1: Duration of the route computation (red) and the simulation (blue) over iterations
for the test scenario (described in chapter 5)

Obviously, most of the computation time is used by the simulation during the first runs.
Along the DUA iterations, this time (almost monotonously) decreases during the first steps.
The reason why the simulation needs much time in the first steps can be found by observing
the number of vehicles within the simulation over the simulation time and iteration step (see
Figure 2a).

a) b)

Figure 2: Development of the maximum number of vehicles (a) and the vehicles’ mean travel
time (b) over simulation time and iterations (shown iterations: 0, 5, 10, 15, 20, 25)

According to Figure 2b, one can see that, in the first steps of the assignment, many of the ve-
hicles are staying within the simulation for a long time. Because they do not leave the simula-
tion, the absolute number of vehicle movements the simulation has to compute is increased
which results in a large duration. Also, because each vehicle has – besides other parameters –
its own route stored within the simulation, the large number of vehicles that are within the
network causes memory consumption problems.

Figures 2a also shows that the maximum number of vehicles that are within the network si-
multaneously is shrinking over iteration steps. As a conclusion, the major problem is the large
number of vehicles kept in the simulation during the first DUA steps.

4 Proposed Modifications

Both proposed modifications do not change the route assignment itself, but only try to reduce
the number of simulated vehicles, especially within the first iteration steps. The following
methods that achieve this were evaluated:
a) Increasing vehicle amounts in the simulation

This approach resembles the macroscopic incremental assignment [7]. While route com-
putation is still done for all vehicles in each iteration step with reference to the edge travel
times computed by the simulation, the simulation only uses a fraction of the vehicles in
the analyzed scenario. In each iteration step, this number of vehicles emitted into the
simulation is increased. The motivation is
- to keep the simulation fast during the first steps by reducing the number of vehicles;

and
- to reduce the number of jams that occur by reducing the number of vehicles.
The edge travel times generated by the simulation are used for finding new routes and
computing the duration of known routes as in the original algorithm.
This approach will be named “inc_sim” in the evaluation section, meaning that the num-
ber of vehicles is incremented in the simulation.

b) Increasing simulation end time
Instead of increasing the amount of vehicles within the whole simulation, this approach
uses the complete number of vehicles, but the time the simulation ends is increased in
regular intervals.
The reason for trying this method is that, from our observations, simulated networks are
jammed by “falsely” routed vehicles when the demand is high enough. Also, in most
cases, we are interested in having simulations of whole days. This means that during the
first simulated hours, with only minor traffic, no large jams occur even if no proper as-
signment was yet computed. The idea of the method is to benefit from the travel times
collected during the first simulation runs, where only minor traffic is within the network
and no jams occur, and incrementally increase the demand by following the daily demand
time-series. Another benefit of this approach is that the number of vehicles inserted into
the network is bounded by the simulation end time.

The edge travel times generated by the simulation are used as described earlier. In the next
sections, it will be named “inc_end” for “increasing the simulation end time”.
However, both methods loose information. As travel times over edges are not proportional to
the number of vehicles that use the edge, both modifications lead the router to operate on edge
travel times that do not correspond to the real demand. Nonetheless, because the original algo-
rithm also changes the assignment in a probabilistic way and, instead of operating on global
measures, only takes into account a driver’s knowledge about the network. One can thus be
optimistic that the information loss can be compensated incrementally, while the number of
vehicle (inc_sim) or the simulation end time (inc_time) is increased.
The lack of possibility to evaluate the effects of this information loss makes it necessary to
evaluate both methods using a simulation.

5 Evaluation

The scenario we used for evaluating the different methods was developed for the INVENT
project and contains a road network and the respective demand for a normal weekday for the
city of Magdeburg using 1h-matrices for the hours between 5am and 9pm. Both the network
and the demand were given in VISUM format, so that several modifications were needed for
making it useable in a microscopic simulation. The road network was extended by highway
on and off ramps, lane-to-lane connections, and traffic lights. The demand was converted
from the original O/D-matrices that use about 250 districts into single vehicle trips. The resul-
tant scenario consists of a network made of about 4800 edges (roads) and 2500 nodes (junc-
tions) and a traffic demand of about 600,000 vehicles.
The evaluation was done by executing 50 iterations of the original algorithm, which was
known to compute a valid route set for the scenario. Then, the following modification settings
were run for also 50 iterations, each:

- “inc_sim10”: inc_sim increasing the number of simulated vehicles in steps of 1/10th of
the demand

- “inc_sim20”: inc_sim increasing the number of simulated vehicles in steps of 1/20th of
the demand

- “inc_sim30”: inc_sim increasing the number of simulated vehicles in steps of 1/30th of
the demand

- “inc_sim40”: inc_sim increasing the number of simulated vehicles in steps of 1/40th of
the demand

- “inc_sim50”: inc_sim increasing the number of simulated vehicles in steps of 1/50th of
the demand

- “inc_time1800”: inc_time using steps of 1800s
- “inc_time3600”: inc_time using steps of 3600s
- “inc_time5400”: inc_time using steps of 5400s
- “inc_time7200”: inc_time using steps of 7200s

We chose three main indicators for evaluating the quality of the assignment process among
the different methods. The first one is the execution time which we try to reduce; the second
one is the memory consumption, which shall be reduced, too. While we measure the duration
directly, we decided to use the maximum number of vehicles, which are simultaneously
within the simulated area, as a measurement for memory consumption. There are three rea-
sons for using this value: a) the number of currently simulated vehicles is directly available
within the simulation and can be saved and evaluated, b) because the network and other infra-
structure information stay the same over the described simulation runs, the maximum number
of simultaneously running vehicles is the only reason for different memory footprints of the
application, and c) this value does not depend on the used architecture or a single vehicle's
memory size. The third indicator is the mean travel time of all vehicles to simulate after the
simulation’s end. In the case that all vehicles have left the network, this gives a good assess-
ment of the assignment's quality, because it prefers faster routes and penalizes jams, retrieving
better scores for assignments that simulate drivers who want to reach their destination fast.
Figure 3 shows the maximum number of vehicles that were within the simulation simultane-
ously. All iteration steps of each of the named methods were taken into account. As expected,
the maximum number of simulated vehicles is reduced within the proposed methods, when

compared to the original (“plain”) method. Still, in almost all cases, except inc_sim50, this
value is higher than that for the simulation in the equilibrated state, as obtained from the 50th
iteration of the plain method, which is shown as a red line in Figure 3. This means that, during
the process, jams occur which may fill the simulation under circumstances.

0

20000

40000

60000

80000

100000

120000

140000

160000
pl

ai
n

in
c_

si
m

10

in
c_

si
m

20

in
c_

si
m

30

in
c_

si
m

40

in
c_

si
m

50

in
c_

tim
e1

80
0

in
c_

tim
e3

60
0

in
c_

tim
e5

40
0

in
c_

tim
e7

20
0

Method

m
ax

. v
eh

ic
le

 n
um

be
r [

#]

Figure 3: Maximum number of vehicles within the simulation over all iteration steps of each
of the evaluated methods; red line: maximum number of vehicles in the final step of the origi-

nal algorithm

The reduced number of the simulated vehicle movements results in a lower computation
times, as indicated in Figure 4. Each of the bars shows the time in hours that was needed to
perform 50 iterations for each method. In most cases, except inc_sim50, where the number of
really simulated vehicles was reached in the last iteration step, the respective method needed
less time to compute an assignment for all vehicles which resulting mean vehicle travel times
were lower than the one of the original algorithm. Each bar shown in Figure 4 pictures the
complete time needed by the respective method to perform 50 iteration steps. The dark com-
ponent of each of these bars shows the time, the according method needed to compute an as-
signment which results in a mean travel time that lies below the one obtained using after per-
forming the original method for 50 iterations. The light component is the additional time of
the 50 iterations, that the respective method used to further improve the assignment beyond
the quality, reached by the original method.

0

10

20

30

40

50

60

70

80

90

pl
ai

n

in
c_

si
m

10

in
c_

si
m

20

in
c_

si
m

30

in
c_

si
m

40

in
c_

si
m

50

in
c_

tim
e1

80
0

in
c_

tim
e3

60
0

in
c_

tim
e5

40
0

in
c_

tim
e7

20
0

Method

ex
ec

ut
io

n
tim

e
[h

]

Figure 4: Execution time of 50 iterations of each of the methods (colors: see text)

Because most of the modifications were able to reach the original algorithm’s quality in less
than 50 iterations, the following iterations could achieve further improvement of the mean
travel times, shown in Figure 5.

0

100

200

300

400

500

600

700

800

pl
ai

n

in
c_

si
m

10

in
c_

si
m

20

in
c_

si
m

30

in
c_

si
m

40

in
c_

si
m

50

in
c_

tim
e1

80
0

in
c_

tim
e3

60
0

in
c_

tim
e5

40
0

in
c_

tim
e7

20
0

Method

m
ea

n
tra

ve
l t

im
e

[s
]

Figure 5: Mean vehicle travel time after 50 iterations of the methods

The figures show that using any of the modifications is of benefit. Now, one should ask the
question which method and parameter set is the best. Though some of the presented methods
need a lower execution time to achieve the same quality (see Figure 4), inc_time1800 seems
to combine both of the described qualities – execution speed and reduction of used memory –
at best.

6 Conclusions and Future Work

We have shown that both approaches, increasing the number of simulated vehicles after star-
ing with only a fraction of the complete demand, and to slowly increase the simulation end

time, result in a faster computation of the DUA without loosing the original algorithm’s qual-
ity.
However, both methods have the drawback that their parameter, the percentage with which
the number of the simulated vehicles is increased, and the amount of time by which the simu-
lation’s end is extended, respectively, have to be given explicitly. The next development steps
are to establish a system which recognizes starting jams within the simulation and uses this
information as a feedback to the DUA system. Such a system should then adapt the parameter
to the current DUA progress.
Also, for the “inc_sim” approach, we have only considered changing the fraction of the proc-
essed vehicles within the simulation. Furthermore, it should be also evaluated whether all
routes must be computed by the router module and whether only computing the used ones can
reduce the computational effort without affecting the results’ quality.

7 References

[1] Gawron, C. (1998). Simulation-based traffic assignment – computing user equilibria in
large street networks. Ph.D. Dissertation, University of Köln, Germany.

[2] Krajzewicz, D., Hertkorn, G., Rössel, C., Wagner, P. (2002). SUMO (Simulation of
Urban MObility): an open-Source Traffic Simulation. Proceedings of the 4th Middle
East Symposium on Simulation and Modeling (MESM2002), 183 - 187, SCS European
Publishing House.

[3] Krajzewicz, D., Hartinger, M., Hertkorn, G., Nicolay, E., Rössel, C., Ringel, J., Wagner,
P. (2004). Recent Extensions to the open source Traffic Simulation SUMO. Proceedings
of the 10th World Conference on Transport Research (on CD), WCTR04 - 10th World
Conference on Transport Research, Istanbul (Turkey), 4-8 Jul. 2004.

[4] Krajzewicz, D., Bonert, M. and Wagner, P. (2006). The Open Source Traffic Simulation
Package SUMO. In: RoboCup 2006, RoboCup 2006, Bremen, Germany, 14-20 Jun.
2006.

[5] ITS/DLR. SUMO Website: http://sumo.sourceforge.net. 2001-2008
[6] Behrisch, M., Bonert M., Brockfeld, E., Krajzewicz, D. and Wagner, P. (2008). Event

traffic forecast for metropolitan areas based on microscopic simulation. International
Symposium on Transport Simulation 2008.

[7] Thomas, R. (1991). Traffic assignment techniques, Vermont, USA, Avebury Technical.

http://sumo.sourceforge.net/

