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This paper describes pm- and postprocessing aigorithms used to incorporate the fast 
Fourier transform (FFT) into the solution of finite difference approximations to multi-dimen- 
sional Poisson’s equation on a staggered grid where the boundary is located midway between 
~$0 grid points. All frequently occurring boundary conditions (Neumann. Dirichlet, or cyclic) 
are considered including the combination of staggered Neumann boundary condition on one 
side wtrh nonstaggered Dirichlet boundary condition on the other side. Experiences from 
implementing these algorithms in vectorized coding in Fortran subroutines are reported. 

1. INTR~DLTcTIoN 

In many applications of computational physics the solution of a sequence of 
multi-dimensional Poisson or Helmhoitz equations is required. An exampie IS 
Poisson’s equation for the pressure in simulations of incompressible fluid flows 
which has to be solved every time-step. Since the solution time required for the 
Poisson equation can represent a signitica.nt portion of the total computation iim:, 
efficient algorithms are required for this purpose. 

For finite difference approximations of fluid flow equations, staggered grids have 
been found to be well suited. In such a grid the finite difference approximatikn to 
Poisson’s equation implies that the boundary is located midway between two 
adjacent grid points. Typically, either Dirichlet (specified solution). Neumanri 
(specified normal derivative of the solution). or cyclic (periodic solution) boundary 
conditions are prescribed. 

Two known fast, direct solution algorithms for Poisson’s equation on staggered 
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TABLE I 

Availability of Pre- and Postprocessing for FFT of Transforms for Different 
Combinations of Boundary Conditions at i = 1 and i = n 

At i=n 

D N DS NS 

At i=l D 7.6 5,6 * \ 
N 5x3 75 

DS 5,6 
NS * * 416 

Note. In addition to [6, 71 for cyclic boundary conditions, from Ref. [4] Wilhelmson and Ericksen, 
[5] Swarztrauber (1977), [6] Swarztrauber (1986), [7] Cooley, Lewis, and Welch, [*] this paper, (I-] 
not available. 

grids are the Buneman variant of cyclic oddeven reduction [l-3] and the eigen- 
function expansion method that employs the fast Fourier transform (FFT) [4,5]. 
An asymptotic operation count for these two methods applied to three-dimensional 
problems [4] demonstrates the superiority of the latter method in higher dimen- 
sions. 

The Fourier transform algorithm presented in [4] applied only to the Poisson 
equation with staggered Neumann boundary conditions. Corresponding Fourier 
transform algorithms for nonstaggered boundary conditions are given in [S-7]. 
These transforms employ pre- and postprocessing algorithms to convert the 
nonperiodic transforms into a periodic form which can be handled by available 
FFT software. “Symmetric FFTs” which avoid such pre- and postprocessings have 
been described by Swartztrauber [6]. They are available for transforms which arise 
for nonstaggered boundary conditions and either Neumann or Dirichlet boundary 
conditions on both sides of a staggered grid. 

The purpose of this paper is to complete the set of pre- and postprocessing 
algorithms for efficient evaluation of the Fourier transforms required for boundary 
conditions on a staggered grid. Also, the often used combination of nonstaggered 
Dirichlet boundary condition on one side with staggered Neumann boundary con- 
dition on the other side is considered. Table I gives an overview on the availability 
of fast Fourier transform algorithms for various boundary condition combinations. 

In Section 2, we state the precise problem, the eigenfunction expansion method 
and the related Fourier transforms for all common boundary conditions. In 
Section 3, we deduce pre- and postprocessing algorithms to incorporate fast Fourier 
transforms into the eigenfunction expansion method for those combinations of 
boundary conditions not treated previously. Section 4 describes software implemen- 
tations of these algorithms and related experiences. 
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2. SOLU~ON OF POISSON'S EQUATION BY EIGENWNCTIQN 
EXPANSION METHOD mD RELATED FOURIER TRANSFORMS 

We assume that the discretized Poisson (or Melmhoitz) equation can be written 
as 

in which for multi-dimensional problems xi and J’~ are vectors and A a nonnegative 
definite matrix. Further we assume that either of the follosving boundary conditions 
(defined, e.g., at i = 1) applies: 

Neumann, N: .yz - .yO = 0. 
Bit-i&let-staggered, DS: X, + x, = 0, 
Neumann-staggered, NS: .Y, - x0 = 0, 
cyclic, C: :c9 = +Y,,, .Y,! t , = ,Y, 

Enhomogeneous boundary values can be incorporated into .ri and .r,,. 
Poisson’s equation (1) is to be solved by the eigenfunction expansion 

method [SJ: Let & be the ith component of the ith eigenvector and li < 0 the 
corresponding eigenvalue satisfying 

i= I, 2, . . . . iI, j= 1, 2, . ..) II, with the same homogeneous boundary conditions 
associated with Ey. (1). Then, solution of Eq. (1 j can be obtained in three stens: 

1. (Analysis) Determine I;, j= 1, 2. . ..) n, from the inverse (which exists due to 
orthogonality of the &) of 

7 Solve i. 

(Ajz-‘4j.fj=Jj, j= 1, 2, . . . . it (4) 

for +u/ (I is the unit matrix). 
3. (Synthesis) Compute the solution X: from 

xi= 2 &$-j, i = 1, 2, r..) n. is1 
j=l 

If any eigenvalue, say I,, , is zero and det(A ) = 0 then y1 has to satisfy a consistency 
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condition (7, = 0 if ,?r is a scalar) and an arbitrary additional equation has to be 
provided to determine fr uniquely. 

The eigenfunctions & are composed of sine and cosine expressions. Hence Eq. (5 ) 
is basically a Fourier transform. The details of & are given implicitly below. 

The efficiency of this algorithm results from the ability to calculate the coefficients 
m steps 1 and 3 using the fast Fourier transform and thereby reducing an 
apparently F? calculation to order n log n operations, 

Higher dimensional Poisson equations may be readily solved by the same 
algorithm with the simple modification that additional transforms in steps 1 and 3 
must be made to separate the equations with respect to the additional dimensions. 

For Fourier synthesis the “backward” transforms which satisfy the boundary con- 
ditions identically (including nonstaggered boundary conditions for completeness) 
are for i= 1, 2. . . . . n: 

when n is even, and 

in ~ 1 If’2 
xi+,+ c ( 

2@c 2ipc 
XyC0S-+X2j+, sin-- , 

,=l n tl 1 

when n is odd; and for other boundary conditions: 

D-D: xi= i .Cjsin---; 
ij?c 

j=l n+l 

(6b) 

(7) 

II 
D-N: xi = C .fj sin 

i(2j- 1) 71. 
2t1 7 (9) 

I- I 
I, 

N-D: xi= c .?jcos 
(i- l)(v2j- 1) 71. 

(10) 
j=l 2n 

DSDS: xi= i Zj sin 
(2i- l).jX~ 

2n ) 
(11) 

,j= 1 

NS-NS: xi = i fj cos 
(2i- l)(j- 1) n. 

> (12) 
j=l 2n 

DSNS: xi= i Zj sin 
(2i- 1)(2j- 1) 7c. 

4n ’ (13) 
j= 1 

NS-DS: xi= i .fj cos 
(Zi- 1)(2j- 1) 3~. 

j=l 4n ’ (14) 
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D-M: xi= f Z,sin 
i(2j-1)7rr 

In+1 ) 
(15) 

j=l 

NS-D: )2 xj = c zi cos 
(Zi- 1)(2j- 1) z 

2n+l 
(16) 

j= 1 

The “forward” transforms for Fourier ana!t,sis are consequences of the 
orthogonality of the trigonometric functions: 

(17aj 

(17bj 

(:7C) 

where HI = n/2 -- 1 when n is even and r?z = (n - I)/2 when n is odd, and, when II is 
even 

For the other boundary conditions, Fourier analysis gives +V,, j= 1, 2, . . . . II as 
follows: 

;rsj 

N-N: 
1 2 ~.=-xx, +--- 1 n-1 n-l 

II ~ 1 x c xi cos 
(i- l)(j- 1) 71 

- 
1 

--& s,,( - 1 y; ii31 
i=?. n - 

N-D: 
1 2-1 

*fj=-x,+- 1 x,cos 
(i- l)(Zj- 1)x 

i2;j 
n ‘1 j=l 2il 

IDS-DS: ,U, = 2 $ xi sin 
(2i- 1) jr. 

‘i-1 2n ’ 
(22) 
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t-23) NS-NS: ‘yj = $. ,i xi cos 
(2i- l)(j- 1) x 

3 
11=1 zn 

d, = IZ for j= 1, 

n =- 
2 

for j>l; 

DS-NS: .iTi = % -i xi sin 
(Zi- l)(Zj- 1) 7T, 

4n ’ 
(24) 

1=l 

NS-DS: ,Tj = ; ,i xi cos 
pi- 1)(2j- l&; 

I= I 411 
(25) 

Do-NS: P~=~~~risini(~~~+l:n: (26) 

NS-D: (27) 

The eigenvalues Aj required for Eq. (4) are 

(Ba) 

(28b) 

for j = 1, 2, . . . . n/2 - 1 when n is even, j = 1, 2, . . . . (n - 1 j/2 when 11 is odd, and, when 
n is even, 

A, = -4: (28~) 

jlr 
D--D: II,= -4sin’2(n+1)’ (29) 

N-N: Aj= -4sin’e, (30) 

D-N or N-D: Ai= -4 sin’ (“;nl) 7c, (31) 

DS--DS: A,= -4sinZJ2 
211’ 

(321 

NS--NS: ,I~ = -4 sin’k$.-?, (33) 
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DS-NS or NS-DS: 1, = -4 sin’ 
(2j-1)7r 

417 . 

D-NS or NS-D: lj = -4 sin’ 
(2j--1)7r 
2(2n+ l)> 

j = 1, 2, . ..) Il. (35) 

Note that /1, =0 for cases C-C, N-N, and NS-NS. Also note that the transform 
pairs for cases DS-DS and D-N are identical except for scaling. 

For efficient evaluation of the real periodic transform (C-C) fast Fourier trans- 
form subroutines are available in practically all computer libraries. We make use of 
thl subroutine package FFTPAK developed by Swarztrauber on the basis of t5e 
autosort algorithm credited to Stockham [8]. This package contains routines for 
cases C-C, D-D, N-N, D-N, and N-D. There are no restrictions on the number of 
data n; however, the usual considerations apply, namely, that all the routines are 
more efficient when 11 is a product of many small prime numbers. 

3. PRE- AND POSTPROCESSING ALGORITHMS FOR FOURIER TRANSFORMS 
ASSOCIATED WITH STAGGERED BOUXDARY CONDITIONS 

The transform pair, Eqs. (6) and ( 17 j, for real periodic data can be evaluated 
efficiently by existing FFT algorithms. Hence, if one expresses the other transforms 
in terms of the real periodic transform pair then they can be evaluated efficiently 
employing the same FFT algorithms. The generic expression implies the necessary 
pre- and postprocessing of the data before and after calling the FFT subroutine. 
The pre- and postprocessing steps for Fourier analysis are the inverses of tbose 
required for Fourier synthesis. For symmetric transform pairs (as for DS-NS) the 
pre- and postprocessing algorithms for analysis and for synthesis are identical 
except for scaling. 

Zn Section 3.1 we deduce the generic expression and the resultant pre- and 
postprocessmg algorithms for case DS-NS and in Section 3.2 likewise for case 
D-NS. For all other cases, the algorithms are either known from previous 
publications, see Table I, or can be adapted to such existing algorithms. These 
adaptions are discussed in Section 3.3. 

3.1. Case DSNS. Dirichlet-Neumann Boundary Conditiom cm a Staggered Cd 

Subsequently, the algorithm is deduced for fast evaluation of synthesis, Eq. (13 
first for even n: Starting from 

II. 1 - 1 

Jr;= y s*j+l sin 
(2i-1)(4j+1)7c nZ (2i- 1)(4j- 1) 71 

41 
+ 1 .fzi sin 

,: = 0 ,= I 4n . 



130 SCHUMANN AND SWEET 

after replacing 

sin 
(2i- 1)(4jk 1) 7c (2i- l)j7t 

4n 
= sin 

cos (2i- 1) x +cos(2i-1jjrrsin(2i-1)n 
n 4n - II 4n 

we form 

ai-xi sin 
[ 

(2i- 1) x 
+ cos 

(2i- 1) n: 
412 4n I 

+X,z+, -; 
[ 

cos 
(2i- 1) II 

4n 
-sin Pi- 1) ~ 

4n II 

and obtain 
rri2 ~ I 

a,=Z,+ C (.Yz,+dZjt,)sin(2i-lj’z 
j=I i n 

+ (dt2j + , - dY2j j cos 
(2i- I)jn 

n I 
- .U,( - 1)‘. 

(36) 

This can be rewritten as 

u,2d,+‘y 2~ 
i 
5 .cos2ijR+a_ 2ijx 1 

i= 1 n ~,+~sin~ -t-&(-l)‘, 
I 2 (38) 

where 
a, =2x,, a,, = -2x ,z . Pa) 

azi = (.fzi+ 1 - Xy) cosfi- (Fzj + X2j+ ,) sine, 
n 

(39b) 

a2j+ I = (-fzj + Lj+ ]) COSJ” + (-Uzj+ 1 - .f2jj sin’!, 
n n 

j=l,2 ,..., :-1. (39cj 

Hence, if we preprocess .li by computing tij from Eq. (39), then the real periodic 
transform Eq. (38) can be used to compute ai. But Eq. (36j can be rewritten as 

Ayi=L~i sin(Zi~~11jrr+cOs(2i-1)n] 
2 [ 4n 

1 --Q,,+,-~ cos(2i~n1)z-sin(2’~n1j”j, 
2 L 

i=l,2,...,n. (40) 

Thus, once the a, are determined from Eq. (38), they can be postprocessed by 
Eq. (40) to compute the xi. 
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For odd n, the generic expression, replacing Eq. (37 ), is 
,,I - I );I 

a,=.?,+ c 
[ 

(2i- 1 )j?t 
( .fzj + Szi + l ) sin _____ 

.j= I n 

which can be rewritten as 
1 I,? - I I:2 

a;=-a, + 
2ijTt 

U iizjcos---+Ilzj+, n 
2ijll’ 

sin- 2 I? 1 : 
j= 1 

(42 ) 

where li, is as defined in Eq. (39a), and the tizj, tizj+ I are as given in Eqs. (39bA 
(39c), for j= 1, 2, . . . . (n - 1)/Z. From these relations the pre- and postprocessing 
steps are easily deduced. 

Note that only a real transform of length II is required, The same algorithm is 
used to perform Fourier analysis by computing +f, from given values of (YPz) s;. 

3.2. Case D-NS, Mixed ,Vonstaggered Dirichlet wirh Staggered Neun~ann Baundat:)~ 
Conditions 

The general concept of the previous and similar pre- and postprocessing 
algorithms is to halve the number of data to be transformed by making use of the 
symmetry properties of the data. The transforms for D-NS boundary conditions, 
Eqs. (15, 26), is intrinsically related to a sine transform for an odd number (2?z+ 1 t 
of data which excludes the possibility of halving the number of data. Therefore, we 
embed two sequences -yi and yi of length II into one vector af of length 2)1+ I such 
that the transforms can be reduced to that for real periodic data. Thus, the 
following algorithm requires that transforms are to be evaluated for pairs of data 
vectors. 

Equation ( 15) for two transforms 
II 

xi = 1 .vj sin 
i(2j- 1) ‘II 

j=l 
2n+1 * 

y, = i Fj sin “~I~+lfl ‘, i = 1, 2, . . . . iz, 
j=l 

can be rewritten by combining the two vectors into one vector ai of length 312 + 1: 

ix in 
ai = x, sin 2n + 1 + yi cos 2,~ + I 

= jcl .f, sin 
i(2j-l)n. . in 

211t 1 
sm ___ 

2n+ 1 

+ jj sin 
i(2j- 1) II in 

cos -. 
2n+ 1 2n+ 1 (441 
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Using sin CI sin fi = [cos(cr - p) - cos(a + p)]/2 and sin a cos p = [sin(g - 8) + 
sin(a + fi)]/2, we obtain 

II 
aj= c .Yj 

[ cos 
2i(j- 1) n 3ijl.L 

j=l 2n+ 1 -CoS2rz 1 
+?; sin2i~n--+1~n+sin2E] I 2n+ 1 

n-1 

= 2,+ 1 [ 
(.Tj+,- j 

2ij7c 
x )cos- 

2ijlr 

+(.l;+l;,+l)sin- j=l 2n + 1 2n+ 1 I 

2inn 
+ .1’,, 

, 2itm 
- -\-?I cos 2n + 1 sin 2n + 1 . 

This takes the form of the standard transform for an odd number (2rz + 1) of real 
periodic data, 

1 II 
a;=-a,+ 

2 
1 

j=l 

i aacos $+ii2j+L sin&), i= 1, 2, . . . . 211+ 1, (46) 

ii, = 2s,, a?,, = --S,,, ~~2n + I = J,,, 

a, = .Ti + 1 - zj, azj+l');+,Fj+l, j= 1, 2, . ..) n - 1. (47) 

Hence, for synthesis we preprocess xj and .i;, by computing 5, from Eq. (47), then 
the real periodic synthesis Eq. (46) can be evaluated using a FFT library routine to 
obtain ai. Equation (43) can be inverted to determine the xi, yi by postprocessing: 

.Yj = (ai + az,, + 1 ~; 
)i’[ 

2 sin -K-- 
1 212+ 1 ’ 

yi= (ai-a2,,+1-i I:‘[ 2cos/7c 1 i = 
2n+ 1 

’ 1, 2, . . . . n. 

(48a) 

This completes the Fourier synthesis, Eq. (15). 
For Fourier analysis, Eq. (26), the above algorithm is to be inverted. Thus, we 

start by preprocessing 

(49a ) 
i7c i7c 

ai=xisin2n+l+~~c~s2n+1, 

i71 ix 
a>,,+, mi=xism -- 2n + 1 4’i cm zn i = + 13 1, 2, . . . . n, (4%) 

a -0 2n+1- . (49c J 
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The resultant ai are supplied to a FFT routine for real periodic anaiysis to 
determine 

Finally, postprocessing gives the required modes, 

x, ,“I. 
2 -uj + I = 2; $ azi. j = 1, 2, ...i 17 - 1, (51a) 

r,, = ~1,1+ 1) r/ = a2, + I - F., + I1 j= II - I> I7 - 2, . . . . 1. (Sib! 

This completes Fourier analysis for DPNS boundary conditions. 
Note that a real periodic transform of length 2n + 1 is required. Hence, it is essen- 

tial for this algorithm to have a library routine which allows us to compute such 
transforms for an odd number of data. In order to be effkient, (2r7 + 1) must be 
highly composite. For example, (2n + 1) factors into primes 3 and 5 if 
nE (1, 2, 4, 7, 12, 13, 22, 37, 40, 62, 67, 112, . ..I. Thus, the requirements on II for 
efficient transforms are more stringent in this case than for other transforms. 

3.3. Otlzer Bouizdaty Conditions 

As has been shown above, the pre- and postprocessing algorithms are simple to 
deduce once the given transform is expressed in the form of the real periodic trans- 
form. Thus for the other transforms it suffices to give these expressions. For 
DlS-DS, Eq. (22) can be rewritten as 

- .v,,( - 1 )‘, j = 1, 2, . ..) n (.fO z 0) (53i 

if 17 is even. and 

if n is odd. 
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For inversion of Eq. (52) we note 

1 2, = - L( sinc+cosJn 
I1 2n 211 

> tij+ ( sin?-cosJn ) 
2n In, 

a,,+i 1 . - (55) 

The resultant pre- and postprocessing algorithms are identical (up to scaling) to the 
algorithm for the efficient calculation of sine quarter-wave transforms developed by 
Swarztrauber [S] for D-N boundary conditions. A symmetric FFT for this case 
which avoids pre- and postprocessing is described in [6]. 

For NS-NS, Eq. (23) can be rewritten as 

so that 
(57) 

ij+, = sinjn+cosE & 
211 2n 1 /+ 1 

+(cos$-sinE)ri.,,,Pj],/(2dj+,), (58) 

from which we obtain the pre- and postprocessing algorithms as given by 
Wilhelmson and Ericksen [4]. (In [4], however, the normalization dj is deleted 
from Eq. (23) and included in Eq. (12) instead.) Again, a symmetric FFT for this 
case is described in [6]. 

For NS-DS and NS-ED we obtain the algorithms as for DS-NS and D-NS due 
to the mirror symmetry of these by replacing xi, fj with x,,+, -;, (- 1 ji+-’ ?cj, 
respectively. 

4. SOFTWARE AND PERFORMANCE 

The Fourier transforms described in the previous section have been indepen- 
dently implemented by the two authors in two sets of Fortran subroutines 
TRANXjY (by U.S.) and VSFFT (by R.S.). The routines perform the transforms on 
three-dimensional arrays xi --s~,~,~. The most inner loops are those over k and are 
vectorizable, therefore. To maintain the vectorization, a portion of the scalar FFT 
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package FFTPAK [S] has been recoded (by R.S.) into a vectorizable real periodic 
FFT package VRFFTPK. It uses a pre- and postprocessing algorithm to convert 
the real transforms to complex ones. The packages VSFFT and VRFFTPK have 
been used as the basis for a vectorized three-dimensional Poisson (or Helmholtz) 
equation solver, HS3CRT, that has been written in the style of a similar two-dimen- 
sional soiver in the Poisson package FISHPAK [9]. 

TRANX,!Y has been tested on a CRAY-1 computer for a three-dimensional 
vector si= s,. k /, i= 1. 2. . . . . 12, j-l,2 _... ,J, li=1,2,..., K with J=K=04 and 
n = 67,63, or 64 whichever case is the most suitable one for efficient FFT. The 
maximum relative error measured by comparing a random number data vector 
which is transformed and then inversely transformed with the original vector is less 
than 2.lW ” in all cases (machine accuracy approximately 10 ‘A) The com- 
putation times for Fourier synthesis and analysis (i.e., for 2 transforms) are given in 
Table II. For comparison, a vectorized algorithm which computes the transforms 
without FFT takes about 2.8s computation time for these vector sizes. The 
symmetric FFTs described by Swarztrauber [6] should give even faster transforms 
for several cases (see Table I) but software implementations are not available. No 
comparable algorithms exist for cases DS-NS, D-NS, and its mirror symmetric 
variants. 

The dependence of computation time on the value of IZ for case D-NS is given in 
Table III. It shows, as expected, that it is important to select n such that 2.~ f ! 
factors in at least a few prime numbers. 

In a preliminary stage of coding, TRANXiY employed a subroutine FFT99 by 
Temperton (personal communication, 1979). This routine is available both in 
CRAY assembler language (CAL) and in Fortran. It allows us to perform real 
periodic Fourier transforms on data which need not be stored with a unit increment 
in main storage (non-unit “stride”). This allows us to eliminate copying the data 
from one format into another: this simple operation takes about 309/a of the com- 

TABLE II 

Computing Times in Seconds on a CRAY-1 for Fourier Synthesis and Analysis of a 
Three-Dimensional Array of Size n x J x K Transformed in One Direction 

At i=/i 

D N DS NS 

At;=1 D 0.190 0.206 0.333 
N 0.206 

DS 0.199 0.193 
NS 0.320 0.194 0.196 

Nore. With n = 63 (D-D), n = 62 (D-NS, and NS-D), or II = 64 (otherwise), J = K= 64, for various 
boundary conditions using TRANX (--I not coded). For periodic boundary conditions the computing 
time is 0.178 s. 
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TABLE III 

Factorization of (2n + 1) and Computing Time/Second 
on a CRAY-1 versus n for D--NS. J= K= 63 

12 (?n+lj CPU time 

52 3X5X1 0.367 
53 107 2.487 
54 109 2.578 
55 3x37 0.914 
56 113 2.765 
57 5x23 0.674 
58 3X3X13 0.501 
59 7x 17 0.727 
60 11x11 0.695 
61 3x41 1.100 
62 5X5X5 0.321 
63 127 3.470 
64 3x43 1.200 

putation time for cyclic boundary conditions. Moreover the CAL version is about 
40 % faster than VRFFT while the Fortran-version is about 5 % slower. However, 
the main shortcoming of FFT99 is its restriction to even values of n; so it cannot be 
used for case D-NS or NSD. As has been pointed out by a reviewer, Temper- 
ton [ 101 has developed a version FFT77 which allows for odd 12, non-unit stride 
and is about 30% faster than FFT99, but this version was not available to us. 

The three-dimensional Poisson solver based on FFT using the routine 
TRANX/Y is about twice as fast as a coding based on cyclic reduction for staggered 
boundary conditions [l, 21. TRANXjY has been implemented in a fluid dynamics 
code in which Poisson’s equation in terrain following coordinates-due to variable 
coefficients-is solved by iteratively employing the Poisson solver for a nontrans- 
formed grid [ll]. In the iteration for D-NS the faster algorithms for DS-NS and 
for D-N may be applied alternately. This is an efficient approach if M does not 
allow for high factorization of 3tr+ 1. 
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