
ast Fourier Transforms for Direct ~o~~ti~~
of Poisson’s Equation with

Staggered Boundary ~~~d~t~~~s

Cortymiarionui .Wmhermrics Group. C’nicersii?: q:‘ Colorado of Denrw. Denrer. Co!o;ado.
and Scienljfic Computirzg DiCiSiOrL Marional Bureau of Skmdmds,

Boulder. Colortrdo

Received March 13, 1987; revised haay 19, 1987

This paper describes pm- and postprocessing aigorithms used to incorporate the fast
Fourier transform (FFT) into the solution of finite difference approximations to multi-dimen-
sional Poisson’s equation on a staggered grid where the boundary is located midway between
~$0 grid points. All frequently occurring boundary conditions (Neumann. Dirichlet, or cyclic)
are considered including the combination of staggered Neumann boundary condition on one
side wtrh nonstaggered Dirichlet boundary condition on the other side. Experiences from
implementing these algorithms in vectorized coding in Fortran subroutines are reported.

1. INTR~DLTcTIoN

In many applications of computational physics the solution of a sequence of
multi-dimensional Poisson or Helmhoitz equations is required. An exampie IS
Poisson’s equation for the pressure in simulations of incompressible fluid flows
which has to be solved every time-step. Since the solution time required for the
Poisson equation can represent a signitica.nt portion of the total computation iim:,
efficient algorithms are required for this purpose.

For finite difference approximations of fluid flow equations, staggered grids have
been found to be well suited. In such a grid the finite difference approximatikn to
Poisson’s equation implies that the boundary is located midway between two
adjacent grid points. Typically, either Dirichlet (specified solution). Neumanri
(specified normal derivative of the solution). or cyclic (periodic solution) boundary
conditions are prescribed.

Two known fast, direct solution algorithms for Poisson’s equation on staggered
123

OK!i-9991.‘88 53.06

124 SCHUMANN AND SWEET

TABLE I

Availability of Pre- and Postprocessing for FFT of Transforms for Different
Combinations of Boundary Conditions at i = 1 and i = n

At i=n

D N DS NS

At i=l D 7.6 5,6 * \
N 5x3 75

DS 5,6
NS * * 416

Note. In addition to [6, 71 for cyclic boundary conditions, from Ref. [4] Wilhelmson and Ericksen,
[5] Swarztrauber (1977), [6] Swarztrauber (1986), [7] Cooley, Lewis, and Welch, [*] this paper, (I-]
not available.

grids are the Buneman variant of cyclic oddeven reduction [l-3] and the eigen-
function expansion method that employs the fast Fourier transform (FFT) [4,5].
An asymptotic operation count for these two methods applied to three-dimensional
problems [4] demonstrates the superiority of the latter method in higher dimen-
sions.

The Fourier transform algorithm presented in [4] applied only to the Poisson
equation with staggered Neumann boundary conditions. Corresponding Fourier
transform algorithms for nonstaggered boundary conditions are given in [S-7].
These transforms employ pre- and postprocessing algorithms to convert the
nonperiodic transforms into a periodic form which can be handled by available
FFT software. “Symmetric FFTs” which avoid such pre- and postprocessings have
been described by Swartztrauber [6]. They are available for transforms which arise
for nonstaggered boundary conditions and either Neumann or Dirichlet boundary
conditions on both sides of a staggered grid.

The purpose of this paper is to complete the set of pre- and postprocessing
algorithms for efficient evaluation of the Fourier transforms required for boundary
conditions on a staggered grid. Also, the often used combination of nonstaggered
Dirichlet boundary condition on one side with staggered Neumann boundary con-
dition on the other side is considered. Table I gives an overview on the availability
of fast Fourier transform algorithms for various boundary condition combinations.

In Section 2, we state the precise problem, the eigenfunction expansion method
and the related Fourier transforms for all common boundary conditions. In
Section 3, we deduce pre- and postprocessing algorithms to incorporate fast Fourier
transforms into the eigenfunction expansion method for those combinations of
boundary conditions not treated previously. Section 4 describes software implemen-
tations of these algorithms and related experiences.

STAGGERED FASTFOURIER TRANSFORMS

2. SOLU~ON OF POISSON'S EQUATION BY EIGENWNCTIQN
EXPANSION METHOD mD RELATED FOURIER TRANSFORMS

We assume that the discretized Poisson (or Melmhoitz) equation can be written
as

in which for multi-dimensional problems xi and J’~ are vectors and A a nonnegative
definite matrix. Further we assume that either of the follosving boundary conditions
(defined, e.g., at i = 1) applies:

Neumann, N: .yz - .yO = 0.
Bit-i&let-staggered, DS: X, + x, = 0,
Neumann-staggered, NS: .Y, - x0 = 0,
cyclic, C: :c9 = +Y,,, .Y,! t , = ,Y,

Enhomogeneous boundary values can be incorporated into .ri and .r,,.
Poisson’s equation (1) is to be solved by the eigenfunction expansion

method [SJ: Let & be the ith component of the ith eigenvector and li < 0 the
corresponding eigenvalue satisfying

i= I, 2, iI, j= 1, 2, . ..) II, with the same homogeneous boundary conditions
associated with Ey. (1). Then, solution of Eq. (1 j can be obtained in three stens:

1. (Analysis) Determine I;, j= 1, 2. . ..) n, from the inverse (which exists due to
orthogonality of the &) of

7 Solve i.

(Ajz-‘4j.fj=Jj, j= 1, 2, it (4)

for +u/ (I is the unit matrix).
3. (Synthesis) Compute the solution X: from

xi= 2 &$-j, i = 1, 2, r..) n. is1
j=l

If any eigenvalue, say I,, , is zero and det(A) = 0 then y1 has to satisfy a consistency

126 SCHTJMANN AND SWEET

condition (7, = 0 if ,?r is a scalar) and an arbitrary additional equation has to be
provided to determine fr uniquely.

The eigenfunctions & are composed of sine and cosine expressions. Hence Eq. (5)
is basically a Fourier transform. The details of & are given implicitly below.

The efficiency of this algorithm results from the ability to calculate the coefficients
m steps 1 and 3 using the fast Fourier transform and thereby reducing an
apparently F? calculation to order n log n operations,

Higher dimensional Poisson equations may be readily solved by the same
algorithm with the simple modification that additional transforms in steps 1 and 3
must be made to separate the equations with respect to the additional dimensions.

For Fourier synthesis the “backward” transforms which satisfy the boundary con-
ditions identically (including nonstaggered boundary conditions for completeness)
are for i= 1, 2. n:

when n is even, and

in ~ 1 If’2
xi+,+ c (

2@c 2ipc
XyC0S-+X2j+, sin-- ,

,=l n tl 1

when n is odd; and for other boundary conditions:

D-D: xi= i .Cjsin---;
ij?c

j=l n+l

(6b)

(7)

II
D-N: xi = C .fj sin

i(2j- 1) 71.
2t1 7 (9)

I- I
I,

N-D: xi= c .?jcos
(i- l)(v2j- 1) 71.

(10)
j=l 2n

DSDS: xi= i Zj sin
(2i- l).jX~

2n)
(11)

,j= 1

NS-NS: xi = i fj cos
(2i- l)(j- 1) n.

> (12)
j=l 2n

DSNS: xi= i Zj sin
(2i- 1)(2j- 1) 7c.

4n ’ (13)
j= 1

NS-DS: xi= i .fj cos
(Zi- 1)(2j- 1) 3~.

j=l 4n ’ (14)

STAGGERED FAST FOURIER TRANSFORMS 127

D-M: xi= f Z,sin
i(2j-1)7rr

In+1)
(15)

j=l

NS-D:)2 xj = c zi cos
(Zi- 1)(2j- 1) z

2n+l
(16)

j= 1

The “forward” transforms for Fourier ana!t,sis are consequences of the
orthogonality of the trigonometric functions:

(17aj

(17bj

(:7C)

where HI = n/2 -- 1 when n is even and r?z = (n - I)/2 when n is odd, and, when II is
even

For the other boundary conditions, Fourier analysis gives +V,, j= 1, 2, II as
follows:

;rsj

N-N:
1 2 ~.=-xx, +--- 1 n-1 n-l

II ~ 1 x c xi cos
(i- l)(j- 1) 71

-
1

--& s,,(- 1 y; ii31
i=?. n -

N-D:
1 2-1

*fj=-x,+- 1 x,cos
(i- l)(Zj- 1)x

i2;j
n ‘1 j=l 2il

IDS-DS: ,U, = 2 $ xi sin
(2i- 1) jr.

‘i-1 2n ’
(22)

128 SCHUMANN AND SWEET

t-23) NS-NS: ‘yj = $. ,i xi cos
(2i- l)(j- 1) x

3
11=1 zn

d, = IZ for j= 1,

n =-
2

for j>l;

DS-NS: .iTi = % -i xi sin
(Zi- l)(Zj- 1) 7T,

4n ’
(24)

1=l

NS-DS: ,Tj = ; ,i xi cos
pi- 1)(2j- l&;

I= I 411
(25)

Do-NS: P~=~~~risini(~~~+l:n: (26)

NS-D: (27)

The eigenvalues Aj required for Eq. (4) are

(Ba)

(28b)

for j = 1, 2, n/2 - 1 when n is even, j = 1, 2, (n - 1 j/2 when 11 is odd, and, when
n is even,

A, = -4: (28~)

jlr
D--D: II,= -4sin’2(n+1)’ (29)

N-N: Aj= -4sin’e, (30)

D-N or N-D: Ai= -4 sin’ (“;nl) 7c, (31)

DS--DS: A,= -4sinZJ2
211’

(321

NS--NS: ,I~ = -4 sin’k$.-?, (33)

STAGGERED FASTFOURIER TRANSFORMS i7 ,9 /L

DS-NS or NS-DS: 1, = -4 sin’
(2j-1)7r

417 .

D-NS or NS-D: lj = -4 sin’
(2j--1)7r
2(2n+ l)>

j = 1, 2, . ..) Il. (35)

Note that /1, =0 for cases C-C, N-N, and NS-NS. Also note that the transform
pairs for cases DS-DS and D-N are identical except for scaling.

For efficient evaluation of the real periodic transform (C-C) fast Fourier trans-
form subroutines are available in practically all computer libraries. We make use of
thl subroutine package FFTPAK developed by Swarztrauber on the basis of t5e
autosort algorithm credited to Stockham [8]. This package contains routines for
cases C-C, D-D, N-N, D-N, and N-D. There are no restrictions on the number of
data n; however, the usual considerations apply, namely, that all the routines are
more efficient when 11 is a product of many small prime numbers.

3. PRE- AND POSTPROCESSING ALGORITHMS FOR FOURIER TRANSFORMS
ASSOCIATED WITH STAGGERED BOUXDARY CONDITIONS

The transform pair, Eqs. (6) and (17 j, for real periodic data can be evaluated
efficiently by existing FFT algorithms. Hence, if one expresses the other transforms
in terms of the real periodic transform pair then they can be evaluated efficiently
employing the same FFT algorithms. The generic expression implies the necessary
pre- and postprocessing of the data before and after calling the FFT subroutine.
The pre- and postprocessing steps for Fourier analysis are the inverses of tbose
required for Fourier synthesis. For symmetric transform pairs (as for DS-NS) the
pre- and postprocessing algorithms for analysis and for synthesis are identical
except for scaling.

Zn Section 3.1 we deduce the generic expression and the resultant pre- and
postprocessmg algorithms for case DS-NS and in Section 3.2 likewise for case
D-NS. For all other cases, the algorithms are either known from previous
publications, see Table I, or can be adapted to such existing algorithms. These
adaptions are discussed in Section 3.3.

3.1. Case DSNS. Dirichlet-Neumann Boundary Conditiom cm a Staggered Cd

Subsequently, the algorithm is deduced for fast evaluation of synthesis, Eq. (13
first for even n: Starting from

II. 1 - 1

Jr;= y s*j+l sin
(2i-1)(4j+1)7c nZ (2i- 1)(4j- 1) 71

41
+ 1 .fzi sin

,: = 0 ,= I 4n .

130 SCHUMANN AND SWEET

after replacing

sin
(2i- 1)(4jk 1) 7c (2i- l)j7t

4n
= sin

cos (2i- 1) x +cos(2i-1jjrrsin(2i-1)n
n 4n - II 4n

we form

ai-xi sin
[

(2i- 1) x
+ cos

(2i- 1) n:
412 4n I

+X,z+, -;
[

cos
(2i- 1) II

4n
-sin Pi- 1) ~

4n II

and obtain
rri2 ~ I

a,=Z,+ C (.Yz,+dZjt,)sin(2i-lj’z
j=I i n

+ (dt2j + , - dY2j j cos
(2i- I)jn

n I
- .U,(- 1)‘.

(36)

This can be rewritten as

u,2d,+‘y 2~
i
5 .cos2ijR+a_ 2ijx 1

i= 1 n ~,+~sin~ -t-&(-l)‘,
I 2 (38)

where
a, =2x,, a,, = -2x ,z . Pa)

azi = (.fzi+ 1 - Xy) cosfi- (Fzj + X2j+ ,) sine,
n

(39b)

a2j+ I = (-fzj + Lj+]) COSJ” + (-Uzj+ 1 - .f2jj sin’!,
n n

j=l,2 ,..., :-1. (39cj

Hence, if we preprocess .li by computing tij from Eq. (39), then the real periodic
transform Eq. (38) can be used to compute ai. But Eq. (36j can be rewritten as

Ayi=L~i sin(Zi~~11jrr+cOs(2i-1)n]
2 [4n

1 --Q,,+,-~ cos(2i~n1)z-sin(2’~n1j”j,
2 L

i=l,2,...,n. (40)

Thus, once the a, are determined from Eq. (38), they can be postprocessed by
Eq. (40) to compute the xi.

STAGGERED FAST FOURIER TRANSFORMS 131

For odd n, the generic expression, replacing Eq. (37), is
,,I - I);I

a,=.?,+ c
[

(2i- 1)j?t
(.fzj + Szi + l) sin _____

.j= I n

which can be rewritten as
1 I,? - I I:2

a;=-a, +
2ijTt

U iizjcos---+Ilzj+, n
2ijll’

sin- 2 I? 1 :
j= 1

(42)

where li, is as defined in Eq. (39a), and the tizj, tizj+ I are as given in Eqs. (39bA
(39c), for j= 1, 2, (n - 1)/Z. From these relations the pre- and postprocessing
steps are easily deduced.

Note that only a real transform of length II is required, The same algorithm is
used to perform Fourier analysis by computing +f, from given values of (YPz) s;.

3.2. Case D-NS, Mixed ,Vonstaggered Dirichlet wirh Staggered Neun~ann Baundat:)~
Conditions

The general concept of the previous and similar pre- and postprocessing
algorithms is to halve the number of data to be transformed by making use of the
symmetry properties of the data. The transforms for D-NS boundary conditions,
Eqs. (15, 26), is intrinsically related to a sine transform for an odd number (2?z+ 1 t
of data which excludes the possibility of halving the number of data. Therefore, we
embed two sequences -yi and yi of length II into one vector af of length 2)1+ I such
that the transforms can be reduced to that for real periodic data. Thus, the
following algorithm requires that transforms are to be evaluated for pairs of data
vectors.

Equation (15) for two transforms
II

xi = 1 .vj sin
i(2j- 1) ‘II

j=l
2n+1 *

y, = i Fj sin “~I~+lfl ‘, i = 1, 2, iz,
j=l

can be rewritten by combining the two vectors into one vector ai of length 312 + 1:

ix in
ai = x, sin 2n + 1 + yi cos 2,~ + I

= jcl .f, sin
i(2j-l)n. . in

211t 1
sm ___

2n+ 1

+ jj sin
i(2j- 1) II in

cos -.
2n+ 1 2n+ 1 (441

132 SCHUMANN AND SWEET

Using sin CI sin fi = [cos(cr - p) - cos(a + p)]/2 and sin a cos p = [sin(g - 8) +
sin(a + fi)]/2, we obtain

II
aj= c .Yj

[cos
2i(j- 1) n 3ijl.L

j=l 2n+ 1 -CoS2rz 1
+?; sin2i~n--+1~n+sin2E] I 2n+ 1

n-1

= 2,+ 1 [
(.Tj+,- j

2ij7c
x)cos-

2ijlr

+(.l;+l;,+l)sin- j=l 2n + 1 2n+ 1 I

2inn
+ .1’,,

, 2itm
- -\-?I cos 2n + 1 sin 2n + 1 .

This takes the form of the standard transform for an odd number (2rz + 1) of real
periodic data,

1 II
a;=-a,+

2
1

j=l

i aacos $+ii2j+L sin&), i= 1, 2, 211+ 1, (46)

ii, = 2s,, a?,, = --S,,, ~~2n + I = J,,,

a, = .Ti + 1 - zj, azj+l');+,Fj+l, j= 1, 2, . ..) n - 1. (47)

Hence, for synthesis we preprocess xj and .i;, by computing 5, from Eq. (47), then
the real periodic synthesis Eq. (46) can be evaluated using a FFT library routine to
obtain ai. Equation (43) can be inverted to determine the xi, yi by postprocessing:

.Yj = (ai + az,, + 1 ~;
)i’[

2 sin -K--
1 212+ 1 ’

yi= (ai-a2,,+1-i I:‘[2cos/7c 1 i =
2n+ 1

’ 1, 2, n.

(48a)

This completes the Fourier synthesis, Eq. (15).
For Fourier analysis, Eq. (26), the above algorithm is to be inverted. Thus, we

start by preprocessing

(49a)
i7c i7c

ai=xisin2n+l+~~c~s2n+1,

i71 ix
a>,,+, mi=xism -- 2n + 1 4’i cm zn i = + 13 1, 2, n, (4%)

a -0 2n+1- . (49c J

STAGGERED FAST FOURIER TRANSFORMS 133

The resultant ai are supplied to a FFT routine for real periodic anaiysis to
determine

Finally, postprocessing gives the required modes,

x, ,“I.
2 -uj + I = 2; $ azi. j = 1, 2, ...i 17 - 1, (51a)

r,, = ~1,1+ 1) r/ = a2, + I - F., + I1 j= II - I> I7 - 2, 1. (Sib!

This completes Fourier analysis for DPNS boundary conditions.
Note that a real periodic transform of length 2n + 1 is required. Hence, it is essen-

tial for this algorithm to have a library routine which allows us to compute such
transforms for an odd number of data. In order to be effkient, (2r7 + 1) must be
highly composite. For example, (2n + 1) factors into primes 3 and 5 if
nE (1, 2, 4, 7, 12, 13, 22, 37, 40, 62, 67, 112, . ..I. Thus, the requirements on II for
efficient transforms are more stringent in this case than for other transforms.

3.3. Otlzer Bouizdaty Conditions

As has been shown above, the pre- and postprocessing algorithms are simple to
deduce once the given transform is expressed in the form of the real periodic trans-
form. Thus for the other transforms it suffices to give these expressions. For
DlS-DS, Eq. (22) can be rewritten as

- .v,,(- 1)‘, j = 1, 2, . ..) n (.fO z 0) (53i

if 17 is even. and

if n is odd.

134 SCHUMANNANDSWEET

For inversion of Eq. (52) we note

1 2, = - L(sinc+cosJn
I1 2n 211

> tij+ (sin?-cosJn)
2n In,

a,,+i 1 . - (55)

The resultant pre- and postprocessing algorithms are identical (up to scaling) to the
algorithm for the efficient calculation of sine quarter-wave transforms developed by
Swarztrauber [S] for D-N boundary conditions. A symmetric FFT for this case
which avoids pre- and postprocessing is described in [6].

For NS-NS, Eq. (23) can be rewritten as

so that
(57)

ij+, = sinjn+cosE &
211 2n 1 /+ 1

+(cos$-sinE)ri.,,,Pj],/(2dj+,), (58)

from which we obtain the pre- and postprocessing algorithms as given by
Wilhelmson and Ericksen [4]. (In [4], however, the normalization dj is deleted
from Eq. (23) and included in Eq. (12) instead.) Again, a symmetric FFT for this
case is described in [6].

For NS-DS and NS-ED we obtain the algorithms as for DS-NS and D-NS due
to the mirror symmetry of these by replacing xi, fj with x,,+, -;, (- 1 ji+-’ ?cj,
respectively.

4. SOFTWARE AND PERFORMANCE

The Fourier transforms described in the previous section have been indepen-
dently implemented by the two authors in two sets of Fortran subroutines
TRANXjY (by U.S.) and VSFFT (by R.S.). The routines perform the transforms on
three-dimensional arrays xi --s~,~,~. The most inner loops are those over k and are
vectorizable, therefore. To maintain the vectorization, a portion of the scalar FFT

STAGGERED FAST FOirRIER TRANSF(?T?MS 135

package FFTPAK [S] has been recoded (by R.S.) into a vectorizable real periodic
FFT package VRFFTPK. It uses a pre- and postprocessing algorithm to convert
the real transforms to complex ones. The packages VSFFT and VRFFTPK have
been used as the basis for a vectorized three-dimensional Poisson (or Helmholtz)
equation solver, HS3CRT, that has been written in the style of a similar two-dimen-
sional soiver in the Poisson package FISHPAK [9].

TRANX,!Y has been tested on a CRAY-1 computer for a three-dimensional
vector si= s,. k /, i= 1. 2. 12, j-l,2 _... ,J, li=1,2,..., K with J=K=04 and
n = 67,63, or 64 whichever case is the most suitable one for efficient FFT. The
maximum relative error measured by comparing a random number data vector
which is transformed and then inversely transformed with the original vector is less
than 2.lW ” in all cases (machine accuracy approximately 10 ‘A) The com-
putation times for Fourier synthesis and analysis (i.e., for 2 transforms) are given in
Table II. For comparison, a vectorized algorithm which computes the transforms
without FFT takes about 2.8s computation time for these vector sizes. The
symmetric FFTs described by Swarztrauber [6] should give even faster transforms
for several cases (see Table I) but software implementations are not available. No
comparable algorithms exist for cases DS-NS, D-NS, and its mirror symmetric
variants.

The dependence of computation time on the value of IZ for case D-NS is given in
Table III. It shows, as expected, that it is important to select n such that 2.~ f !
factors in at least a few prime numbers.

In a preliminary stage of coding, TRANXiY employed a subroutine FFT99 by
Temperton (personal communication, 1979). This routine is available both in
CRAY assembler language (CAL) and in Fortran. It allows us to perform real
periodic Fourier transforms on data which need not be stored with a unit increment
in main storage (non-unit “stride”). This allows us to eliminate copying the data
from one format into another: this simple operation takes about 309/a of the com-

TABLE II

Computing Times in Seconds on a CRAY-1 for Fourier Synthesis and Analysis of a
Three-Dimensional Array of Size n x J x K Transformed in One Direction

At i=/i

D N DS NS

At;=1 D 0.190 0.206 0.333
N 0.206

DS 0.199 0.193
NS 0.320 0.194 0.196

Nore. With n = 63 (D-D), n = 62 (D-NS, and NS-D), or II = 64 (otherwise), J = K= 64, for various
boundary conditions using TRANX (--I not coded). For periodic boundary conditions the computing
time is 0.178 s.

136 SCHUMANN AND SWEET

TABLE III

Factorization of (2n + 1) and Computing Time/Second
on a CRAY-1 versus n for D--NS. J= K= 63

12 (?n+lj CPU time

52 3X5X1 0.367
53 107 2.487
54 109 2.578
55 3x37 0.914
56 113 2.765
57 5x23 0.674
58 3X3X13 0.501
59 7x 17 0.727
60 11x11 0.695
61 3x41 1.100
62 5X5X5 0.321
63 127 3.470
64 3x43 1.200

putation time for cyclic boundary conditions. Moreover the CAL version is about
40 % faster than VRFFT while the Fortran-version is about 5 % slower. However,
the main shortcoming of FFT99 is its restriction to even values of n; so it cannot be
used for case D-NS or NSD. As has been pointed out by a reviewer, Temper-
ton [101 has developed a version FFT77 which allows for odd 12, non-unit stride
and is about 30% faster than FFT99, but this version was not available to us.

The three-dimensional Poisson solver based on FFT using the routine
TRANX/Y is about twice as fast as a coding based on cyclic reduction for staggered
boundary conditions [l, 21. TRANXjY has been implemented in a fluid dynamics
code in which Poisson’s equation in terrain following coordinates-due to variable
coefficients-is solved by iteratively employing the Poisson solver for a nontrans-
formed grid [ll]. In the iteration for D-NS the faster algorithms for DS-NS and
for D-N may be applied alternately. This is an efficient approach if M does not
allow for high factorization of 3tr+ 1.

ACKNOWLEDGMENTS

We thank Dr. H. Volkert for help in developing the subroutine TRANX;Y and valuable suggestions
on the manuscript. Mrs. Linda Lindgren for help in developing the packages VRFFTPK and VSFFT,
and Mrs. J. Freund for writing the manuscript with a teat editor system.

REFERENCES

1. U. SCHUMANN AND R. A. SWEET, J. Comput. HIJX 20, 171 (1976).
2. U. SCHUMANN AND R. A. SWEET, Proceedings, 5th Internat. Conf Numerical Methods in Fluid

Dynamics, Lecture Notes in Phys. Vol. 59 (Springer, Berlin, 1976), p. 398.

STAGGERED FAST FOURIER TRANSFORMS

3. R. A. SWEET, J. Cwnpui. Phxs. 12, 422 (1973).
4. R. B. WmiEihmN AND J. H. ERICKSEN, J. C’onqur. Phyr. 25. 319 (1977).
5. P. N. S\VARZTRAIJBER, S1.4M Rer. 19, 490 (1977).
6. P. N. S\V.ARZTRAUBER, Mark Conput. 47, 323 (198611.
7. J. W. CDOLEY. P. A. W. LEWIS. AND P. D. WELCH. J. Sound C.ih. 12. 315 (1970 j.
8. P. N. SWARZTKAUBEK, in Large SC& Scieur$c Co~~plrurio~ edited by S. Parter (Academic Press.

New York. 19841, p. 271.
9. J. ADAMS. P. N. SWARZTRADBER, AND R. SWEET, ACM Trans. &fa!h. Sqffwure 5, 352 i i979 J.

10. C. TEMPERTON. J. Cornprt. P/qx 52. 340 (1953 J.
9 1. U. SCHrhfmN AND H. ~OLKERT, in &ffi:cienr Sdrrtiom qf E/iiplic S~slems, Noies in Numerical Flliid

Mechanics Vol. 10. edited by W. Hackbusch (Vieweg. Braunschweig. 1984L p. 109.

