DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Kontakt | English
Schriftgröße: [-] Text [+]

Direct numerical simulation of stratified homogeneous turbulent shear flows

Gerz, T. und Schumann, U. und Elghobashi, S. E. (1989) Direct numerical simulation of stratified homogeneous turbulent shear flows. Journal of Fluid Mechanics, 200, Seiten 563-594. DOI: 10.1017/S0022112089000765.

[img] PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Offizielle URL: http://www.jfm.damtp.cam.ac.uk/


The exact time-dependent three-dimensional Navier-Stokes and temperature equations are integrated numerically to simulate stably stratified homogeneous turbulent shear flows at moderate Reynolds numbers whose horizontal mean velocity and mean temperature have uniform vertical gradients. The method uses shear-periodic boundary conditions and a combination of finite-difference and pseudospectral approximations. The gradient Richardson number Ri is varied between 0 and 1. The simulations start from isotropic Gaussian fields for velocity and temperature both having the same variances. The simulations represent approximately the conditions of the experiment by Komori et al. (1983) who studied stably stratified flows in a water channel (molecular Prandtl number Pr = 5). In these flows internal gravity waves build up, superposed by hot cells leading to a persistent counter-gradient heat-flux (CGHF) in the vertical direction, i.e. heat is transported from lower-temperature to higher-temperature regions. Further, simulations with Pr = 0.7 for air have been carried out in order to investigate the influence of the molecular Prandtl number. In these cases, no persistent CGHF occurred. This confirms our general conclusion that the counter-gradient heat flux develops for strongly stable flows (Ri [approximate] 0.5–1.0) at sufficiently large Prandtl numbers (Pr = 5). The flux is carried by hot ascending, as well as cold descending turbulent cells which form at places where the highest positive and negative temperature fluctuations initially existed. Buoyancy forces suppress vertical motions so that the cells degenerate to two-dimensional fossil turbulence. The counter-gradient heat flux acts to enforce a quasi-static equilibrium between potential and kinetic energy. Previously derived turbulence closure models for the pressure-strain and pressure-temperature gradients in the equations for the Reynolds stress and turbulent heat flux are tested for moderate-Reynolds-number flows with strongly stable stratification (Ri = 1). These models overestimate the turbulent interactions and underestimate the buoyancy contributions. The dissipative timescale ratio for stably stratified turbulence is a strong function of the Richardson number and is inversely proportional to the molecular Prandtl number of the fluid.

Titel: Direct numerical simulation of stratified homogeneous turbulent shear flows
AutorenInstitution oder E-Mail-Adresse der Autoren
Elghobashi, S. E.Univ. of California, Irvine, CA, USA
Erschienen in: Journal of Fluid Mechanics
Referierte Publikation:Ja
In ISI Web of Science:Ja
DOI :10.1017/S0022112089000765
Seitenbereich:Seiten 563-594
Stichwörter:shear-periodic boundary, pseudospectral, approximations
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:keine Zuordnung
DLR - Forschungsgebiet:keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):anderes
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre
Hinterlegt von: Jana Freund
Hinterlegt am:18 Feb 2008
Letzte Änderung:05 Aug 2010 16:54

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Hilfe & Kontakt
electronic library verwendet EPrints 3.3.12
Copyright © 2008-2013 Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.