elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Contact | Deutsch
Fontsize: [-] Text [+]

The propagation of mountain waves into the stratosphere: Quantitative evaluation of three-dimensional simulations

Leutbecher, Martin and Volkert, Hans (2000) The propagation of mountain waves into the stratosphere: Quantitative evaluation of three-dimensional simulations. Journal of the Atmospheric Sciences, 57, pp. 3090-3108.

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
782kB

Abstract

On 6 January 1992 measurements of a mountain wave with significant amplitude were taken over the southern tip of Greenland during an ER-2 flight at an altitude of about 20 km. This work focuses on 3D numerical simulations of the wave generation and its propagation into the stratosphere during this event. The sensitivity of the simulated mountain wave to surface friction and horizontal resolution is explored. A nonhydrostatic model is used for experiments with horizontal resolutions of 12, 4, and 1.3 km. In all simulations the flow over the southern tip of Greenland generates a mountain wave, which propagates into the stratosphere. Changes of surface friction and horizontal resolution affect mostly the amplitude of the mountain wave. Increasing surface friction on the slopes reduces the amplitude of the excited orographic gravity wave. Horizontal diffusion required for numerical stability attenuates gravity waves during their propagation into the stratosphere. Increasing the horizontal resolution permits a smaller diffusion and thereby results in larger stratospheric wave amplitudes. The experiment with increased surface friction at 1.3-km horizontal resolution shows the best agreement with the observational data of the wave in the stratosphere. The differences between the simulated and measured amplitudes of vertical displacement and temperature anomaly are less than about 20%. The disparity in vertical velocity is larger; downward velocities were observed up to 4.8 m s21 and simulated up to 2.7 m s21. In the experiments with lower surface friction at 4-km resolution, the accuracy regarding the amplitude of vertical displacement and temperature anomalies is similar, but the simulated maximum downdraft is even weaker. The other experiments with increased surface friction at 4-km resolution and normal friction at 12-km resolution significantly underestimate the wave amplitude. The results of the experiments suggest that the generation of orographic gravity waves and their propagation into the stratosphere can be simulated in three dimensions in a realistic manner provided that the magnitude of the parameterized surface friction is in a realistic range and the horizontal resolution is sufficient.

Document Type:Article
Title:The propagation of mountain waves into the stratosphere: Quantitative evaluation of three-dimensional simulations
Authors:
AuthorsInstitution or Email of Authors
Leutbecher, MartinUNSPECIFIED
Volkert, HansUNSPECIFIED
Date:2000
Journal or Publication Title:Journal of the Atmospheric Sciences
Volume:57
Page Range:pp. 3090-3108
Status:Published
Keywords:Mesoscale, Greenland, Numerical weather prediction
HGF - Research field:Aeronautics, Space and Transport (old)
HGF - Program:Space (old)
HGF - Program Themes:W EO - Erdbeobachtung
DLR - Research area:Space
DLR - Program:W EO - Erdbeobachtung
DLR - Research theme (Project):W - Vorhaben Atmosphären- und Klimaforschung (old)
Location: Oberpfaffenhofen
Institutes and Institutions:Institute of Atmospheric Physics > Cloud Physics and Traffic Meteorology
Deposited By: Jana Freund
Deposited On:14 Jan 2008
Last Modified:12 Dec 2013 20:29

Repository Staff Only: item control page

Browse
Search
Help & Contact
Informationen
electronic library is running on EPrints 3.3.12
Copyright © 2008-2012 German Aerospace Center (DLR). All rights reserved.