elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Contact | Deutsch
Fontsize: [-] Text [+]

AirClim: an efficient tool for climate evaluation of aircraft technology

Grewe, Volker and Stenke, Andrea (2008) AirClim: an efficient tool for climate evaluation of aircraft technology. Atmospheric Chemistry and Physics, 8, pp. 4621-4639.

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
8MB

Official URL: http://www.atmos-chem-phys.net/8/4621/2008/acp-8-4621-2008.pdf

Abstract

Climate change is a challenge to society and to cope with requires assessment tools which are suitable to evaluate new technology options with respect to their impact on global climate. Here we present AirClim, a model which comprises a linearisation of atmospheric processes from the emission to radiative forcing, resulting in an estimate in near surface temperature change, which is presumed to be a reasonable indicator for climate change. The model is designed to be applicable to aircraft technology, i.e. the climate agents CO<sub>2</sub>, H<sub>2</sub>O, CH<sub>4</sub> and O<sub>3</sub> (latter two resulting from NOx-emissions) and contrails are taken into account. AirClim combines a number of precalculated atmospheric data with aircraft emission data to obtain the temporal evolution of atmospheric concentration changes, radiative forcing and temperature changes. These precalculated data are derived from 25 steady-state simulations for the year 2050 with the climate-chemistry model E39/C, prescribing normalised emissions of nitrogen oxides and water vapour at various atmospheric regions. The results show that strongest climate impacts (year 2100) from ozone changes occur for emissions in the tropical upper troposphere (60 mW/m<sup>2</sup>; 80 mK for 1 TgN/year emitted) and from methane changes from emissions in the middle tropical troposphere (−2.7% change in methane lifetime; –30 mK per TgN/year). For short-lived species (e.g. ozone, water vapour, methane) individual perturbation lifetimes are derived depending on the region of emission. A comparison of this linearisation approach with results from a comprehensive climate-chemistry model shows reasonable agreement with respect to concentration changes, radiative forcing, and temperature changes. For example, the total impact of a supersonic fleet on radiative forcing (mainly water vapour) is reproduced within 10%. A wide range of application is demonstrated.

Document Type:Article
Title:AirClim: an efficient tool for climate evaluation of aircraft technology
Authors:
AuthorsInstitution or Email of Authors
Grewe, VolkerUNSPECIFIED
Stenke, AndreaUNSPECIFIED
Date:August 2008
Journal or Publication Title:Atmospheric Chemistry and Physics
Volume:8
Page Range:pp. 4621-4639
Status:Published
Keywords:aircraft emissions, radiative forcing, near surface temperature change, linear response model
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Aeronautics
HGF - Program Themes:L VU - Air Traffic and Environment (old)
DLR - Research area:Aeronautics
DLR - Program:L VU - Air Traffic and Environment
DLR - Research theme (Project):L - Low-Emission Air Traffic (old)
Location: Oberpfaffenhofen
Institutes and Institutions:Institute of Atmospheric Physics > Atmospheric Dynamics
Deposited By: Dr.rer.nat. Andrea Stenke
Deposited On:26 Aug 2008
Last Modified:12 Dec 2013 20:27

Repository Staff Only: item control page

Browse
Search
Help & Contact
Informationen
electronic library is running on EPrints 3.3.12
Copyright © 2008-2012 German Aerospace Center (DLR). All rights reserved.