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ABSTRACT 
Recently, some improvements of the generic BE/BE 

coupling algorithm based on Krylov's solvers, proposed by the 
first author of this paper and outlined in previous papers, were 
carried out by including discontinuous boundary elements in 
the BE code. As a consequence of that, traction continuity 
conditions, necessary for simulating edges and corners at 
coupling interfaces in models based on continuous boundary 
elements, must no longer be taken into account. Thus, the 
respective BE models for complex 3D regions become 
considerably simpler. In this paper, a general description of the 
main features of the algorithm is furnished. In addition, some 
strategies for making the analysis of moderate thin-walled 
structural elements by means of three-dimensional standard BE 
formulations possible are presented. A study of the 
performance of the code is also shown, where mainly 
computational efficiency parameters such as response precision 
and CPU time for assembling the system of algebraic equations 
and solving it are commented. Engineering systems involving 
thin-walled elements, possibly containing cracks, are simulated. 
High-precision IMSL routines (available in FORTRAN 
compilers) are used to study the performance of the code. 
Strategies for improving the conditioning of the systems are 
also commented. 
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INTRODUCTION 

 
As a matter of fact, a tridimensional analysis makes it possible 
to have a more insightful comprehension of continuum 
problems. Indeed, one-dimensional or two-dimensional 
formulations are derived from tridimensional ones by taking 
into account some simplifying hypotheses concerning e.g. 
geometry and loading. As consequence of these assumptions, 

some numerical problems, such as numerical locking or 
convergence problems, may occur when simplified 
formulations are applied [1]. Unfortunately computational 
hardware limitations have restricted the use of 3D formulations 
in solving practical engineering problems, for which, non-
rarely, large models (sometimes containing millions of 
unknowns) are necessary. 
 In applications of the Finite Element Method (FEM) for 
modeling thin-walled domains, structural elements such as 
plate or shell elements, based on simplified formulations, 
remain nowadays still very useful, though numerical difficulties 
may happen. In such cases, 3D continuum elements are in 
effect avoided, then 3D FE models for solving correctly this 
kind of problem may be very heavy. Contrary to the FEM, the 
Boundary Element Method (BEM) has proven to be very 
efficient to analyze engineering problems via 3D formulations. 
A reason for that is the dimension reduction of the problem, 
which naturally implies models with fewer elements, and, 
additionally, the quality of the results; relatively accurate 
responses may be obtained with relatively poor BE models. 
Thus, BE formulations along with the continuously increasing 
computer capacity may be a very interesting alternative for 
solving engineering problems by means of 3D formulations. 
Regarding particularly  thin-domain interior problems, it has 
been proven that, contrary to crack-like problems, the arising 
system of algebraic equations will not degenerate [2]. It is 
however worth mentioning, that special care must be taken with 
the near singular integrals. 

In this work, the 3D generic BE–BE coupling strategy 
published by the first author in previous papers [3-6] is 
extended to thin-walled problems, possibly containing cracks 
and reinforced with stiffeners. The subregion technique is used 
to simulate domain cracks, and the integration procedure based 
on triangular polar coordinates is adapted for evaluating the 
near singular integrals.  

A characteristic of the coupling algorithm [3-6] is that the 
subsystems associated with the various subdomains of the 
model are treated as they were in effect uncoupled. Iterative 
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solvers are used, and as consequence of that the global system 
must not be explicitly assembled. On the other hand, the use of 
discontinuous elements avoids imposing additional traction 
continuity conditions at interface nodes [6-7]. Of course, the 
coupling algorithm will efficiently work if so will the applied 
iterative solver. Fortunately, several kinds of Krylov's solvers 
have been intensively used in real–life industrial applications 
and proven to be very efficient [7-9]. The Jacobi–
preconditioned bi–conjugate gradient solver (J-BiCG) is the 
only Krylov's solver applied in the analyses here.  

In the case studies presented, one shows the efficiency of 
the coupling algorithm implemented in the NAESY code in 
terms of its precision, system conditioning, required CPU time, 
etc. The models analyzed involve the coupling of geometrically 
complex thin-walled subdomains. Comparisons with results 
obtained by using a high–precision IMSL solver (available 
along with FORTRAN compilers) and the ANSYS are shown. 
The potential of the coupling algorithm developed for solving 
engineering problems in general is also highlighted. 
 
THE COUPLING ALGORITHM 
 

In general, subregions in BE formulations are used because 
of either geometrical or physical characteristics, or also aiming 
at increasing the computational efficiency (e.g. development of 
parallelized codes). Particularly for the curved panel (thin-
walled shell) shown in Fig. 1, which is reinforced with 
stiffeners and presents a crack, the substructuring technique 
may be also used to establish a BE model. In this case, an 
alternative for the domain decomposition could be that shown 
in Fig. 2. Notice that subdomains 2 and 5 are associated with 
the same stiffener. 
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Fig. 1. System panel-stiffener 
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Fig. 2. Domain decomposition 
 

Explicitly, the corresponding global coupled system, after 
rearranging conveniently the system variables, is given by 
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where ir  are the volume forces to be considered at the i-th 
subregion, iiA  and iiB are its BE matrices (obtained by 
interchanging the columns of iiH  and iiG  matrices according 

to the boundary conditions), and kmC  is the coupling matrix 

(containing either kkH  or kkG  terms) related to the interface 

between subregions k amd m. Of course, 0C =km  if there is no 
interface between the k–th and m–th subregion. Furthermore, 

kx  contains the boundary unknowns and part of the interface 

values of the k-th subregion, and ky  contains its prescribed 
boundary values. Notice that if there is an interface between 
subregions k and m, part of the interface values are allocated in 

kx  and part, in the mx  vector [7]. But inasmuch as iterative 
solvers are used, the only operations involved in the solution 
phase are matrix–vector and vector–vector multiplications, and 
thereby, the coupled system does not need to be explicitly 
assembled. In the proposed code particularly, its solution is 
obtained by operating independently the BE subsystems 
corresponding to each subregion. Indeed, regarding the 
numerical treatment (assembling, storing, and processing along 
the solver), the BE subsystems are treated as the subregions 
were in effect uncoupled. As matter of fact, based on variables 
that indicate which nodes are coupled, the interface values are 
updated so as to assure the imposition of the coupling 
conditions [4]. 

Another characteristic of the coupling algorithm is that 
discontinuous boundary elements are used. Thus, traction 
discontinuity at interface corners and edges may be simulated 
by imposing only the following coupling conditions (see Fig. 
3): 
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Additional traction continuity conditions are no longer 
necessary. 
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Figure 2. Coupling conditions at interface elements 

 
 
APPLICATIONS 
 

To observe the performance of the coupling strategy, a thin-
cylindrical pipe under internal pressure 2

0 0010 mm/N.p =  is 
analyzed (see Fig. 4). The shell is reinforced with internal 
stiffeners and has a crack, and as a consequence of the 
symmetry only one eighth of the pipe is discretized (see Fig. 5 
and Fig. 6). The physical and geometrical data of the shell are: 

2/000,205 mmNE = , 00.0=ν , ah 5.0= , and three BE 
substructuring models, generically described below, are used to 
analyze the problem. In the model 1, 2 subregions are 
considered (1 for the stiffener, and 1 for the shell); in model 2, 
6 subregions (2x2 for the shell, and 2 for the stiffener), and in 
model 3, 12 subregions (3x3 for the shell, and 3 for the 
stiffener) are used. Furthermore, 4 different BE meshes per 
subregion are generated for each model. The deflections at the 
cylinder shell along the z-axis are shown in graphs 7 – 9 for the  
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Figure 4. Thin-walled cylindrical pipe 
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Figure 5. Cross-section of the shell (one-fourth) 
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Figure 6. Lateral view of the pipe along the crack 

 
different models. In these graphs, the NAESY responses 
(obtained with use of the IMSL and J-BiCG solvers) are 
compared to the ANSYS ones. 
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Figure 7. uy-displacement along the z-axis (model 1) 
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Figure 8. uy-displacement along the z-axis (model 2) 
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Figure 9. uy-displacement along the z-axis (model 3) 
 

The performance of the code in terms of the solver-CPU 
time is shown in the graphs 10–12. In these graphs the J-BiC 
solver is scaled by the high-precision IMSL-DLSARG solver. 
The curves are drawn for the different d-values (used to 
generate discontinuous boundary elements) considered, and 
notice that the IMSL solver works with the explicit coupled 
system. 

Finally, to show the conditioning of the system, the 
estimated condition number (calculated with the IMSL-
DLFCRG routine) is plotted in function of the system order, n, 
for the different models (graphs 13-15). 
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Figure 10. CPU-time curves (model 1) 
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Figure 11. CPU-time curves (model 2) 

 
 
CONCLUSIONS 
 
 The results demonstrate that tridimensional BE formulations 
are an interesting alternative to solve thin-walled structural 
elements. One observes that, compared to the FE model 
adopted (with 3855 finite elements), precise results (Figs. 7-9) 
were obtained with a relatively small number of boundary 
elements (ne 516≤ ). 

No convergence problem concerning the iterative solver (J-
BiCG), which forms the basis of the coupling algorithm, has  
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 Figure 12. CPU-time curves (model 3) 
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Figure 13. Estimated condition number (model 1) 
 
been also identified, though ill-conditioned systems (condition 
number 61003κ ×≥ . ) have been treated (Figs. 13-15). Indeed, 
the systems associated with d=0.001 are quasi-singular. On the 
other hand, one sees that the solver-CPU-time curves present a 
decay with increasing system order n. This fact indicates that 
for larger problems more efficiency should be expected. It is 
also worth mentioning that a standard BE formulation with no 
special regularization technique was used. This means that by 
improving the evaluation of the quasi-singular integrals, the 
system conditioning may be increased as well. Thus, the CPU  
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Figure 14. Estimated condition number (model 2) 
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Figure 15. Estimated condition number (model 3) 
 
time for the convergence of the iterative solver will be 
considerably reduced. 
 Interesting future applications of the coupling algorithm 
proposed may be the modeling of composites and the 
development of codes for operating in parallel computing 
platforms. 
 



 6 Copyright © #### by ASME 

ACKNOWLEDGMENTS 
The authors gratefully acknowledge the financial support 

from the Brazilian Research Council – CNPq, and Research 
Foundation for Minas Gerais – FAPEMIG. 

REFERENCES 
[1] Bernadou, M., 1996, Finite Element Method for Thin Shell 
Problems, Wiley, Chichester.   
 
[2] Liu, Y., 1998, "Analysis of Shell-like Structures by the 
Boundary Element Method based on 3-D Elasticity: 
Formulation and Verification", "International Journal for 
Numerical Methods in Engineering", 41, pp. 541-558. 
 
[3] Araújo, F. C., Martins, C. J., and Mansur, W. J., 2001, "An 
Efficient BE Iterative–Solver–Based Substructuring Algorithm 
for 3D Time-Harmonic Problems in Elastodynamics", 
"Engineering Analysis with Boundary Elements", 25, pp. 795–
803. 
 
[4] Araújo, F. C., and Silva, K. I., 2004, "The Use of 
Discontinuous Boundary Elements in the Generic BE/BE 
Coupling Algorithm - Applications to 3D Potential Problems", 
Proc., 5th International Conference on Boundary Element 
Techniques, Lisbon, F. Aliabadi, and V. Leitão, eds., EC Ltd., 
London, UK, Vol. 1, pp. 237-242. 

 
[5] Araújo, F. C., Dors, C., Martins, C. J., and Mansur, W. J., 
2002, "Analysis of 3D Time–Harmonic Soil–Foundation 
Interaction Problems by Using Efficient BE Substructuring 
Algorithms", Proc., European Conference on Dynamics, 
Munich, A. Balkema Publishers, Rotterdam–Netherlands, Vol. 
2, pp. 1267-1272. 
 
[6]  Araújo, F. C., Dors, C., Martins, C. J., and Mansur, W. J., 
2003, "Dynamic Cross–Interaction between Footings – 3D 
Frequency–Domain Parallelized Analysis via the BEM", Proc., 
International Conference on Boundary Element Techniques IV, 
Granada, F. Aliabadi and Gallego, eds., pp. 253–258. 
 
[7] Araújo, F. C., Dors, C., Martins, C. J., and Mansur, W. J., 
2004 "New Developments on BE/BE Multi-Zone Algorithms 
based on Krylov Solvers - Applications to 3D Frequency-
Dependent Problems", "Journal of the Brazilian Society of 
Mechanical Science & Engineering" 26, pp. 231-248. 
 
[8] Saad, Y., 1996, Iterative Methods for Sparse Linear 
Systems, PWS Publishing, New York. 
 
[9] Saad, Y., and van der Vorst, H.A., 2000, "Iterative solution 
of linear systems in the 20th century", "Journal of 
Computational and Applied Mathematics", 123, pp. 1–33. 

 
 


