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Abstract

Measurements of atmospheric SO2 have been made at altitudes between ground level and 12 km in the lower, middle and

upper troposphere. The measurements were carried out within the framework of the ITOP (Intercontinental Transport of

Ozone and Precursors) campaign in summer 2004 above Europe and the Eastern Atlantic. They were made using a novel

very sensitive and fast-response aircraft-based ion trap CIMS instrument (ITCIMS; CIMS ¼ chemical ionization mass

spectrometry), which was continuously calibrated using isotopically labelled SO2. During a total of eight flights of the

research aircraft FALCON (DLR) air masses of different origin and different degree of pollution, indicated by measured

elevated atmospheric SO2 mole fractions, were intercepted. Often elevated concentrations of SO2, which stemmed from

North America were observed over Europe and the eastern Atlantic.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Sulfur dioxide (SO2) is the predominant anthro-
pogenic sulfur-containing air pollutant. It plays an
important role in the atmospheric sulfur cycle
through its contribution to acidic aerosol forma-
tion, aerosol and cloud droplet modification, and
e front matter r 2006 Elsevier Ltd. All rights reserved
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acidic precipitation. Due to its large indirect impact
on climate it is of interest to precisely know its
sources, sinks and its atmospheric distribution. The
major natural sources of SO2 in the troposphere are
dimethylsulfide (DMS), CS2 and volcanic injection
(Seinfeld and Pandis, 1998; Graf et al., 1997).
Anthropogenic sources include mainly combustion
of sulfur-containing fossil fuels. In the stratosphere
SO2 mainly originates from OCS via photo-oxida-
tion but also from direct injection by explosive
volcanoes. Within the troposphere SO2 is effectively
removed by wet deposition in clouds but also
.
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reasonably efficient by dry deposition. In the
stratosphere SO2 becomes oxidized by the reaction
with OH radicals leading to an average lifetime of
about one week, whereas in a 1 km thick boundary
layer the lifetime of SO2 by dry deposition is about
one day (Seinfeld and Pandis, 1998).

Measurements of gaseous SO2 mole fractions
in the upper troposphere have previously been
made using CIMS (chemical ionization mass spec-
trometry) methods (Möhler and Arnold, 1992;
Reiner et al., 1998; Aufmhoff 2003; Thornton
et al., 2002) or using gas chromatography/mass
spectrometry (Bandy et al.,1993; Gregory et al.,
1993). An overview of aircraft-based SO2 measure-
ments in the troposphere is given by Gregory et al.
(1993).

The present paper reports on aircraft-borne mass
spectrometric measurements of gaseous SO2 using a
fast-response ion trap CIMS instrument. Isotopic
34SO2 served as an internal calibration standard and
was continuously added to the flow tube to achieve
high precision and accuracy. The in situ calibration
was also used to derive the humidity dependence of
the rate coefficient of the major ion molecule
reaction (suggested and verified in laboratory
experiments by our group (Möhler et al., 1992) to
determine gaseous SO2:

CO�3 ðH2OÞm þ SO2! SO�3 ðH2OÞp

þ ðm� pÞH2Oþ CO2. ð1Þ

The effective rate coefficient inferred from the
calibration ranges from about 1.0� 10�9 cm3 s�1 in
dry air to 0.6� 10�9 cm3 s�1 in wet air with a
maximum of 1.6� 10�9 cm3 s�1 in between and is in
accordance to previous laboratory observations
(Möhler et al. 1992; Seeley et al. 1997). Reaction
(1) is followed by the rapid conversion of SO�3 ions
to SO�5 by association of O2 which is available in
excess:

SO�3 ðH2OÞn þO2! SO�5 ðH2OÞm þ ðn�mÞH2O:

(2)

We can use the SO�5 ion (112 amu or 114 amu,
respectively) for detection since most hydrates are
effectively removed by collisions of SO�5 ðH2OÞ with
He atoms in the ion trap used to confine the ions
into the trap center (Gosh, 1995; Keesee and
Castleman, 1986). Further, the use of isotopic
34SO2 calibration gas allows us to precisely consider
wall losses and hydration.
Our modified mass spectrometer instrument is
designed specifically for use on aircraft. Thus space
and weight requirements are minimized.

2. Experiment

An aircraft-based CIMS instrument was used for
the present measurements. It consists of the follow-
ing components: (a) flow reactor (FR), (b) ion
source (IS), (c) ion trap mass spectrometer (ITMS),
(d) sampling line (SL) and (e) a calibration unit
(CU). A commercially available ITMS (Thermo
Finnigan Company, Dreieich, Germany) was mod-
ified to perform aircraft-based CIMS measure-
ments. The mass spectrometer with its associated
vacuum controls, calibration system, and data
acquisition is controlled by a PC104+ running
Windows 2000 (Microsoft Corp.), software devel-
oped using Labview (National Instruments, Austin,
TX) and commercial data acquisition software
(LCQ, Finnigan Company, Germany). The mass
spectrometer is split into three different pressure
regimes all separated by critical orifices: The ion-
molecule flow reactor holds 39.4mbar, the focusing
unit 3mbar and the ion trap and detection unit
7.5� 10�6mbar (Fig. 1). The detection and focusing
unit are pumped by a turbomolecular pump and
backed by a rotary pump. The ion-molecule flow
reactor is pumped by another rotary pump (Alcatel
9014 28V, 25m3 h�1). A critical orifice (3.9mm i.d.)
in front of this pump keeps the flow rate through the
reactor constant at 8.84 slpm resulting in a residence
time in the reactor of 177ms. A magnetic valve,
feedback-operated by a pressure sensor (Wagner
Messtechnik, Offenbach, Germany), stabilizes the
reactor pressure at 70mbar. The focusing unit
consists of two octapoles separated by a ring
electrode. A conversion dynode generates secondary
electrons by ion impact, which are concurrently
amplified by an electron multiplier and converted
into an electric current. The current is digitized by
an analog-to-digital converter and finally software-
processed.

All ions in the range of 40–180 amu are first
trapped together until the trap conditions are
automatically changed to sequentially detect one
by one the collected ions. Trapping is done in the
presence of He, used as a buffer gas to collisionally
cool the trapped ions and confine them closer to the
trap center and thus increase the efficiency of
trapping. Always the same number of ions is
injected into the trap, achieved by setting the LCQ
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Fig. 1. Schematic cross-section of the mass spectrometer and associated airflow inlet. Each pumping zone is separated by different orifices.

The first section was pumped by a 25m3 h�1 rotary pump (R). The focusing and detection unit was pumped by a Balzers Pfeiffer TMH

260/130 turbomolecular pump (T) and additionally backed by the rotary pump (R). A magnetic valve feedback operated by a pressure

sensor mounted in front of the flow reactor (FR) controls the reactor pressure.
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software to automatic gain control (AGC). It
automatically increases the ion injection time when
the total ion flow into the trap diminishes. In every
mass scan the ion current is then automatically
scaled by the gain control according to the different
ion injection times. The ion injection time itself is
determined by a prescan of 0.2ms duration. During
aircraft experiments signals from 5mass scans
(so-called micro-scans) were obtained by the data
acquisition and the resulting average of those scans
was stored in the computer. Additionally, LCQ
software offers to average over the sum of several
obtained mass spectra. The finally achieved average
sampling frequency comprised 1Hz. This resulted in
a horizontal resolution of about 200m per SO2 data
point, considering a typical aircraft speed of
800 kmh�1 during cruise flights.

In flight ambient air was drawn into the aircraft
inlet, developed by DLR. The inlet consisted of a
901 bent stainless-steel tube, 40mm in inner
diameter pointing against flight direction. It was
permanently kept at a temperature of 20 1C to avoid
icing. Mounted downstream the inlet a further
stainless-steel tubing (40mm i.d.), carried a pressure
sensor, a temperature sensor and the inlet of the
isotopically labeled internal standard (34SO2). After
about 35 cm this stainless-steel tubing was con-
nected to a magnetic valve, which on its other side
was connected to a 1m long PFA (ultrahigh-purity
perfluoroalkoxy polymer, Swagelok USA) sampling
line (Fig. 1). The inlet for the internal standard also
consisted of a stainless-steel tube (1mm i.d.) and
was bent 901 inside the sampling line to point along
the main bulk flow, directly toward the magnetic
valve. A mass-flow controller (20 smlpm, Bron-
khorst, The Netherlands) was used to calibrate the
flow rate of the internal standard. The PFA
sampling line was connected to the ion flow reactor.
The reactor is made of stainless steel, 30 cm in
length, and with an inner diameter of 40mm. A
pressure sensor in the reactor duct feedback
operates onto the magnetic valve in order to keep
the pressure inside the flow-reactor constant
(70mbar). The ion source is mounted on top of
the flow reactor to inject the primary reagent ions
directly into the reactor. Therefore, an oxygen flow
of 0.37 slpm (MFC Bronkhorst, The Netherlands)
passes through the high-frequency discharge ion
source into the flow reactor. Finally, some fraction
of the ion-containing total airstream is directed into
the mass spectrometer with its associated ion-beam
optics and the detection unit.

The CIMS approach relies upon the conversion
of SO2 gas molecules by CO3

� ions to SO5
� ions

(Eq. (1), (2)) (Möhler and Arnold, 1992). We use a
high-frequency gas discharge ion source to ionize an
oxygen flow (AirLiquide, oxygen 5.0, 150 bar, 2 L)
of 0.37 slpm to produce the primary reagent ions
O�, O2

� and O3
�. The O3

� ions are rapidly converted
to CO3

�(H2O)n by reaction with CO2 and H2O.
CO3
�(H2O)n then further reacts with SO2 to form

SO3
�(H2O)m (Eq. (1)) which forms SO5

� ion by
reaction with excess O2 (Eq. (2)). As mentioned
above 34SO2 was introduced as calibration gas into
the sampling line directly behind the aircraft inlet.
Wall losses, mixing and instrument sensitivity are
thus almost the same as for atmospheric SO2, which
is mostly 32SO2. A mass spectrum with a calibration
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peak of 711 parts per trillion by volume (pptv) by
use of ultra-dry air and a continuous flow of
8.48 sccm 34SO2 is shown in Fig. 2. From the
corresponding count rates at mass 112 and 114 amu
ambient SO2 mole fractions were computed. The
lower limit of detection was experimentally deter-
mined to be 22 pptv. During these laboratory
experiments, synthetic air (Westfalen Gase,
Germany) served as gas carrier and signals from 5
mass scans were obtained by the data acquisition
and the resulting average of those scans was stored
in the computer until 200 averaged scans were
completed. Additionally, the pressure in front of the
main inlet was varied in steps of 100mbar ranging
from 200 to 900mbar, simulating different altitudes
during flight. For each pressure the arithmetic mean
concentration of 32SO2 was computed (as described
later in this article) from the 200 spectra. No
pressure dependence was found and the dew point
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Fig. 2. All shown mass spectra were obtained by sampling synthetic

40–120 amu. 5 micro-scans with 250ms scan time and an average over th

of synthetic air with a 700 pptv 34S16O2 calibration signal at 114 amu and

with a small fraction of HCO3
� ions at 61 amu (b). Zoomed view of the 3

The 32S16O2 peak appears at 112 amu revealing instrumental backgrou
32SO2 fraction contained in the calibration gas. (c). Zoomed view of a typ

arbitrary 32S16O2 analyte peak (d).
was below �60 1C (capacity sensor, Panametrics).
In a second set of experiments the pressure was kept
constant at 900mbar and humidity was changed, by
mixing the buffer gas flow with synthetic air, which
passed through a bottle filled with purified water.
The dew point was varied from –60 1C to +8 1C by
changing the proportion between the dry and
humidified airflow. The arithmetic mean concentra-
tion of 32SO2 was computed for 8 different dew
points and from 200 spectra per dew point. The
average resulted in 22 pptv with 24 pptv root mean
square deviation, independently of the adjusted dew
point. Gaussian fitting of the histogram of the
calculated 32SO2 concentrations resulted in a sigma
standard deviation of 19 pptv and was considered as
the detection limit.

Another experiment was performed in order to
figure out, whether the determined background of
22 pptv 32SO2 was related to contamination in the
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buffer gas. The used synthetic air was therefore
passed through two filters in series, a charcoal filter
and a Purafil filter (Purafil Inc., Atlanta, GA) and
the monitored dew point temperature was below
–30 1C. No difference was observed in comparison
to the detection limit of 22 pptv as mentioned above.

Fig. 3 gives the calculated precision of a
measurement (5 scans averaged) as a function of a
given 32SO2 mole fraction. Included are inaccuracies
due to mass-flow controllers, temperature fluctua-
tions, chemical and isotopic purity of the standard
as well as the statistics of the count rate. Above an
SO2 level of 100 pptv the relative error in the
measured mole fraction is about 12%. For smaller
abundances the error increases up to 25% at the
detection limit.

The delivered isotopic 34SO2 gas was factory
certificated to 650 ppbv710% (Westfalen Gase,
Germany). Recalibration in our lab resulted in a
mixing ratio of 734 ppbv76%. Computation of the
ambient SO2 mixing ratios was done taking into
account the isotopic purity of the standard as well
as the natural isotopic ratio of air. Table 1 shows
the used isotopic purities and Eq. (3) gives the
relation between isotopic purity, chemical purity of
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Fig. 3. Relative error per measured data point (5 mass scans) as a

function of ambient sulfur dioxide abundances.

Table 1

Isotopic purity in percentage contribution (Kij) of the ith compound in

Species 34S16O2 and
32S16O2 Concentration (ppbv)

Standard 734

Ambient

The 34SO2 concentration of the calibration standard equals 734 ppbv. T

in a continuous calibration signal of 711 pptv.
the standard and derived atmospheric SO2 mole
fractions (Bandy et al., 1993),

Ca ¼ Cs
K ssR� Kas

Kaa � KsaR
. (3)

Ca refers to the ambient concentration, Cs to the
concentration of the standard after injection into
the flow reactor and R the ratio of ambient analyte
signal counts to isotopic standard signal counts. The
Kij values are the relative contributions of the ith
species in the jth species and listed in Table 1.

Information about the presence of other species
interfering at 112 and 114 amu is given by observing
the ratio 112/114 without isotopic calibration.
Considering the terrestrial abundances of 32S, 34S,
16O, and 18O in nature, one expects the ambient 112/
114 ratio to be 18.34. A plot of the experimentally
derived ambient abundance ratio 112/114 is shown
in Fig. 4. The calculated slope agrees well with the
expected ratio.
the jth species and chemical purity of the standard

Kaa Kss Kas Ksa

0.934 0.035

0.9457 0.0457

his concentration is diluted by mixing with the total flow to result
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Fig. 4. Signal at m/e ¼ 112 amu as function of the signal at

m/e ¼ 114 amu by use of an ambient air flow without isotopic

calibration standard. The corresponding slope of a linear fit was

computed to be 18.470.2 (theoretic value: 18.34). For more

details see text.
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2.1. Model simulations

To explore the sources of the observed SO2

enhancements, the Lagrangian particle dispersion
model FLEXPART (Stohl et al., 1998; Stohl and
Thomson, 1999; Stohl et al., 2005) was used.
FLEXPART simulates the transport and dispersion
of linear tracers by calculating the trajectories of a
multitude of particles. The model was driven by
global model-level data from the European Centre
for Medium-Range Weather Forecasts (ECMWF)
with a temporal resolution of 3 h (analyses at 0, 6,
12, 18 UTC; 3-h forecasts at 3, 9, 15, 21 UTC), a
horizontal resolution of 11� 11, and 60 vertical
levels. Over North America, the North Atlantic and
Europe, nested input data with a resolution of
0.361� 0.361 were used. Particles were transported
both by the resolved winds and by parameterized
sub-grid motions. FLEXPART parameterizes tur-
bulence in the boundary layer and in the free
troposphere by solving Langevin equations (Stohl
and Thomson, 1999) and convection by using the
parameterization scheme of Emanuel and Živković-
Rothman (1999).

Simulations used here were made for passive SO2

tracers with regional origins in Asia, North America
and Europe according to the EDGAR emission
inventory, except for North America where the
high-resolution (4 km� 4 km) inventory of Frost
et al. (2006) was used. The tracers were carried for
20 days and, thus, the results at a particular time
indicate the total SO2 emission load received within
the last 20 days. Observed SO2 concentrations,
which are subject to deposition and chemical
conversion, thus, should always be lower than
simulated values. The resolution of the output grid
in the region of interest was 0.331� 0.251; the
vertical resolution was better than 500m below
6000m and 1000m above.
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Fig. 5. Vertical SO2 mixing ratios of two ITOP flights performed

26 July and 31 July. For more details see text.
3. Results and discussion

The described instrumental setup was used within
the framework of the ITOP campaign 2004 to
obtain SO2 measurements of high accuracy and high
temporal resolution. The measurements were car-
ried out above Western Europe and the North
Atlantic. All flights were performed on board of the
German research aircraft FALCON (DLR). The
present data illustrate the accuracy and broad field
of application of the instrument.
Here two flights were picked to exemplarily
show the reliable performance of the instrument
during the ITOP field campaign. The flights
comprise the measurement of clean, unpolluted
upper tropospheric air from the central Atlantic
region, with SO2 abundances close to the instru-
mental detection limit of 20 pptv and the detection
of a lower tropospheric urban pollution plume
rich in SO2. Finally, the very short signal of an
aircraft contrail is used to gain information about
response time and memory effects of the experi-
mental setup.

In Fig. 5 the averaged vertical profiles of the two
selected flights are shown covering an altitude range
from 0.5 to 10 km. The values scatter between the
detection limit of 20 and 2000 pptv, in accordance to
earlier measurements (Georgii and Meixner, 1980).
The boundary layer in case of FL31 is clearly
situated below 2 km altitude. In case of FL26 several
layers of SO2 at different altitudes (0.6, 0.8, 1.3, 1.5,
2 and 5 km) appear in the vertical profile and
probably occur due to wind shearing. The steady
decrease of the SO2 concentration up to an altitude
of about 5 km is typical for SO2 and reflects efficient
SO2 loss preferably by cloud processes (Thornton
et al., 1999).

In the following the SO2 time series are discussed
in more detail.
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3.1. Low level pollution above Western Europe

During the flight of the 31st of July (FL31)
average SO2 abundances of 35 pptv were measured,
showing only little variability with altitude between
2.5 and 10.2 km (Fig. 6a). The boundary layer is
clearly marked at an altitude of about 2 km during
ascent (up to 600 pptv SO2) and descent (200 pptv
SO2). The measurements were performed above
Northern France with the northernmost position at
51.05 1N, 2.71 1E (close to Lille) and the easternmost
position at 49.79 1N, 6.21 1E (Luxembourg). Addi-
tionally measured trace gases (CO: 60–80 ppbv,
NOx: 0.2–0.6 ppbv and NOy: 0.4–0.8 ppbv) indicate
weak pollution (Fig. 6a), and the detected SO2 levels
are typical of the remote northern hemispheric air at
high altitude (Thornton et al., 1999; Tu et al., 2004).
A horizontal cross-section of the FLEXPART SO2

total column (mgm�2) from 31 July 2004 at 50400 s
UTC is shown in Fig. 6b. Note that the given time
corresponds to the end time of a 2 h average. A
plume centered above the Great Lakes region
stretches into the central Atlantic. However, no
plume from northern America reached central
Europe as indicated by the low total column SO2

levels above Europe. The total column SO2 was
below 30mg m�2 within the flight track (marked in
red). Further FLEXPART results not shown here
also excluded larger contributions from Asia. The
European SO2 is predicted to significantly contri-
bute only at lower altitudes as it was also observed
(see Fig. 6a, for UTCo44 000 s and UTC4
49 700 s), whereas the free troposphere was basically
not polluted at all by European sources. The
FLEXPART results thus well reflect the measured
low SO2 mole fractions during FL31.
3.2. Urban pollution plume

During the flight of 26 July (FL26) air masses
above the English Channel region were sampled.
Fig. 7a gives the flight path and corresponding wind
vectors. Fig. 7b shows the measured SO2 mole
fractions as a function of time and the altitude
profile. SO2 levels were strongly enhanced (up to
2.5 ppbv) in the altitude range from 1.4–2.2 km at
62 960–63 790 s UTC, with an intermediate mini-
mum at 63 217s UTC. Within that period the
average aircraft speed was 130m s�1 and therefore
the horizontal extension of the two plume segments
can be estimated to 33 and 74 km, respectively.
At the same time also the NOy (�8 ppbv) and NO
(�2 ppbv) levels indicated a stronger pollution,
accompanied by CO concentrations rising from
100 to 130 ppbv inside both plume segments.
Horizontal and vertical cross-sections through the
FLEXPART European CO tracer were used to
further characterize the plume. Shown in Fig. 7c is
the total column (mgm�2) of the European CO
tracer from 26 July at 64 800 s UTC. Additionally,
the vertical cross-section is given between the two
points (49.24261N, –31W to 50.9691N, 31E), also
indicated by the black line in the horizontal cross-
section. Highest CO levels were distributed around
the London region and the plume spread out into
southeasterly direction where it became intercepted
by the research aircraft. FLEXPART predicted the
plume to stay below 2 km altitude along the vertical
cross-section, with the plume center being located at
about 1 km altitude. The Falcon flight path is color-
coded with the measured SO2 mole fraction and the
first plume segment at 1.4 km altitude coincides with
the plume interior. The second measured plume
segment remains above the predicted maximum
plume altitude, indicating somewhat stronger lifting
of the plume than simulated by the model, perhaps
due to an underestimation of boundary layer
heights. However, note that no plume observations
were made above 2.2 km, indicating that the plume’s
vertical extent was quite limited.

3.3. Response time of the experimental setup

Due to the difficulties of experimentally generat-
ing a temporarily short SO2 signal without the need
to consider memory effects intrinsic to signal
generation, an observed aircraft contrail served as
an opportunity to test the response time of the
setup. During the transfer flight on 11 April 2005
from Larnaca to Dubai, which was performed
within the SCOUT campaign (Stratospheric-Cli-
mate Links with Emphasis on the Upper Tropo-
sphere and Lower Stratosphere), an aircraft contrail
was coincidentally crossed at an altitude of 10.2 km.
Measured SO2, NO and NOy concentrations are
shown in Fig. 8, while the contrail was crossed. The
NO and NOy measurements were performed using a
chemiluminescence detector, also implemented on
board of the DLR research aircraft Falcon. A data
point was taken every second for the NO, NOy data,
and every 1.14 s for the SO2 data. The SO2 data
were not summed by the LCQ software but
averaged over 5 micro-scans. Over a period of 4 s
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average CO levels over the last 2 h with the endpoint at 64800 s UTC. The Falcon flight path is color-coded with the measured SO2 mole

fraction (c).
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the shown trace gases are strongly above the levels
measured prior to plume interception (DSO2

¼

1025 pptv, DNO ¼ 5.9 ppbv, DNOy ¼ 7.5 ppbv). The
large NO/NOy ratio confirms that this was a fresh
aircraft exhaust plume. The measured SO2 concen-
trations did not reveal any large memory effects
compared to the concurrently measured concentra-
tions of NO and NOy. From the calculated true
airspeed of 221m s�1 during interception, the plume
size was estimated to 884m and according to
Schumann et al. (1998) the plume age was approxi-
mated to 74 s (see also Arnold et al., 1996; Tremmel
et al. 1998).

4. Summary

Our aircraft-based SO2 measurements made
during the ITOP campaign in summer 2004
represent a data set of high resolution (temporal
and spatial) and high precision. The latter was
achieved by use of isotopically labeled sulfur
dioxide (34SO2) as a calibration gas.
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Fig. 8. Detected SO2, NO and NOy levels during crossing of an
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atmospheric concentrations measured before interception. For

further details see text.
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The measurements were performed above
Western Europe and cover an altitude range from
ground to 12 km.

An urban pollution plume, likely to stem from the
London region with SO2 mole fractions of 2.5 ppbv
was observed above the English Channel. Surpris-
ingly clean air was observed during the whole flight
on 31 July (FL31), with average SO2 mole fractions
around 35 pptv. The time response of the instru-
mental setup was checked by use of an aircraft
contrail, which was crossed during flight. From the
measured SO2 level, the plume age and plume
spread were estimated and are in accordance with
earlier observations.
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