elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Contact | Deutsch
Fontsize: [-] Text [+]

The global lightning-induced nitrogen oxides source

Schumann, Ulrich and Huntrieser, Heidi (2007) The global lightning-induced nitrogen oxides source. Atmospheric Chemistry and Physics, 7, pp. 3823-3907.

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
5MB

Official URL: http://www.copernicus.org/EGU/acp/acp.html

Abstract

The knowledge of the lightning-induced nitrogen oxides (LNOx) source is important for understanding and predicting the nitrogen oxides and ozone distributions in the troposphere and their trends, the oxidising capacity of the atmosphere, and the lifetime of trace gases destroyed by reactions with OH. This knowledge is further required for the assessment of other important NOx sources, in particular from aviation emissions, the stratosphere, and from surface sources, and for understanding the possible feedback between climate changes and lightning. This paper reviews more than 3 decades of research. The review includes laboratory studies as well as surface, airborne and satellite-based observations of lightning and of NOx and related species in the atmosphere. Relevant data available from measurements in regions with strong LNOx influence are identified, including recent observations at midlatitudes and over tropical continents where most lightning occurs. Various methods to model LNOx at cloud scales or globally are described. Previous estimates are re-evaluated using the global annual mean flash frequency of 445 s-1 reported from OTD satellite data. From the review, mainly of airborne measurements near thunderstorms and cloud-resolving models, we conclude that a “typical” thunderstorm flash produces 15 (2-40)1025 NO molecules per flash, equivalent to 250 mol NOx or 3.5 kg of N mass per flash with uncertainty factor from 0.13 to 2.7. Mainly as a result of global model studies for various LNOx parameterisations tested with related observations, the best estimate of the annual global LNOx nitrogen mass source and its uncertainty range is (53) Tg a-1 in this study. In spite of a smaller global flash rate, the best estimate is essentially the same as in some earlier reviews, implying larger flash-specific NOx emissions. The paper estimates the LNOx accuracy required for various applications and lays out strategies for improving estimates in the future. An accuracy of about 1 Tg a-1 or 20%, as necessary in particular for understanding tropical tropospheric chemistry, is still a challenging goal.

Document Type:Article
Title:The global lightning-induced nitrogen oxides source
Authors:
AuthorsInstitution or Email of Authors
Schumann, UlrichUNSPECIFIED
Huntrieser, HeidiUNSPECIFIED
Date:2007
Journal or Publication Title:Atmospheric Chemistry and Physics
Refereed publication:Yes
In Open Access:Yes
In SCOPUS:Yes
In ISI Web of Science:Yes
Volume:7
Page Range:pp. 3823-3907
Status:Published
Keywords:lightning, Nitrogen oxides, review
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Aeronautics
HGF - Program Themes:L VU - Air Traffic and Environment (old)
DLR - Research area:Aeronautics
DLR - Program:L VU - Air Traffic and Environment
DLR - Research theme (Project):L - Low-Emission Air Traffic (old)
Location: Oberpfaffenhofen
Institutes and Institutions:Institute of Atmospheric Physics > Atmospheric Trace Species
Deposited By: Prof.Dr.habil. Ulrich Schumann
Deposited On:26 Jul 2007
Last Modified:20 Oct 2014 14:32

Repository Staff Only: item control page

Browse
Search
Help & Contact
Informationen
electronic library is running on EPrints 3.3.12
Copyright © 2008-2012 German Aerospace Center (DLR). All rights reserved.