
Fachbereich Informatik
Department Of Computer Sciences

Provenance-CSL
A Provenance Client Side Library

by
Roland Gude
Marius Oster

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2

1.2.1 Version Control Systems, Issue Trackers and Continous Integration Systems 2
1.2.2 Logging Systems . 2
1.2.3 Other Provenance systems . 3

2 Methods and Materials 3
2.1 Python . 3
2.2 SOAP . 3
2.3 Zolera SOAP Infrastructure . 3
2.4 Python Enterprise Application Toolkit . 4

2.4.1 Lazy Loading . 4
2.4.2 Protocols . 4

2.5 PyUnit . 5

3 Technical Approach 5
3.1 Provenance Design . 5

3.1.1 Provenance Store . 5
3.1.2 P-Assertions . 6
3.1.3 Lifecycle . 6
3.1.4 Client Side Library . 6

3.2 API Specification . 6
3.3 Implementation . 7

3.3.1 Client Side Library . 7
3.3.2 Testsuite . 7

4 Results 8

5 Conclusion and Discussion 8

Provenance-CSL
A Provenance Client Side Library

1 Introduction

Data management is a challenge in both scientific and technical environments. Therefore re-
searchers have developed a special interest in this field. Modern approaches (i.e. Subversion, CVS)
already offer authoring and versioning in distributed systems. However this might be insufficient
in a vast number of scenarios, where not only the data resulting from a process, but also data
which describes the process that generated those results is crucial.

For example, if a doctor needs to decide how to treat a patient, he must have access to the
patient’s data. Moreover he needs to know how the data was obtained (which tests were made),
how old it is (when the tests were made), by whom it was provided (which doctor treated the
patient in the past) and so on. This means that not only the patient’s condition, i.e. his blood-
pressure, needs to be documented, but also the process which led to the data. This process is called
the Provenance of the data. Meta-data describing such a process is the process documentation
[16].

There are many more scenarios where the process of acquiring the data might be almost as
important as the data itself. The task of collecting a processes documentation might be quite easy
in simple local systems, but becomes rather difficult in distributed environments.

The EU-Project Provenance [20] aims at the development of an open architecture which enables
grid-applications to collect and collaborate process documentation in such environments.

The general design of the Provenance-architecture is built around a Provenance store. Appli-
cations, or actors, which are part of a process may record P-Assertions, which are the atomic units
of the process documentation, on the Provenance store. They may query the Provenance store for
certain P-Assertions as well.

In order to ease the process of developing applications which make use of Provenance, a client
side library, which offers a simple API for interaction with Provenance stores, needs to be devel-
oped. This report describes the design of a Provenance-architecture, provides details of the API
specification and presents the implementation of a Provenance client side library.

1.1 Motivation

The central point of the architecture of a Provenance system is the Provenance store. This store
enables Provenance-aware applications (that is applications that are involved in a certain process)
to store meta data describing process documentation. The Provenance store provides applications
with a rather complicated and sophisticated API specification to cover all its functionality.

In order to ease the process of developing Provenance-aware application, a Provenance client
side library needs to be developed. A client side library provides developers with an defined high-
level API, which enables them to access and invoke webservices. The goal of the Provenance
client side library is to reduce development costs of Provenance-aware applications. This is done
by hiding irrelevant details of the communcation between a client and a Provenance store from
developers of such applications.

Such a client side library needs to implement the defined protocols [10, 15, 22] and it needs to
communicate with a Provenance store using a defined technology binding (like the SOAP binding
defined in [17, 22])). It furthermore needs to supply an easy-to-use API for creating, storing and
querying process documentation. PReServ, a implementation of a Provenance store, comes with
a client side library for Java applications. Client side libraries for other programming languages
do not exist. This more or less limits the programming languages in which Provenance-aware
applications can be written without to much effort to Java. Since Python is a programming
language which is widely used in scientific environments, a field where Provenance-awareness might
be of great use, developing a client side library for Python applications suggests itself.

Roland Gude
Marius Oster

1

Provenance-CSL
A Provenance Client Side Library

1.2 Related Work

1.2.1 Version Control Systems, Issue Trackers and Continous Integration Systems

Version Control Systems are strongly related to Provenance systems. The goal of a Version Control
System is to track changes within a unit of data and to provide a version history. They are widely
used in software engineering in order to manage different versions of the source code. They usually
provide a mechanism to comment on the changes as well, thereby providing the possibility to find
out who made certain changes for what reasons. Comments usually are submitted in free text and
so it depends on the user if he provides the necessary information.

It is common to use an issue tracker to keep track of problems and features wich require code
changes and to address an issue by providing the issue ID in the comment field of the version
control system. Additionaly software engineers use continous integration systems to run tests and
building the source code on a regular basis in order to identify issues.

The use of a Version Control System in combination with an issue tracker and a continous
integration system provides what could be called the process documentation of software develop-
ment process and thereby enables the identification of the provenance of a software application.
However such a setup is highly specialized and not applicable in many research fields.

Version Control Systems, Issue Trackers and Continous Integration Systems are designed for
distributed environments.

Common Version Control Systems are:

• Concurrent Versioning System (CVS) (centralized) [6]

• Subversion (SVN) (centralized) [29]

• Bazaar-NG (bzr) (decentralized) [2]

Common Issue Trackers are:

• Bugzilla (centralized) [4]

• Mantis (centralized) [14]

• Bugs Everywhere (be) (decentralized) [3]

Common Continous Integration Systems are:

• Anthill [1]

• CruiseControl [5]

• DamageControl [7]

1.2.2 Logging Systems

Modern software systems usually take advantage of a logging system in order to create logs of
activities and events throughout the system. This is usually done by storing messages which
contain a timestamp and a description of the occured event or the current activity. Most logging
system allow the definition of loglevels which enables a classification of the log messages or can
indicate its severity (i.e. debug, info or error).

Logging systems can not be used to indicate associations or relations between multiple events
or activities. Thus it is not known by a logging system which log messages have an impact on
each other. Therefore the capabilities of a logging system can be compared to those provided by
Interaction P-Assertions and Actorstate P-Assertions (see 3.1.2).

Logging systems are a common part of many of today‘s programming languages standard
libraries. Furthermore several projects exist which aim at the development of sophisticated logging
systems.

Examples for logging systems are:

Roland Gude
Marius Oster

2

Provenance-CSL
A Provenance Client Side Library

• The python logging module (Part of Python standard library) [23].

• The java java.util.logging package (Part of Java standard library) [12].

• Apache Log4j (Java logging system) [13].

1.2.3 Other Provenance systems

Provenance of an entity is used as measurement for its identity, value or trustworthyness in several
research fields and has thus been addressed multiple times. For example the provenance of a piece
of fine art is used as a help to determine its value. Several Provenance systems are discussed in
Chapter 10 of [9].

2 Methods and Materials

This chapter briefly describes the used technologies, methods and materials which had a significant
impact on the project.

2.1 Python

Python [25] is a highly dynamic, object oriented script and programming language. It is well
known for its easy, clear and expressive syntax and its useful built-in datastructures. Because
of these properties it is easy to learn and software written in Python usually has a very good
maintainability. Therefore it is widely used in scientific environments where programmers usually
are not computer scientists. Software engineers use Python not only for rapid prototyping or
development of applications but also enable other applications to be extended with python scripts.

Python programs are organized in packages, modules and classes. A package is the directory
in which a module, which is a file, resides. Every package can contain subpackages and modules.
Modules can contain multiple classes. Unlike other object oriented languages, Python does not
force the definition of classes.

Python was the only programming language that has been used during the development of
Provenance-CSL.

2.2 SOAP

SOAP1 is a protocol for data exchange based on the eXtended Markup Language (XML). It can
be used for remote procedure calls (RPC) and is the most widely used protocol for communication
with web services. SOAP communication is message based, i.e. one side sends a request and the
other side answers with a result. Even though it is independent from any transport protocol, SOAP
messages are usually exchanged using the Hypertext Transfer Protocol (HTTP).

A SOAP message consists out of a top-level container element, called the envelope. The envelope
contains an (optional) head element and a body element. Furthermore the used namespaces are
defined in the envelope. The head can be used to state meta information like used encryptions.
The body contains the payload of the message, like which method to call and which parameters
to supply, or the return values of a method call.

The SOAP-bindings of the Provenance protocols have been used to communicate with Prove-
nance stores.

2.3 Zolera SOAP Infrastructure

The Zolera SOAP Infrastructure (ZSI) [27] is an implementation of SOAP version 1.1 [28]. A
special feature of ZSI is that it comes with a Web Service Definition Language (WSDL) compiler

1SOAP has been an acronym for Simple Object Access Protocol. Since the protocol is not simple at all and can
not only be used for object access, SOAP is not longer considered to be an acronym.

Roland Gude
Marius Oster

3

Provenance-CSL
A Provenance Client Side Library

wsdl2py, which generates Python stubs for the client side of a web service2. Since the Provenance
protocols are defined using WSDL, this was an important feature.

ZSI has been used to generate Python code from the WSDL definition of the Provenance
protocols. It has also been used for all SOAP communication.

2.4 Python Enterprise Application Toolkit

The Python Enterprise Application Toolkit (PEAK) [18] is a collection of Python modules which
adds useful features for component based design to Python. Its subpackages importutils and
pyprotocols have been used to enable lazy loading and automated protocol adaption.

2.4.1 Lazy Loading

Lazy loading is a technique that allows the importing or loading of a library on demand. This is
useful if an application takes advantage of a significant number of libraries. If those libraries do
not support lazy loading in such a scenario, the application would be forced to load all libraries at
startup which might be needed during the execution process. This can take quite a long time and
is one reason why some applications need a long time to start. If the applications libraries support
lazy loading, the libraries won’t be loaded before the moment they are needed, thus scattering the
loading time over the whole runtime of the application. Therefore libraries that are not needed
in a particular run will not be loaded during that run. This technique can significantly reduce
startup time of an application.

A prominent example for lazy loading is the Eclipse IDE [8]. A common Eclipse installation
consists of more than 150 plugins. If all those plugins were loaded at startup and loading of each
plugin would only take one single second, the complete startup process of Eclipse would take more
than two or three minutes.

The importutils package of PEAK allows to define modules as lazy modules. It is completely
compatible with the normal Python importing mechanism.

2.4.2 Protocols

Unlike other object oriented programming languages, Python makes no use of anything like in-
terfaces. In some object oriented programming languages (i.e. Java [11]), interfaces are used to
describe the methods a class has to provide in order to implement an interface. As an alternative
concept, PyProtocols [24] introduces protocols and protocol adaption to Python.

Protocols are used to describe the behaviour of objects by defining which methods have to
be supported and which members (i.e. variables, types) have to be provided in order to support
the object. A really valuable feature of PyProtocols is the automatic adaption mechanism, which
allows automated adaption from one datatype d1 which supports a protocol p1 to support another
protocol p2 if an adapter from p1 to p2 has been defined.

An example of this adaption mechanism in the Provenance context would be the following:
Provenance records usually have a sink and a source. Both are complex types which usually contain
a URL. By defining an adapter from strings which match the URL pattern to the complex type
behind sink and source, it is now possible to use strings whenever the complex type is expected. In
that case PyProtocols will automatically convert the strings to the expected complex type. This
technique eases the usage of the generated code and the library.

For instance if a developer wants to use the Provenance-CSL to store messages defined by his
internal data types on a Provenance store, all he has to do is to define an adapter from his data
type to the corresponding P-Assertion interface of the CSL. If he wants to record something on the
store now, he can send the designated information to the store by simply supplying the Provenance-
CSL’s recording API with instances of his datatype. By defining adapters for the return types to
his own data types, he would also be able to receive his own internal data types from a Provenance
store using Provenance-CSL.

2It also features the wsdl2dispatch compiler which generates Python stubs for the server side. However this was
not needed by the project.

Roland Gude
Marius Oster

4

Provenance-CSL
A Provenance Client Side Library

2.5 PyUnit

PyUnit [26] is a unittesting framework for Python, similar to JUnit, the standard unittesting
framework for Java. PyUnit allows the creation and aggregation of unittests. It is part of the
Python standard library since Python 2.1.

Unit tests are small tests which usually run a small part of some code and check if the results
match an expectation. For instance unittests could check if a method returns the correct values
for several inputs or if it raises the correct exception on misuse.

It is common to write unittests as a form of specification for a softwares behaviour before the
software itself is written. This principle is called the Test First principle.

PyUnit is used to test all utility functions for correct behaviour with several correct and in-
correct input parameters. It is used to test the implementation of the Provenance store service
client.

3 Technical Approach

3.1 Provenance Design

Provenance is designed using a service-oriented approach. In a service-oriented architecture (SOA)
clients typically invoke services, which may themselves act as clients for other services. The running
of an application programmed in a SOA style requires the execution of a certain workflow (i.e. the
invocation of a set of services in a certain order). The workflow of an application programmed in
a SOA style (external workflow) and the workflow of a specific service (internal workflow) are two
of the three different pieces of information documentation the Provenance distinguishes.

Figure 1 illustrates the scope of a Provenance system. All elements of a Provenance system
will be explained in the following.

Figure 1: Scope of a Provenance system. According to: [21]

3.1.1 Provenance Store

The participants of a Provenance recording process are called actors. The software component
which is storing the process documentation is called the Provenance store. A set of protocols for
interaction between actors and Provenance Store have been defined in [15, 10]. Actors may store
and query process documentation from the Provenance store using those protocols.

PReServ [19] is an implementation of a Provenance store which is currently in development
and utilizes the Provenance SOAP technology binding [17]. The PReServ Provenance Store is a

Roland Gude
Marius Oster

5

Provenance-CSL
A Provenance Client Side Library

web service which allows storage and querying of P-Assertions using SOAP message encapsulated
web service calls. The interfaces are defined with WSDL.

3.1.2 P-Assertions

P-Assertions are the elementary unit of Provenance. A p-assertion is an assertion that is made by
an actor and pertains to a process [16]. In other words, all P-Assertions pertaining to one workflow
form the process documentation of the workflow. There is a distinction between three different
types of P-Assertions [16].

• Interaction P-Assertions: An assertion of a received or sent identifiable messages contents.

• Relationship P-Assertions: An assertion that one message sent by the actor is the effect of
another message (cause) received by the actor.

• Actor State P-Assertions: An assertion describing an internal message of an actor. The
message may be the cause for further messages, but it may not be the effect of another
message.

3.1.3 Lifecycle

The Provenance lifecycle consists out of four phases.

1. Creation: Actors create P-Assertions.

2. Recording : P-assertions are being recorded at the store.

3. Querying : Users or Applications Query P-Assertions from the store.

4. Managing : It might be needed to handle distribution and change management at the Prove-
nance Store.

3.1.4 Client Side Library

The Provenance-CSL can be used by developers of Provenance-aware applications. It provides
developers with an easy-to-use interface, that enables them to create, store and query P-Assertions.
Thereby the CSL hides irrelevant details in the communication between the application and the
Provenance store, thus reducing development costs of Provenance-aware applications.

The CSL implements the defined protocols [10, 15] and communicates with a Provenance store
using a defined technology binding (like the SOAP binding defined in [17]).

3.2 API Specification

This section briefly describes the API of Provenance-CSL.

• provenance - Base package. It is only used as a collection of all the other parts.

• provenance.api - This package contains the package users should utilize for their appli-
cation. It is a collection of all parts of the Provenance-CSL which might be useful for its
users. Importing them via provenance.api results in lazy loading of those parts. Usually
users should only import from provenance.api.

• provenance.interfaces - This package contains the interface-definitions for all types used
in Provenance-CSL. Users will need this solely if they wish to define new adapters. It can
be imported with from provenance.api import interfaces or with from provenance.interfaces
import api as interfaces. The first version will result in a lazy loading of the package.

Roland Gude
Marius Oster

6

Provenance-CSL
A Provenance Client Side Library

• provenance.adapters - This package contains predefined adapters for several datatypes
and interfaces. It can be imported with from provenance.api import adapters or from prove-
nance.adapters import api as adapters. Both statements are equivalent. None results in lazy
loading.

• provenance.serverAPI - This package contains the datatypes and stubs which are gener-
ated by wsdl2py. Users will usually not work with this package directly. It can be imported
with from provenance.api import serverAPI or from provenance.serverAPI import api as
serverAPI nevertheless. The first method results in lazy loading.

• provenance.utils - Collection of utility functions which help with the generation of data
which can be recorded on a Provenance store. If users do not create their own adapters for
their data types, they should use these functions to create the correct datatypes for recording.
It can be imported with from provenance.api import utils or from provenance.utils import
api as utils. The first method results in lazy loading.

• provenance.client - Contains the implementation of the Provenance store service client,
which is the interface to the Provenance store and allows to store data on it or query it from
there. It can be import with from provenance.api import client or from provenance.client
import api as client. The first method results in lazy loading.

3.3 Implementation

This chapter describes the current state of the implementation.

3.3.1 Client Side Library

The client side library currently supports recording of P-Assertions on a Provenance store using
the Provenance protocols of version 0.25 [22]. Querying and the concept of P-Headers have not
been implemented yet.

The current implementation features a complete set of utility functions for easy creation of
P-Assertions and records and everything that is necessary for that.

All interfaces which are necessary for recording have been defined as well as interfaces for the
result types. Several interfaces have been defined to be context sensitive (i.e. is an Endpoint used
as a sink or as source).

Adapters for all wsdl2py-generated types to the appropriate recording interfaces have been
defined as well as adapters for a wide range of simple Python data types (like strings, lists and dic-
tionaries) to support several recording interfaces. Adapters for the results of recording operations
to the appropriate interfaces have been defined as well.

3.3.2 Testsuite

A suite of unittests for several parts of the client side library has been developed in order to ensure
functionality of the library itself. The following test modules which can be run by themselves or
using a PyUnit-Testrunner have been developed.

• provenance.utils.test: Contains testcases for the utils package. The defined factory func-
tions are tested using multiple sets of valid and invalid parameters. The return values are
checked for type, protocol and the containing data. The tests also check whether invalid
parameters result in the expected exceptions.

By using parameters which must be adapted by PyProtocols, some of the adapters are tested
by this package as well. Even though this is a nice feature, it does not ensure that all adapters
behave in the expected way. Testcases for the adapters would be needed to achieve this as
well.

The testsuite for the utils covers all current utilities sufficiently3.
3Since there is always something more to test, it can not be said that the testuite is complete

Roland Gude
Marius Oster

7

Provenance-CSL
A Provenance Client Side Library

• provenance.client.test: Contains testcases for the client package. It is tested whether the
Serviceclient class supports the required interfaces. Further tests are made for the record and
query functions of the client. These tests require an actual Provenance store installation to
be available and some configuration as well (the URL of the store must be provided). These
tests record testdata on a given Provenance store and thereby ensure that the complete SOAP
communication is fully functional.

4 Results

The current state of the library features a set of utility functions for creation of records (including
all types of P-Assertions) and allows recording them on a Provenance store. All unittests for the
utils package and the recording testcases for the client pacage can be run without failures and
error. Querying has not been implemented so far.

Unittests have shown that it is possible to communicate with a PreServ Provenance store
version 0.3 and store records on it without problems. Since it is not possible to query the recorded
P-Assertions back, it was necessary to browse the stored data manually. This showed that the
records have been stored on the servers. However we were not able to query them back even when
we used the Java-Client Side library. This might be the case because of wrong search expressions.

5 Conclusion and Discussion

The development of the library has been quite successful this far. The basic architecture has been
defined and seems to be well suited for the task. Significant parts of the protocol have already
been implement and seem to work, even though there are some problems left.

The development of the library seemed much easier in the beginning because the top layers
of the Protocol definitions are quite straight forward and easily comprehendable. Unfortunately
this can not be said for a lot of things which are buried deep down inside the protocol definitions.
Complex types are used for things which could easily be expressed using simple boolean values,
the naming of data types is sometimes missleading or used multiple times with different meanings.
From our point of view the protocols details are overly complex. Appart from that, the Java Client
Side library, which was supposed to be used as a reference for the Python implementation, is not
well documented. Because of that it was not possible to use it as a reference at all.

Moreover a new version of PReServ was released in the course of the development of the
Provenance-CSL. Several modules were added and changed in the WSDL definition of the new
release, so it was focused more on the adaption of the new version rather than developing new
functions for an old version of PReServ.

Even though it was not possible to deliver a full featured library in the available time, the
delivered library can be used as a strong basis for further development.

Roland Gude
Marius Oster

8

Provenance-CSL
A Provenance Client Side Library

References

[1] Anthill - continous integration system.
http://www.anthillpro.com/html/default.html.

[2] Bazaar-ng - decentralized version control system.
http://bazaar-vcs.org/.

[3] Bugs everywhere - issue tracker.
http://www.panoramicfeedback.com/opensource/.

[4] Bugzilla - issue tracker.
http://www.bugzilla.org/.

[5] Cruisecontrol - continous integration system.
http://cruisecontrol.sourceforge.net/.

[6] Concurrent versioning system.
http://www.nongnu.org/cvs/.

[7] Damagecontrol - continous integration system.
http://opensource.thoughtworks.com/projects/damagecontrol.jsp.

[8] Eclipse.org homepage.
http://www.eclipse.org/.

[9] P. Groth, S. Jiang, S. Miles, S. Munroe, V. Tan, S. Tsasakou, and L. Moreau. An architecture
for provenance systems. 2006.

[10] P. Groth, S. Miles, V. Tan, J. Ibbotson, and L. Moreau. The p-assertion recording protocol.
August 2006.

[11] Java tutorials, programming concepts - interfaces.
http://java.sun.com/docs/books/tutorial/java/concepts/interface.html.

[12] Java.util.logging package guide.
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/.

[13] Apache log4j.
http://logging.apache.org/log4j/docs/.

[14] Mantis - issue tracker.
http://www.mantisbt.org/.

[15] S. Miles, L. Moreau, P. Groth, V. Tan, S. Munroe, and S. Jiang. Provenance query protocol.
August 2006.

[16] S. Munroe, P. Groth, S. Jiang, S. Miles, V. Tan, J. Ibotson, and L. Moreau. Overview of the
provenance specification effort. October 2006.

[17] S. Munroe, P. Groth, S. Jiang, S. Miles, V. Tan, J. Ibotson, and L. Moreau. A soap binding
for provenance p-headers. August 2006.

[18] Pyton enterprise application toolkit homepage.
http://peak.telecommunity.com/.

[19] Preserv homepage.
http://twiki.pasoa.ecs.soton.ac.uk/bin/view/PASOA/SoftWare.

[20] Provenance-homepage.
http://twiki.gridprovenance.org/.

Roland Gude
Marius Oster

9

Provenance-CSL
A Provenance Client Side Library

[21] The open provenance specification. http://www.gridprovenance.org/openSpecification.

[22] Provenance protocols version 0.25.
http://www.pasoa.org/schemas/version025/ProvenanceService.wsdl.

[23] Python logging module.
http://docs.python.org/lib/module-logging.html.

[24] Peak pyprotocols homepage.
http://peak.telecommunity.com/PyProtocols.html.

[25] Python homepage.
http://www.python.org/.

[26] Pyunit homepage.
http://pyunit.sourceforge.net/.

[27] Python webservices project homepage.
http://pywebsvcs.sourceforge.net/.

[28] The soap 1.1 specification.
http://www.w3.org/TR/soap.

[29] Subversion - version control system.
http://subversion.tigris.org/.

Roland Gude
Marius Oster

10

