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Abstract

In this paper the impact of relative position errors on
the interferometric baseline performance of multistatic
Synthetic Aperture Radar (SAR) satellites flying in a
close formation is analyzed and assessed. Based on accu-
racy results obtained from differential GPS (DGPS) ob-
servations between the twin Gravity Recovery and Cli-
mate Experiment (GRACE) satellites, baseline uncertain-
ties are derived for three interferometric scenarios of a
dedicated SAR mission. To assess the accuracy with re-
spect to quality requirements of high-resolution DEMs,
topographic height errors are derived from the estimated
baseline uncertainties. The analysis reveals that the in-
duced low-frequency modulation (height bias) fulfills the
relative vertical accuracy requirement (σ < 1 m lin-
ear point-to-point error) of a Digital Terrain Elevation
Data model of level 3 (DTED-3) for most of the base-
line constellations. DGPS can be used as an operational
navigation tool for high-precise baseline estimation if a
geodetic-grade dual-frequency spaceborne GPS receiver
is assumed to be the primary instrument onboard the SAR
satellites. To exemplarily demonstrate the error propaga-
tion into the inteferogram Orbital Phase Screens (OPS)
are generated by differencing simulated interferograms.
These are calculated from baselines of distinct GRACE
error signatures and magnitudes.

1. Introduction

The accurate digital mapping of the world’s topogra-
phy using synthetic aperture radar (SAR) interferometry

is still a major topic in Earth remote sensing (e.g., [1] [2]).
This geodetic technique is based on the combination of
two SAR images of the same scene acquired from slightly
different positions in space to measure a phase difference
in each co-registered pixel. The measured interferometric
phase can be used to derive topographic height informa-
tion on the imaged terrain and thus to generate a digital
elevation model (DEM) (e.g., [3]). The precision of the
height estimation is primarily determined by the size of
the satellite to satellite baseline and the accuracy of its re-
construction, as well as the quality of the interferometric
phase correlation.

The baseline length is one of the main driving parame-
ters for the performance and mainly determines the ver-
tical accuracy of the estimated DEM. A solution to over-
come this problem is thus to define a satellite constella-
tion allowing for varying and multiple baselines to ac-
quire two or more SAR images of the same scene quasi-
simultaneously. In addition, if one SAR sensor is trans-
mitting and receiving, whereas the other ones only re-
ceive the radar echoes, the interferometric measurement
becomes less sensitive to phase ambiguities. This ap-
proach is called multistatic single-pass SAR interferome-
try. An important parameter to quantify the sensitivity is
the so-called height or altitude of ambiguity. This height
corresponds to exactly one interferometric phase cycle
[0, 2π] of range change between the SAR sensor and a
reflector on the ground. In other words, if a terrain eleva-
tion exceeds the altitude of ambiguity the measurement
becomes ambiguous. The principle observation is thus a
two-dimensional relative phase signal, which is the 2π-
modulus of the (unknown) absolute phase signal [4].

To analyze the performance of a multistatic SAR system
comprehensively, we need to estimate the interferomet-
ric phase and baseline errors. Both errors can be propa-
gated into so-called topographic or interferometric height

1



SAR frame

pixel p

B

P

Q

pixel p

B

Q

P

B
h

B
v

B
||

B

θ
track P

track Q
flight

dir.

e
T

e
N

e
R

(a) (b)α
Figure 1:(a) The baseline is formed at the moment of allignment of a coregistered pixelp. Here points P and Q resemble
the positions of the S/C at the moment of alignment for the different scenarios, listed in Table 1.(b) Two possible
representations of the interferometric baseline: horizontal/vertical or parallel/perpendicular.

errors, which determines the vertical resolution and pre-
cision of a DEM. For multistatic SAR configurations, the
influence of interferometric phase errors on the height
accuracy has already been analyzed by [5]. However,
the specific performance under the condition of rapidly
changing multistatic baseline conditions requires a de-
tailed analysis in so far as the achievable baseline accu-
racy changes for different baseline determination strate-
gies.
In the following, we analyze and assess the achievabil-
ity of a stated DEM accuracy requirement by deriving
height biases from baseline errors. We use GPS posi-
tioning results from the global recovery and climate ex-
periment (GRACE) mission (e.g., [6]) to estimate the
baseline errors for different interferometric scenarios of
a dedicated SAR mission. Here, the availability of the K-
band radar link provides a unique operation for validating
GPS-based relative positions at the sub-mm level. In this
way, realistic accuracy estimates can be derived that are
free of simplifying assumptions made in earlier software
and hardware-in-the-loop simulation [7].

2. Performance requirements and basic assumptions

To analyze the baseline performance of an exemplary
multistatic SAR interferometer in more detail, we use
the main system specifications of the proposed TanDEM-
X mission in which two main interferometric scenarios
are defined for DEM generation [2]: the bistatic and the
monostatic pursuit mode. In the bistatic mode, the SAR
instrument of the master satellite will be active (transmit-
ting and receiving), whereas the one on the slave satel-
lite will be passive (only receiving). This counteracts the
problem of the inherent accuracy limitation due to tem-
poral decorrelation and atmospheric disturbances. In the
monostatic mode, one satellite pursues the other with a

Table 1: Physical representation of the points P and Q in
Fig. 1 for the different interferometric scenarios.

Scenario P Q
S/C Epoch S/C Epoch

Bistatic A t0 B t0
Monostatic pursuit A t0 + ∆t B t0
Repeat-pass A t1 A t2

selectable along-track separation. This ensures indepen-
dent work of both instruments, i.e., both SAR antennas
will transmit and receive. Furthermore, a repeat-pass sce-
nario for the prime satellite is taken into account.

2.1 Definition of baseline geometry

The baseline geometry for the two SAR acquisition
modes and for the repeat-pass scenario is explained using
Fig. 1. Here points P and Q resemble the different space-
craft positions for each scenario at the moment when the
co-registered pixels of the SAR frames are aligned (Fig.
1a). The baseline

B = [BR, BT , BN ]T (1)

is a 3-D relative position between these points and is
usually defined in the co-rotating coordinate system, in
which the unit vectoreR points in radial,eT in tangential
(along-track), andeN in normal (cross-track) direction
(Fig. 1a).B thus consists of a radial,BR, an along-track,
BT , and a cross-track componentBN .
The baseline can be displayed in a 2-D plane stretched
between the pixel p and points P and Q (Fig. 1b). Both
baseline representations may simply be converted to each
other by using the radar look angleθ, which is defined
with respect to the geocentric state vector of a spacecraft
in point Q. The attitude or tilt angleα is used to describe
the orientation of the baseline with respect to the horizon.
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The exact meanings of points P and Q for the different
scenarios can be found in Table 1.
In this study, the estimation of the baseline error is the
primary concern. Baseline errors in the tangential direc-
tion, σBT

, are usually corrected for sufficiently during
SAR frame alignment. Only the errors in cross-track and
radial direction propagate as phase errors into the inter-
ferogram, making it essentially a 2-D problem. In the
following, the (BN , BR)-representation is used since er-
rors in the horizontal and vertical component of the base-
line can directly be related to the cross-track and radial
orbit errors, respectively. Hence

σBN
= σBh

and σBR
= σBv

(2)

2.2 DEM vertical accuracy requirements

For the TanDEM-X mission, a baseline induced
height bias screen is claimed which has to be compli-
ant with the relative vertical accuracy according to the
digital terrain elevation data level 3 (DTED-3) specifi-
cations. The stated accuracy objective is< 2 m linear
point-to-point error at 90% probability for flat terrains.
This allows the assumption of a relative vertical accuracy
of roughly < 1 m linear point-to-point error at 68.3%
(1σ) probability. Since the radar is always side-looking,
terrain elevation will result in geometric distortions in the
SAR image due to the varying incidence angle.
To find a trade-off between a high signal-to-soise ratio
(SNR) and reduced distortion effects, the SAR satellites
will map the scene under different radar look angles,
which also has to be accounted for in the performance
analysis. For this analysis, it is assumed that errors in the
interferometric phase and bistatic focusing can be mod-
eled precisely, which is important for the separation be-
tween the baseline and purely phase noise induced height
bias in each DEM point.

2.3 Prediction of relative motion

In order to predict the relative motion of two satellites
in space and thus to have a priori information of the base-
line vector, a possible approach is to numerically inte-
grate the differential equations of motion of both objects
in the presence of all relevant perturbations. We choose
the initial values in such a way that the characteristic for-
mation flight is reached as described in [8]. To minimize
the risk of collision, care is taken to properly separate the
two spacecrafts in radial and cross-track directions. This
is achieved by a parallel (or anti-parallel) alignment of
the relative eccentricity and inclination vectors.
Both TanDEM-X satellites will orbit the Earth in nearly
circular and sun synchronous orbits. A difference in the
right ascension of the ascending nodes ensures a horizon-
tal offset in the equatorial region, whereas a slight dif-
ference in the eccentricities allows for a minimal vertical
displacement in polar regions. The 2-D baseline vector is
simply formed by using the radial/cross-track represen-
tation of the differenced state vectors at a certain epoch.
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Figure 2: 3-D representation of motion of the baseline
vectorBRN .

The prediction yields a baseline length of roughly 300 m
for the vertical attitude (α = 90◦) and 3000 m for the
horizontal orientation (α = 0◦), see Fig. 2. The dynami-
cal behavior of the resulting interferometric baseline can
be characterized by a so-called Helix rotation with a fluc-
tuating length.
As shown in [8], such a formation-flying configuration
is naturally stable over short-term prediction arcs (i.e.,
hours). For long-term formation flying (i.e., days), a rel-
ative orbit control of the formation is necessary in order
to counteract differential perturbations mainly caused by
the Earth’s oblateness (i.e.,J2 effects) and differential at-
mospheric drag.

3 Performance of baseline determination strategies

For the following baseline determination strategies, a
geodetic-grade dual-frequency spaceborne GPS receiver,
such as the JPL BlackJack GPS receiver, is assumed to be
the primary instrument for POD onboard the SAR satel-
lites.

3.1 Repeat-pass interferometry

Since the same satellite takes SAR images after a de-
fined repeat cycle, the interferometric baseline

B = rA(t2) − rA(t1) (3)

is thus formed from two absolute positions (Fig. 1) of the
satellite at epochst1 andt2. The baseline error

ǫB = ǫrA
(t2) − ǫrA

(t1) (4)

results from the individual errors of both satellite passes.
For long time scales, there is no temporal correlation be-
tween the errors of the repeat-pass position vectorrA.
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Table 2: Comparison of absolute orbit solutions for
GRACE A and B computed at DLR and JPL for 2003
DOY 210 - 220 (July 29 - August 8).

DOY GRACE A / B
σR(cm) σT (cm) σN(cm)

210 2.1 / 2.2 3.9 / 3.8 2.1 / 1.9
211 2.3 / 2.3 4.1 / 4.1 2.2 / 2.1
212 2.4 / 2.7 4.3 / 4.5 1.8 / 1.6
213 2.1 / 2.2 3.3 / 3.8 2.7 / 1.8
214 2.2 / 2.3 4.2 / 4.1 2.9 / 1.8
215 2.0 / 2.3 3.8 / 4.1 2.7 / 2.2
216 2.1 / 2.2 4.2 / 4.1 2.4 / 1.8
217 1.9 / 2.1 3.2 / 3.5 2.7 / 2.0
218 2.2 / 2.1 4.0 / 3.9 2.0 / 1.9
219 1.9 / 2.3 3.4 / 4.0 2.5 / 1.7
220 1.9 / 2.3 3.1 / 4.0 1.9 / 1.8
Avg. 2.2 3.9 2.1

The inaccuracies of both absolute positions are simply
propagated into the uncertainty of the baseline length

σB =
√

σ2
rA

(t2) + σ2
rA

(t1) =
√

2 σrA
. (5)

Realistic accuracies for GPS-based absolute orbits are
obtained from an orbit comparison of the GRACE mis-
sion found in Table 2, which shows the difference be-
tween the absolute orbit solutions computed for this study
at the Deutsche Zentrum für Luft- und Raumfahrt (DLR)
and the Jet Propulsion Laboratory (JPL) solutions of
GRACE A and B, respectively, in radial, along-track
and cross-track direction. The JPL orbit solution is dis-
tributed with the publicly available GRACE data [9]. The
DLR orbits have been computed using the reduced dy-
namic batch least-squares estimation process [10], using
both GPS code pseudorange and carrier-phase data. The
difference among solutions from several institutes gives
a good indication of the overall orbit accuracy. Here, the
overall orbital errors are obtained as roughly 2 cm in ra-
dial and cross-track directions and 4 cm in the along-track
direction.
Expressing Eq. (5) in terms of mean uncertainties in ra-
dial and cross-track direction, a 2-D baseline uncertainty

σB =
√

2 (σ̄2
R + σ̄2

N ) (6)

of 4.3 cm may be estimated for a repeat-pass scenario us-
ing absolute GPS navigation solutions for post-facto orbit
reconstruction.

3.2 Bistatic mode

For this scenario, the interferometric baseline

B = ∆rDGPS(t0) (7)

is identical with the observation of relative position be-
tween both satellites according to Fig. 1. A study by
[11] using data from the GRACE mission has shown that

DGPS can also be successfully applied for precise rela-
tive positioning of formation-flying satellites. The unique
aspect of the GRACE mission is that the accuracy of the
along-track component of the relative position can be ver-
ified precisely with data from the KBR. Table 3 shows the
uncertainties of the GRACE relative position compared
to KBR data. For completeness, the relative position has
been computed directly using DGPS data and by simply
subtracting the absolute positions of both spacecrafts.
As can be seen from Table 3, the direct processing of
DGPS data yields the highest accuracy of typically 1 mm
in along-track direction. Simply subtracting two individ-
ual absolute orbit solutions does not give the desired ac-
curacy, but still shows that the orbit errors of the individ-
ual satellites are highly correlated within the formation.
This can be seen by comparing the accuracies in Tables 2
and 3 where, especially, the difference in the uncertainty
of the along-track component is clearly visible.
Figure 3 shows the error of the GRACE relative position,
ǫ∆r, estimated using the DGPS filter described in [11] in
comparison with data from the KBR. Also shown in Fig.
3 is the filter formal error in along-track direction. The
1σ value of the true error is 1 mm, which is close to the
filter prediction of 0.6 mm. The DGPS filter shows the
same formal error for the radial, along-track, and cross-
track direction and it is therefore assumed that the true
error for each component is also identical for all axes,
resulting in a mean 2-D baseline uncertainty

σB =
√

σ̄2
∆rR

+ σ̄2
∆rN

=
√

2 σ̄T,DGPS (8)

of 1.4 mm for a bistatic scenario.
Since the relative distance of the TanDEM-X satellites in
the bistatic formation flight is much smaller (< 3 km)
than for GRACE (∼ 220 km), an increase in baseline ac-
curacy might be expected. However, this is not the case
since the baseline solution is most likely dominated by
errors independent of the separation, such as GPS signal
multipath. A shorter separation, however, will increase
the robustness of the solution. First of all, a larger num-
ber of GPS satellites will be jointly observed by both
GPS receivers, leading to a reduced number of DGPS
data outages. Second, and more important, when using
dual-frequency GPS reveivers, the double difference in-
teger carrier-phase ambiguities can be determined with
a much higher reliability due to the quasi elimination of
the relative ionosphere, which dramatically strengthens
the relative position solution.

3.3 Monostatic pursuit mode

In the monostatic pursuit mode of the TanDEM-X
mission, the satellite formation has an along-track sep-
aration of 30-50 km, which can be represented by the
baseline geometry sketched in Fig. 1. This means that
spacecraft A in point P pursues spacecraft B in point Q
with a time offset of∆t ≈ 4 − 7 seconds. In this case,

4



Table 3: Comparison of the relative orbit solution for GRACEA and B, from the absolute orbits and by direct differential
GPS processing.

DOY GPS (DLR - JPL) GPS (JPL - KBR) GPS (DLR - KBR) DGPS (DLR - KBR)
σR(mm) σT (mm) σN (mm) σT (mm) σT (mm) σT (mm)

210 10.3 24.0 14.6 16.1 14.4 1.03
211 13.6 24.7 15.0 17.6 15.9 0.82
212 10.5 22.5 13.8 17.7 14.5 0.81
213 11.2 21.5 20.1 16.4 10.6 1.20
214 10.9 24.6 27.3 16.0 13.3 0.86
215 13.4 30.5 16.2 16.4 22.6 1.03
216 9.1 36.7 18.8 18.3 21.0 0.72
217 11.1 23.2 19.9 17.6 13.9 1.41
218 9.9 21.7 14.6 18.3 13.8 0.95
219 11.5 22.1 26.0 19.5 12.1 0.81
220 12.7 26.1 22.5 17.8 16.9 1.19
Avg. 11.3 25.2 19.0 17.4 15.4 0.98

Figure 3: For 2003 DOY 215: True GRACE relative position error, ǫ∆r, from the DGPS filter verified using KBR data.

the interferometric baseline may be expressed as

B = rA(t0 + ∆t) − rB(t0) (9)

which looks similar to the repeat-pass case according to
Eq. (3).
Due to the relatively short inter-satellite separation, the
relative spacecraft position could still be computed di-
rectly using DGPS data and with the same accuracy as
described above. However, the difference in Eq. (9) is
not measured by DGPS. At any given time,t, the posi-
tion of spacecraft A can be expressed as the position of
spacecraft B and the observed relative spacecraft position
∆rDGPS yielding

rA(t) = ∆rDGPS(t) + rB(t). (10)

By combining Eqs. (9) and (10), the interferometric base-
line att = t0 + ∆t now becomes

B = ∆rDGPS(t0 + ∆t) + rB(t0 + ∆t) − rB(t0) (11)

which means thatrB(t0 + ∆t) − rB(t0) yields an ad-
ditional error due to absolute orbit reconstruction uncer-
tainties between epochst0 andt0 + ∆t. For short time
intervals, the errors of the reduced dynamic satellite orbit
have a high degree of temporal correlation, and thereby
reduce the interferometric baseline error in this case to

ǫB = ǫ∆r(t0 + ∆t) +
∂ǫr
∂t

∆t. (12)

Analyzing the orbit data used to create Table 2, it was
found that the orbital errors in each direction change over
short periods of time with a maximum rate,∂ǫr/∂t, of
0.05 mm/s. For a maximum time interval of 8 seconds,
this means a maximum error of 0.4 mm in the difference
of the absolute GRACE positions for each component.
Combining this with the average accuracy of the relative
position solution, the resulting baseline will have a max-
imum mean 2-D uncertainty

σB =
√

2 (σ̄2
T,DGPS + σ2

(∂ǫ/∂t)∆t) (13)

of approximately 1.7 mm for a monostatic formation
flight with a time offset of 8 seconds in flight direction.

4. Performance analysis

To investigate and assess the baseline performance for
the bistatic and monostatic pursuit mode under quasi re-
alistic conditions, i.e. to simulate the Helix baseline rota-
tion, we use the two orbit predictions for the tandem for-
mation flight which are based on fully dynamic trajectory
modeling (Sect. ). The cross-track baseline vector,BRN ,
can now be determined as a function of time sincet0 or
the tilt angleα using both orbit predictions. The baseline
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Figure 4: 3-D plots of relative topographic height errorsσh as a function of the radar look angleθp and the baseline length
B in case of the monostatic pursuit mode.(a) Estimated performance for baseline attitudesα ∈ [0, 90◦] assuming a mean
satellite altitude ofH = 520 km and a mean baseline standard deviation ofσB = 1.7 mm. (b) Estimated relative height
errors for baseline attitudesα ∈ (90◦, 180◦].

estimate applies both for the bistatic and the monostatic
case.
We will consider the estimated baseline uncertainty for
the monostatic operational mode as theworst case for the
performance assessment. In other words, if the monos-
tatic baseline performance fulfills the required DEM ac-
curacy, the same must be true for the bistatic case for
which we expect a slightly decreased baseline standard
deviation (Sect. ). The baseline error is propagated to
topographic height errors using

σh =

∣

∣

∣

∣

−
Hp

B
tan(θp − α) tan θp

∣

∣

∣

∣

σB (14)

whereHp denotes the satellite’s altitude above the ter-
rain at target pointP . Note that locally induced height
errors due to changes of terrain elevation are neglected.
However, Eq. (14) can be used for a reliable priori per-
formance estimation.
The results are plotted in Figure 4. The estimated rela-
tive height errorσh is expressed as function of radar look
angleθp and the baseline lengthB, which is directly re-
lated to the tilt angleα due to baseline dynamics.θp is
an independent parameter and varied between 10 and50◦

at each predicted epoch to account for varying geometric
distortion effects induced by different terrains.
During the first quarter-rotationα ∈ [0, 90◦], the base-
line contracts from 3000 to 300 m (Fig. 4a). The in-
duced height bias is always beneath the 1 m-performance
threshold up to a tilt angle of roughlyα = 85◦. The
bias raises slightly with increasing look angle. Figure
(4a) confirms the low-frequency modulation of the topo-
graphic height bias that would occur for an interferomet-
ric measurement using ScanSAR pairs of a maximal ac-
quisition window (rectangle with bold lines).
In the second quarter-rotationα ∈ (90◦, 180◦], the base-

line extends from 300 to 3000 m (Fig. 4b). Here, the
performance is mostly corrupted by the singularity event
at θp − α = 90◦. Only the noise levels occurring for
baseline lengthsB ∈ [800, 3000 m] atθp = 10◦ andB ∈
[2500, 3000 m] atθp = 50◦ are tolerable.
To assess the baseline performance, the estimated height
bias in each DEM pointp is related to the correspond-
ing height ambiguityha, which is also a function of the
parametersB, θp andα. It can be formulated as

ha =

∣

∣

∣

∣

λ Hp

m B⊥,p
tan θp

∣

∣

∣

∣

m = 1, 2 (15)

with the effective baselineB⊥,p = B cos(θp − α). λ
denotes the radar wavelength (3.1 cm for X-band). The
SAR acquisition parameterm has to be set tom = 1 for
multistatic acquisition and tom = 2 for monostatic data
takes.
Using the same baseline predictions as for the analysis in
Fig. 4a and Eq. (15), we find the lowest height ambiguity
ha ≈ 1 m for θp = 10◦, B = 3000 m and the highest
levelha ≈ 73 m for θp = 50◦, B = 300 m. If the SAR
data are acquired in the monostatic mode (m = 2), the
height ambiguities are halved, which doubles the sensi-
tivity of the interferometric measurement to relief.

5. First simulation results

To demonstrate the error propagation into an intefero-
gram we generate so-called Orbital Phase Screens (OPS)
by differencing simulated interferograms. These are cal-
culated from state vectors and for the monostatic acquisi-
tion mode (m = 2). The interferometric phaseΦ in each
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pixel p can be expressed as

Φp = ϕAp − ϕBp = −
4π

λ
∆ρ (16)

where∆ρ is the difference of the 2 ranges in the line of
sight. The range differences are estimated from the po-
sition vectors at each epoch and from the corresponding
geodetic coordinates of the target points in the modeled
topography. The mean satellite altitude is about 514 km.
We apply the equation system

r1(t) = r1,0(t)

r
(rtn)
1e (t) = M × r1(t) + ǫ(rtn)

n (t) (17)

r
(rtn)
2 (t) = M × r1(t) + B

(rtn)(t)

r
(rtn)
2e (t) = r

(rtn)
2 (t) + ǫ(rtn)

n (t) n = 1, 2

to calculate the position vectors for the second and third
short-arc orbit.e indicates the erroneous position vector.
M is the matrix to transform the vectors from the Earth-
fixed reference system into the co-rotatingrtn-system.
We define a constant baselineB = [10m, 0, 0]T accord-
ing to Eq. 1. The first error vector is formed by using the
true GRACE relative position errors as plotted in Fig. 3:

ǫ1 = [ǫ∆r(t), 0, ǫ∆r(t + ∆T )]T . (18)

The second one is derived from the difference of the ab-
solute DLR and JPL orbit solutions yielding

ǫ2 = [ǫR(t), 0, ǫN (t + ∆T )]
T

. (19)

To statistically decorrelate the error componenents in ra-
dial and normal direction, we use the same data set for

each error estimation but take normal components of a
1-hour later epoch. We choose a 60s short-arc to cal-
culate an interferogram of an about 150km-long scene
in flight/Azimuth-direction (∼ 20s short-arc length) con-
taining position vectors with a 1s time interval. To syn-
chronize the 10s sampling rate of the DGPS solution with
the time step of the satellite position vectors, we inter-
polate the DGPS error vectors to obtain 1s steps. After
re-transformation

rm = M
−1 × r

(rtn)
m m = 1e, 2, 2e (20)

we obtain the position vectors necessary for interferomet-
ric SAR processing.
We are now able to calculateΦp,12 andΦp,12e contain-
ing the interferometric error phase induced by the relative
position errors. Using the second error vector yields the
second perturbated interferogramΦp,1e2e which ic calcu-
lated from the position vectors with absolute errors. Nor-
mally, an interferometric measurement comprises several
phase contributions. In our case, the simulated phase can
be written as

Φp = Φp,topo + Φp,noise + Φǫ. (21)

The topographic phaseΦp,topo is estimated by using a
standard reference ellipsoid. The interferometric phase
noise is set toΦp,noise = 0. Differencing the simulated
interferograms again

∆Φp,1 = Φp,12 − Φp,12e (22)

∆Φp,2 = Φp,12 − Φp,1e2e

yields the pure orbital phase error or the OPS. The results
are shown in Fig. 5
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To better see the phase signals, we amplify them by a fac-
tor of 10. Here, one color cycle corresponds to one phase
cycle [0, 2π]. Even with a baseline length of 10 m, there
is no significant phase variation when using the DGPS er-
ror solution (Fig. 5a). Only the absolute position errors
for the repeat-pass scenario with a standard deviation of
σB = 4.3 cm yield a remarkable phase signature with a
strong variation in Azimuth (Fig. 5b). This is due to the
scattering of the error vector after each time step (dt=1s)
which causes a jump/offset in the phase cycle. In Range
direction, we also measure a phase gradient of about 0.1
rad from Near Range (NR) to Far Range (FR). With an
altitude of ambiguity of aboutha=1035 m at mid-swath
(Eq. 15) and a radar/incidence look angle of about 36
degrees, this phase gradient corresponds to a change in
terrain elevation

dh = ha · d(∆Φ)/2π (23)

of roughly 1.7 m.

6. Conclusion

It has been proven that the estimated baseline per-
formance of a multistatic SAR interferometer in a close
formation flight fulfills the DTED-3 relative height ac-
curacy requirement (< 2 m linear point-to-point error at
90% probability) for most of the baseline constellations
if geodetic grade dual-frequency GPS receivers onboard
the SAR satellites are used for relative positioning.
If a single-frequency GPS receiver is used for differential
positioning, the direct elimination of differential iono-
spheric delay of the GPS signals is no longer possible.
Furthermore, the resolution of the carrier-phase ambigu-
ities is complicated and becomes even more difficult and
inaccurate with increasing spatial separation. Therefore,
the performance of the processing scheme using code and
phase measurements of only one GPS signal must be in-
vestigated with respect to varying and long baselines (i.e.,
> 1 km)
Although we believe that the dual-frequency GPS base-
line performance will also fulfill the DTED-3 horizontal
accuracy requirements, a further analysis should clarify
the propagation of the total 3-D baseline error vector to
the height and horizontal circular bias.
Finding a correct trade-off between low topographic
height bias, good coherence of the SAR data, and optimal
terrain circumstances such as relief, vegetation, as well
as temporal decorrelation will be the main objective for
the planning of a future multistatic SAR mission. Using
a dual-frequency GPS receiver as an operational tool for
POD and relative navigation will help to solve the most
problems related to a formation flight in a low Earth orbit
(LEO) and ensures 2-D baseline accuracies smaller than
2 mm.
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