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Abstract— The polarimetric behavior of the diffracted field
from an object located close to the ground is investigated for
a varying incidence angle. Here, the field is described by the
Geometrical Theory of Diffraction (GTD) in accordance to its
asymptotic formulas (k → ∞). As a result a ray system composed
of 13 different rays was implemented for the monostatic case
by applying the principle of Fermat. The different spatial and
creeping waves give a physical insight in the mechanisms involved
in the entire scattering process. By varying the angle from
perpendicular to grazing incidence 0◦ − 90◦, geometrical Surface
Shadow Boundaries (SSB) are present for the backscattered field.
At such boundaries the spatial waves are replaced by their
corresponding creeping waves leading to a strong attenuation.
The diffracted field for look angles related to the transition
zones has a characteristic polarimetric behavior which can be
represented on the Poincaré sphere. The typical locations on the
sphere can be exploited in order to get information about the
geometrical parameters of the target and its height above the
ground.

Index Terms— Geometrical Theory of Diffraction (GTD), Uni-
form Theory of Diffraction (UTD), Surface Shadow Boundary
(SSB), Polarimetry

I. INTRODUCTION

The diffraction of a plane wave by an object situated close
to an interface of a two-layer medium has been investigated
by many authors and an extensive literature exists on this topic
[1], [2], [3] and [4]. However, only a few publications have
been devoted to the analysis of the polarimetric behavior of
the diffracted field. In general, very simple ray models based
on the Geometrical Optic (GO) are considered involving single
and double bounced waves for explaining some experimental
results [5]. Here, this problem is again investigated by using a
more refined ray model based on the Geometrical Theory of
Diffraction (GTD). Depending on the geometrical properties
of the target, lit and shadow regions arise in the backscattered
GTD field for a variation from perpendicular to grazing
incidence for a monostatic alignment of the transmitting and
receiving antenna. The separating line of such a lit and shadow
region is called a Surface Shadow Boundary (SSB). A special
emphasis is attributed to the transition regions near the shadow
boundaries where the reflected spatial waves disappear and
transform into creeping waves. The creeping waves propagate
on a arc length along the surface of the target. Approaching the
shadow boundary the spatial waves are strongly attenuated and
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replaced by the powerless creeping waves. Hence, by reconsid-
ering the problem according to the GTD not only the multiple
reflections between the target and the ground of the spatial
waves are investigated, but also the effects of creeping waves
near the shadow boundaries on the polarimetric behavior of
the target near the ground. Here, the refined ray system gives
a better physical insight into the different mechanisms present
of the entire scattering process.

II. THE RAY SYSTEM AND ITS SINGULARITIES

An important feature of a GTD ray field is based on
the localization phenomenon, where the scattered field of an
illuminated complex target can be viewed as the superposition
of individual ray contributions from significant diffraction
points (e.g. tips or edges). In consequence, these single points
are locally replaced by canonical scatterers. For a smooth
convex target in front of the air-soil interface the simplest
model is given by a perfect conducting sphere or cylinder
yielding the main features of the polarimetric behavior of
any arbitrary convex target. Therefore, the backscattered field
of a perfectly conducting cylinder located parallel above the
ground is discussed in the following (fig. 1). An incident
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Fig. 1: GTD Model

L

E
0

e
1

e
2

0

h

Fig. 2: Wave 1, height h
and phase origin

monochromatic, unitary plane wave | �E0| = 1 radiated by
an antenna located at far distance from the cylinder (M) is
considered. Here, the look angle ϕL varies from 0◦ to 90◦. The
distance between the bottom of the target and the soil is given
by the height h. In the numerical calculation the phase origin
�0 is set in the middle of the object (fig. 2). 13 waves of the
ray system are found by applying Fermat’s principle where the
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trajectories are straight lines as pointed out in the fig. 2- 14.
It can be seen from fig. 2 and fig. 8 that the specular wave 1
and the creeping wave 7 have no interaction with the soil. Due
to the fact that a ray field is introduced, shadow boundaries
occur for the field on its way back to the antenna. E.g. the
waves 3 and 8 have a common shadow boundary where both
are replaced by the creeping wave 4 (fig. 15(a)).

Fig. 3: Wave 2 Fig. 4: Wave 3

Fig. 5: Wave 4 Fig. 6: Wave 5

A similar situation is on hand at the second shadow bound-
ary related to wave 11 and 12, both being substituted by
wave 13 in the shadow region (fig. 15(b)). The correct field
computation at a single transition from a lit into a shadow
region is given by the Uniform Theory of Diffraction (UTD).
But here, a sequence of two transition regions occurs, one
on the way toward the ground and one on the way backward
to the antenna. In fact, after a first interaction near grazing
incidence on the cylinder the incident wave is transformed
in a complex transition region field which is further reflected
by the ground and the cylinder before a second interaction
near grazing incidence on the way back to the receiving
antenna. No analytical solution exists for the reflection of
a transition region field by a curved convex surface or a
planar non perfectly conducting surface. A way to treat this
problem consists in decomposing the transition region field in
a spectrum of plane waves and in applying to each spectral
component the GO laws for the reflections on the interface and
on the cylinder away from grazing incidence and the UTD for
the second interaction at grazing incidence with the cylinder
on the way back to the receiving antenna. Since this method
is rather cumbersome to apply, a special procedure has been

developed [6] to assume the continuity of the field across the
sequence of surface shadow boundaries. This procedure which
applies to waves 5, 6 and 9 will be presented in Section III .
The waves 1 and 7 have no shadow boundaries, hence their
interactions with the cylinder are defined after the GO and
GTD. A similar treatment holds for waves 2 and 10 outside the
transition region at ϕL = 0. The transition region at ϕL = 0
has not been considered in this analysis since for a 3-D object
it overlaps with a caustic. In accordance to the asymptotic
formulas the minimal height h is constrained in the model to
one wavelength (hmin. ≈ λ) [7].

Fig. 7: Wave 6 Fig. 8: Wave 7

Fig. 9: Wave 8 Fig. 10: Wave 9

Fig. 11: Wave 10 Fig. 12: Wave 11



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 10, PART 2, OCTOBER 2006 3

Fig. 13: Wave 12 Fig. 14: Wave 13

A time-dependence exp(iωt) is considered and the phase
origin is fixed in the middle of the cylinder. The divergence

term 1 /
√

0M and the round trip term e−2i�ki
1· 0M

−→
are extracted

for every single wave for numerical purpose.

III. TRANSITION ZONES

In the ray system, the two shadow boundaries SSB 1 and
SSB 2 are shown in fig. 15. Exemplarily, the field at the
SSB1 is discussed in greater details in the following as the
second boundary is similar. At the second boundary (SSB2)
the waves 11 and 12 have simply one additional interaction
with the cylinder and the interface. At the first boundary,
corresponding to the look angle ϕSSB1, the waves 3 + 8 are
strongly attenuated and finally vanish. Both waves are replaced
in the shadowed region by the creeping wave 4. In order
to investigate the polarimetric behavior near these transition
zones, the related fields must be calculated over the entire
look angle range 0◦ < ϕL < 90◦. Its calculation is discussed
in the following and represents a cornerstone. Referring to
Pathak [8] the UTD formulas are valid at any point in a single
transition region for an incident local plane wave (GO-type
field). Considering the two transition zones, the single field
values �EW3(Q1), �EW8(Q2), �EW11(V1) and �EW12(Q) up to the
points Q1, Q2, V1 and V2 are therefore given accurately by
the UTD. Here, at the transition the continuity of the total
field is assured by the wave twosomes W3 + W8 and W11
+ W12, where wave 3 and 11 correspond to the direct field
and the wave 8 and 12 to the reflected field. A problem arises
now in the calculation of the field on its way back to the
antenna. As mentioned before, UTD does not apply to the
reflection of a transition region field by a curved surface or a
planar non perfectly conducting surface. The exact method to
solve this problem would consist in a spectral decomposition
of the transition region field in elementary plane waves. For
each single elementary plane wave the UTD would again
be applicable but this procedure is time-consuming. On the
other hand the total field has to be continuous on the shadow
boundary as in nature no jumps occur on shadow boundaries.
This implies different conditions which base the Approximate
Method presented next. The Approximate Method is based on
the fact that the total field must be continuous at the transition
from the lit into the shadow region.
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Fig. 15: Transition Zones

This implies on the boundary:

�Ei
3(M) + �Er

8(M) = �ED
4 (M) (1)

�Ei
11(M) + �Er

12(M) = �ED
13(M) (2)

As the incident field �Ei(M) is plane at grazing incidence,
the relations (1), and (2) are only valid if the other two
waves are also locally plane at the same time. This means
that for the grazing incidence the Fourier components
have a dominant contribution in the direction of grazing
incidence (ϕSSB). Therefrom, the incident waves 3 + 8 at
their reflection points Q1 and Q2 on the cylinder can be
approximated by a plane wave when Q1 → Q2. Thus, both
waves have the same radii of curvature after the reflection on
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the cylinder and the UTD formulas for the next diffraction
at grazing incidence remain valid. The same applies for
the waves 11 and 12 at their reflection points V1 and V2.
Note that this method is only valid close to the two shadow
boundaries. In the ray system the approximation was applied
for the transition range ϕSSB < ϕL < ϕSSB + 5◦.
As a result of the Approximate Method the backscattered
field over the whole look angle range 0◦ < ϕL < 90◦ is
subdivided into three segments: ϕSSB + 5◦ < ϕL < 90◦

(Segment 1), ϕSSB < ϕL < ϕSSB + 5◦ (Segment 2) and
0◦ < ϕL < ϕSSB (Segment 3) which correspond to the lit,
transition and shadow region. The principal shadow boundary
(SSB 1) and its related segments are discussed exemplarily
in this paper as the second shadow boundary (SSB 2) is
computed in a similar manner. The general definition of the
spatial divergence for a tube of rays is pointed out in [9] and
[7]. The final divergence terms for the computation of the
waves 3,4 and 8 are presented in detail in [6]. The calculation
of the three field segments is discussed in the following.

Lit region
In a first step the waves 3 and 8 are calculated up to
their reflection points Q1 and Q2 as outlined in fig. 4
and 9 after the UTD. Referring to fig. 4, it follows that
no spatial divergence is given for wave 3 on its way to
point Q1 as at T1 the flat interface has no influence on the
radius of curvature. Wave 3 is just modified by the Fresnel
coefficients f . Considering wave 8, it appears from fig. 9 that
by approaching the shadow boundary, a grazing incidence
(θi = π

2 ) is given at point P . Approaching the shadow
boundary, the curvature at P has the limit 1/ρ2(P ) → ∞.
Hence, the corresponding spreading factor SFW8 gets equal
to zero. In order to get a continuous field at the transition,
the uniform reflection dyad Ra must be applied. Assuming a
unitary incident field �E0 the UTD fields of the waves 3 and
8 at Q1 and Q2 are given by:

�E3,8(Q1, Q2) = �E0 · f (T1) e−i [�ki
1· �0T1 + k1 T1Q1 ]

+ �E0 · Ra
(P ) · f (T2) SFW8(Q2)

e−i [�ki
1· �0P + k1(PT2 + T2Q2) ]

(3)

The first term refers to �E3(Q1) and the second term describes
the field �E8(Q2). Where f (T1) and f (T2) are the Fresnel
coefficients which describe the reflection on the ground. The
spreading factor SFW8(Q2) defines the modified radius of
curvature of the wave 8 after its interaction with the cylinder
at point P . Considering the amplitudes �E3(Q1) and �E8(Q2) as
new start values for calculating the field on its way back, it
yields:

�E3,8(M) = �E3(Q1) · f (T1) SF (Q1) e−i [�kr
1 · �0T1 + k1 Q1T1 ]

+ �E8(Q2) · f (T2) · Rb
(P ) SF (P )

e−i [�kr
1 · �0P + k1(Q2T2 + T2P ) ]

(4)

Where Rb
(P ) and SF (P ) are here the reflection coefficient and

spreading factor for way back of the round trip. Away from
the boundary ϕSSB +5◦ < ϕL < 90◦ the summation of wave

3 and 8 is performed according to (4) and corresponds to a
GTD field. In segment 1 the curvatures of the incident wave
fronts of wave 3 and 8 at Q1 and Q2 are not considered as
being plane. In the transition zone ϕSSB < ϕL < ϕSSB + 5◦

the incident waves 3 and 8 at their reflection points Q1

and Q2 are considered as plane waves. Thus, both waves
show approximately the same radius of curvature after their
reflection and the UTD formalism can be applied.

Boundary
The exact value of the total field on the boundary is presented
next. At grazing incidence the two points Q1 and Q2 coincide.
The total field �ESSB1

38 at the reflection point Q1 = Q2 on the
boundary is given by [9]:

�ESSB1
3,8 (Q1=Q2) = �E0 ·

[
f (T1) e−i(�ki

1· �0T1 + k1 T1Q1)

− 1
2

f (T2) e−i(�ki
1· �0T2 + k1 T2Q)

− f (T2) m(P )

√
2
k1

e−i π
4 SFW8(Q)

e−i(�ki
1· �0T2 + k1 T2Q)

⎧⎪⎨
⎪⎩

p∗(0)

q∗(0)

⎫⎪⎬
⎪⎭

⎤
⎥⎦

(5)

Where p∗ and q∗ are the complex Fock scattering functions.
The asterisk in (5) implies that the complex conjugate has
to be taken in the case of a time-dependance exp(−iωt).
After the reflection on the cylinder the backscattered field for
grazing incidence is given by:

�ESSB
3,8 (M) = �E3,8(Q1=Q2) · [ f (T1) · R 0(Q1) SFW3(Q1)

e−i(�kr
1

�0T1 − k1 Q1T1) − 1
2

f (T2) · R 0(Q2)

SFW8(Q2) e−i(�kr
1

�0T2 − k1 Q2T2) − m(P )

√
2
k1

R 0(Q2) · f (T2) e−i π
4 SFW8(P )

e−i(�kr
1

�0T2 − k1 Q2T2)

⎧⎪⎨
⎪⎩

p∗(0)

q∗(0)

⎫⎪⎬
⎪⎭

⎤
⎥⎦

(6)

Shadow region
In the shadow region the waves 3 and 8 are replaced by the
creeping wave 4. The latter creeps on a small arc length
along the cylinder as shown in fig. 5 and leaves the surface
tangentially at the detachment point B again as a spatial
wave toward the point T . The points B, T and F are fixed
points and therefore must be computed only once. Here, only
the attachment point Qat varies on the cylinder. Referring to
the uniform diffraction dyad T the field of wave 4 up to the
point Q is given as [9]:

�E4(Q) = �E0 · T a
(Qat, B) SF a

W4(Q)

e−i [�ki
1· �0Qat + k1 (BT + TQ)] (7)
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The value �E4(Q) at Q is taken as new input quantity for
calculating the field on its way back. Therefrom, the received
field at the antenna M is computed as:

�E4(M) = �E4(Q) · T b
(B, Qat) SF b

W4(B)

e−i [−�kr
1 · �0Qat + k1 (QT + TB) ] (8)

In fig. 16 and 17 the different field calculations are presented
for the real and imaginary parts of the parallel field component.
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Fig. 16: Real part of the �E|| component.
[ �E0

|| = 1, �E0
⊥ = 1, f = 500MHz, ε2 = 9.6]

Here the GO abbreviation (e.g. fig. 16) of the field denotes
that the reflection on the cylinder is given over the entire
look angle range by ±1 corresponding to the parallel and
perpendicular field components. The points S1 and S2 are
the exact field values on the shadow boundaries. It can be
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Fig. 17: Imaginary part of the �E|| component.
[ �E0

|| = 1, �E0
⊥ = 1, f = 500MHz, ε2 = 9.6]

seen that away from the transition zones the UTD and the GO
fields are equal. The combination of the three field segments
was performed by a polynomial fit. Similar results are obtained
for the imaginary part. In the same way a polynomial fit was
performed for the waves 11, 12 and 13 related to the second
transition zone (SSB 2). Thus, a continuous ray field is given.
The final wave contributions according to the Approximate
Method is shown in fig. 18(a) and 18(b) for a dielectric soil
ε2 = 9.6. At the corresponding shadow boundaries the related
spatial waves are strongly attenuated. Further, for the parallel
field component the Brewster angle is given at 72.1◦. The
introduce Approximate Method represents an innovation in the
general UTD field calculation. Here the field can be calculated
accurately at the transition from a lit into a shadow region due
to a geometrical surface shadow boundary.
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Fig. 18: Single wave contributions

IV. NUMERICAL VALIDATION

As the contribution of the considered bundle of rays is at
the end an approximation of the total field, the accuracy of
the field obtained with the implemented ray system has to be
checked. This was done by an exact numerical integral full
wave solution solved via the Method of Moments (MoM) [6].
Here, the effect of the soil was introduced by a modified Green
dyad for a two-layer media, where according to Michalski’s
method [4] the Electric Field Integral Equation (EFIE) was
transformed in the less singular Mixed Potential Integral
Equation (MPIE). The related Sommerfeld integrals in the
extended MoM were calculated after the Discrete Complex
Image Method (DCIM) [10]. The validation was performed
for a perfect conducting sphere situated above a dielectric
soil. Where the diffracted field was calculated once for a
soil with permittivity ε2 = 9.6 and once for the double
value 19.2. The waves 1, 2, 3, 10 and 11 were determined
according to the GTD model described before and adapted for

the sphere. In comparison to the cylinder, the corresponding
spreading factors were modified as here the perpendicular
radius of curvature relative to the plane of incidence is not
infinite (ρ1 �= ∞). The waves 3 and 11 were computed in
the lit region up to their shadow boundaries. The Radar Cross
Section (RCS) of both numerical techniques for the E ||(M)

and E⊥(M) components are presented in fig. 19 and fig. 20.
A good agreement between the asymptotic field description of
the GTD and the adapted MoM has been obtained in the range
8◦ < ϕL < 90◦ . According to the GTD field description Wave
2 and 10 have a transition region for the vertical incidence
ϕL = 0. In our analysis, the shadow boundary transition
region of waves 2 and 10 at ϕL = 0 will not be treated
since, in the case of a three-dimensional object, this direction
is also a caustic direction for these waves and needs therefore a
different approach. Hence, the GTD result brakes down for the
perpendicular incidence as outlined in fig. 19 and 20. Here,
this special incidence is not of interest as the polarimetric
behavior near the transition zones is investigated. Compared
to the computing based on the MOM technique which is
very time consuming, the introduced Approximate Method in
accordance to the GTD calculation slashes down CPU time
significantly. Moreover, the refined GTD ray system gives a
better physical insight into the different scattering mechanisms
in comparison to a full wave solution like the MoM. In
consequence, the geometrical description of the scattering
problem and the related transition zones can now be exploited
in order to get information about the geometrical properties of
the set-up.

V. REPRESENTATION ON THE POINCARÉ SPHERE

The introduced ray system is considered in the following
to describe the polarization of the backscattered field from a
cylinder located near the soil (fig. 1). Here, the polarization
of the field is represented in a first step on the Poincaré
sphere in order to outline the polarimetric behavior of the
diffracted field for incidence angles close to the geometrical
shadow boundaries. Therefore, the Poincaré sphere is briefly
introduced next. The backscattered field measured at the
antenna is described by the Jones vector as follows:

�E =
[ |E⊥| ei Φ⊥∣∣E‖

∣∣ ei Φ‖

]
(9)

Based on power measurements, Stokes introduced a power
vector in order to describe partially polarized waves. Refer to
(9) the Stokes vector �g is defined straightforward by means
of the two field component as follows:

�g =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0 = |E⊥|2 + |E|||2

g1 = |E⊥|2 − |E|||2

g2 = 2Re
(
E⊥ E∗

||
)

g3 = −2Im
(
E⊥ E∗

||
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)
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Fig. 19: RCS sphere after the GTD and MoM
[k = 10, r = 2, h = 0.5, ε2 = 9.6]

Where the component g0 expresses the total field intensity. In
the case of a total polarized field, it yields:

g0 =
√

g2
1 + g2

2 + g2
3 (11)

The components g1 and g2 describe the linear polarization.
The g3 component points out either a left or right handed
circulation of the diffracted field. The Stokes component g 1 g2

and g3 in (10) can be regarded as the spherical coordinates of
a sphere with the radius g0. Hence, considering a normalized
sphere g0 = 1 the different polarization states related to the
different incidence angles can be represented on a common
single spherical surface. According to the IEEE definition
(Std. 211-1997) the upper hemisphere of the sphere describes
here a left handed polarized field and the upper pole signifies
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Fig. 20: RCS sphere after the GTD and MoM
[k = 10, r = 2, h = 0.5, ε2 = 19.2]

a Left Handed Circular (LHC) polarization state. In contrast
the bottom hemisphere describes a right handed polarization
and the pole a Right Handed Circular (RHC) polarization.
The equator line characterizes a linear polarization state
where g2 = g3 = 0. In fig. 21, the polarization states of
the received field is represented on the Poincaré sphere for
a linear incident polarized field over the whole look angle
range 0◦ − 90◦. The diffracted field was computed for an
angle increment Δ of 0.1◦. In fig. 21(a) and 21(b) the
polarization of the received field in accordance to the GTD
model (fig. 1) is outlined for a linear polarized incidence
field E⊥ = E|| = 1 once for a perfect conducting interface
and once for a dielectric soil ε2 = 9.6. Referring to fig. 21(b)
the scattered field at perpendicular incidence ϕL = 0◦ is
located near g2 = 1 in accordance to the Stokes vector (10).
With increasing look angle the different ray paths in the
system and the corresponding phase terms vary. As a result,
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the superposition of the different complex rays yield to a
rapid variation of the Sinclair matrix [S] over the whole
look angle range. This is noticed as a rapid cycling on the
Poincaré sphere. This behavior is pointed out in fig. 21(a) and
fig. 21(b). In the case where a perfect conducting interface is
given the Fresnel coefficients at the interface are constantly
given by f = ê|| − ê⊥. Hence, the change in the path lengths
leads to a strong cycling on the sphere. Close to the shadow

SSB 1

SSB 2

(a) Perfect Conducting Interface

SSB 2

SSB 1

(b) Dielectric Soil (ε2 = 9.6)

Fig. 21: Linear polarized incident field

boundaries the related spatial waves have similar path lengths
thus being in phase. This lead to a slighter depolarization of
the backscattered field. Note that the direct reflected wave 1
from the object depends not of the incidence angle. The wave
1 has a constant value over the entire range (fig. 18(a) and

18(b)). The spatial waves related to the shadow boundaries
are strongly attenuated in the transition regions being finally
replaced by the corresponding creeping wave in the shadow
region. Hence, the polarization of the received field for
incidence angles close to the shadow boundaries are found
near the equator line representing a linear polarization state
such as the transmitted field.

VI. CONCLUSION

A GTD ray system composed of 13 different waves includ-
ing spatial and creeping waves was numerically implemented
for a varying incidence angle. The ray system was validated
by an exact numerical method. In this paper it was shown that
the considered ray contributors describe the field accurately.
Using the ray system, a better physical insight is given in the
entire scattering process. For a varying incidence angle from
the perpendicular to grazing case, so-called Surface Shadow
Boundaries occur for the diffracted ray field, where the spatial
waves disappear and transform into creeping waves. The
corresponding look angles have characteristic locations on the
Poincaré sphere. Considering e.g. a linear polarized incidence
field the transition zones have characteristic locations close
to the equator line signifying a linear polarization. Hence,
the depolarization close to the shadow boundaries is less and
similar to the incident field. In consequence these characteristic
locations can be exploited to determine the size of a cylinder
or sphere and its height above the ground. Furthermore, due
to the fact that the GTD implies the localization phenomenon
any convex curved object can be treated in this manner. In this
case the characteristic diffraction points of the complex object
are considered.
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