
On computing frequency-responses of periodic systems

A. Varga

Abstract— We address the efficient and numerically re-
liable computation of frequency responses of discrete-time
periodic systems by using structure exploiting algorithms.

I. INTRODUCTION

We consider periodic time-varying descriptor systems of
the form

Ekx(k + 1) = Akx(k) + Bku(k)
y(k) = Ckx(k) + Dku(k)

(1)

where the matrices Ek ∈ Rµk×nk+1 , Ak ∈ Rµk×nk , Bk ∈
Rµk×mk , Ck ∈ Rpk×nk , Dk ∈ Rpk×mk are periodic with
period N ≥ 1, and the dimensions fulfil the condition
ν =

∑N
k=1 µk =

∑N
k=1 nk .

To define the frequency response matrix of the periodic
system (1), we define first the transfer-function matrix
(TFM) corresponding to the associated stacked lifted repre-
sentation of [1], which uses the input-state-output behavior
of the system over time intervals of length N , rather then
1. For a given sampling time k, the corresponding M -
dimensional input vector, P -dimensional output vector and
ν-dimensional state vector are

uL
k (h) = [uT (k + hN) · · ·uT (k + hN + N − 1)]T ,

yL
k (h) = [yT (k + hN) · · · yT (k + hN + N − 1)]T ,

xL
k (h) = [xT (k + hN) · · ·xT (k + hN + N − 1)]T .

where M =
∑N

k=1 mk and P =
∑N

k=1 pk. The corre-
sponding stacked lifted system can be represented by a
time-invariant descriptor system of the form

LkxL
k (h + 1) = FkxL

k (h) + GkuL
k (h)

yL
k (h) = HkxL

k (h) + JkuL
k (h)

(2)

where

Fk−zLk =

−zEk+N−1 O · · · O Ak+N−1

Ak −Ek O · · · O

O
.

...
...

.−Ek+N−3 O

O
. . . Ak+N−2 −Ek+N−2

(3)

Gk =

O O · · · O Bk+N−1

Bk O · · · O O
...

.
...

O O Bk+N−2 O

A. Varga is with the German Aerospace Center, DLR - Oberpfaf-
fenhofen, Institute of Robotics and Mechatronics, D-82234 Wessling,
Germany. E-mail: andras.varga@dlr.de

Hk = diag (Ck, . . . , Ck+N−1),

Jk = diag (Dk, . . . , Dk+N−1)

Assuming the square pencil (3) is regular (i.e., det(Fk −
zLk) 6≡ 0), the TFM of the lifted system is

Wk(z) = Hk(zLk − Fk)−1Gk + Jk (4)

and depends on the sampling time k.
For standard periodic systems (i.e., Ek = Ink+1

), we can
use another lifted time-invariant representation introduced
in [2], which corresponds to the same lifted input and
output vectors, but to an nk-dimensional state vector
defined as

x̂k(h) := x(k + hN).

The transition matrix of the system (1) for Ek = Ink+1
is

defined by the nj×ni matrix ΦA(j, i) = Aj−1Aj−2 · · ·Ai,
where ΦA(i, i) := Ini

. The standard lifted system has the
form

x̂k(h + 1) = F̂kx̂k(h) + ĜkuL
k (h)

yL
k (h) = Ĥkx̂k(h) + ĴkuL

k (h)
(5)

where

F̂k = ΦA(k + N, k)

Ĝk = [ΦA(k + N, k + 1)Bk · · ·Bk+N−1]

Ĥk =

Ck

Ck+1ΦA(k + 1, k)
...

Ck+N−1ΦA(k + N − 1, k)

Ĵk =

Dk 0 · · · 0

Ĵk,2,1 Dk+1 · · · 0
...

...
. . .

...
Ĵk,N,1 Ĵk,N,2 · · · Dk+N−1

with Ĵk,i,j = Ck+i−1ΦA(k + i − 1, k + j)Bk+j−1, for
i = 2, ...,K, j = 1, 2, . . . N−1, and i > j.

The associated TFM Ŵk(z) is

Ŵk(z) = Ĥk(zInk
− F̂k)−1Ĝk + Ĵk (6)

Since for Ek = Ink+1
, Wk(z) defined in (4) and Ŵk(z)

defined in (6) coincide, Wk(z) appears to be the natural
generalization of the TFM for a standard periodic system
to the descriptor case, covering also the most general
representation of descriptor periodic systems with time-
varying dimensions.

For a given θ ∈ [0, 2π], the frequency-response matrix
Wk(ejθ) is given by

Wk(ejθ) = Hk(ejθLk − Fk)−1Gk + Jk

If Ts is the sampling period of the system, then θ can be
expressed as θ = ωTs, where ω is the frequency.

Obviously Wk+N (z) = Wk(z) and the TFMs at two
successive values of k are related by the relation [3]

Wk+1(z) =

[
0 IP−pk

zIpk
0

]
Wk(z)

[
0 z−1Imk

IM−mk
0

]
(7)

Therefore, for the simplicity of notation we drop in what
follows the dependence of index k, assuming k = 1. The
values of the frequency response for values of k > 1 can
be computed by a trivial permutation of data, or using the
above relations in the case when the frequency-response
must be computed simultaneously for several values of k.

The computation of the frequency-response usually re-
quires the evaluation of W (λi) at a large number of values
λi = ejθi , i = 1, . . . , Nf . This involves for each λi the
solution of the complex linear equation (λiL−F)X = G
and computing W (λi) = HX+J . Note that all intervening
matrices are usually large but highly structured. Without
exploiting their structure, the computational effort can be
prohibitive.

In this paper we discuss several structure exploiting
approaches to compute efficiently the frequency-response.
Since the numerical properties of the underlying algorithms
are determined by the properties of the employed linear
system solvers, all methods we discuss appear to be essen-
tially equivalent. Therefore, to compare different methods,
we provide only estimates of the necessary computational
effort and additional storage.

The necessary computational costs are expressed in
terms of the performed floating-point operations or flops
(1 flop = 1 multiplication or 1 addition). For each method,
the computational effort Nop can be expressed as a sum
of two terms

Nop = Nop,0 + NfNop,f

where Nop,0 is the cost of any preliminary preprocessing of
problem data (performed usually only once), while Nop,f

is the cost to evaluate W (λi) for a single frequency value.
The purpose of the preliminary preprocessing is to globally
reduce the computational cost compared to the brute force
approach when ignoring the underlying structure in solving
(λiL− F)X = G.

Note. To obtain simpler expressions for the operation
counts, we will make evaluations only for systems with
constant dimensions. For systems with time-varying di-
mensions, the resulting figures represent upper bounds in
terms of the maximum dimensions n = maxi{ni, µi},
m = maxi{mi}, p = maxi{pi}.

II. METHODS BASED ON SOLVING BABD SYSTEMS

To evaluate W (λi), the main computation is to solve
the linear system RX = G, where R = λiL − F .

This is a potentially large order linear system with a so-
called bordered almost block diagonal (BABD) structured
coefficient matrix of the form

R =

R11 R1,N

R21 R22

.
RN,N−1 RN,N

where R11 = λiE1, Rkk = Ek for k = 2, . . . , N ,
Ri+1,i = −Âi for i = 1, . . . , N−1, R1,N = −AN . The
right-hand side has the cyclic structure

G =

G1N

G21

. . .
GN,N−1

where Gi+1,i = Bi, for i = 1, . . . , N−1 and G1,N = BN .
The solution X , of the same size as G, is obtained in a
N × N block partitioned form with the µi × mi matrix
Xij as its generic block element for i, j = 1, . . . , N .

BABD systems appear, for example, when solving two-
point boundary value problems for ordinary differen-
tial equations with nonseparable constraint using finite-
difference methods [4], [5]. There is a rich literature on
solving BABD and ABD systems (an ABD is an BADB
with R1,N = 0), and many methods have been proposed
to address the efficient numerical solution of such systems
[5]. Among the existing methods, we mention just a few,
like applying band linear solvers, transforming BABD into
larger order ABD systems and applying efficient ABD
solvers, block LU and QR-factorization base methods.

To solve the BABD system of equations RX = G we
describe the structured Gaussian elimination with partial
pivoting (GEPP). Recall that the standard GEPP method
to solve the linear equation RX = G has two main steps
[6]. First, the LU factorization of R is computed by using
partial (row) pivoting, to obtain PR = LU , where P is a
row permutation matrix, L is a unit lower triangular matrix
and U is an upper triangular matrix. Then, the solution is
determined by using forward substitution to compute Y =
L−1(PG) and back substitution to compute X = U−1Y .

For the particular structure of R above, the resulting U
has an upper triangular block-structured form

U =

U11 U12 U1N

U22 U23 U2N

.
. . . UN−1,N

UN,N

(8)

with nonzero blocks only on the main block-diagonal, first
block-supradiagonal and last block-column. Regarding L,
nothing can be said in general about its bandwidth, but it
is known (see [6]) that each column of the lower triangular
part contains at most 2n nonzero elements.

As a consequence of the cyclic block-structure of G
above, Y = L−1(PG) has a special almost lower triangu-
lar block-structure with a nonzero last block-column

Y =

Y11 Y1,N

Y21 Y22 Y2,N

...
...

. . .
...

YN,1 YN,2 · · · YN,N

 (9)

However, the resulting X = U−1Y is generally full,
although to compute it the block-structure of U can be
efficiently exploited when computing it using block back
substitution. For the efficient evaluation of the matrix
expression HX + J , the block-diagonal structure of the
matrices H and J can be exploited.

To compute the block-LU factorization of R the follow-
ing algorithm can be used:

Algorithm 1: Block-LU factorization PR = LU .

for i = 1, . . . , N−1

Compute the LU factorization Pi

[
Rii

Ri+1,i

]
=Li

[
Uii

O

]

Compute[
Ui,i+1 Ui,N

Ri+1,i+1 Ri+1,N

]
:=L−1

i Pi

[
O Ri,N

Ri+1,i+1 Ri+1,N

]

end
Compute the LU factorization PNRN,N = LNUN,N .

The main computations in Algorithm 1 are the N − 1
successive LU decompositions of (µi+µi+1)×ni matrices
and the application of ni elementary transformations to
(µi+µi+1)×(ni+1+nN) matrices. Therefore, for constant
dimensions this algorithm performs about 5n3/3 flops to
compute the LU-decomposition of a 2n×n matrix and ad-
ditionally, 6n3 flops to apply n elementary transformations
to a 2n×2n matrix [6]. Thus, Algorithm 1 performs about
max{(N − 1) 23

3 n3, 2
3n3} flops. Additional 2(N − 1)n2

storage locations are necessary to store the supradiagonal
blocks of U and the blocks in the last block-columns and
2Nn2 storage locations are necessary to store Li. The
upper triangular diagonal blocks Uii of U can be stored in
the upper diagonal part of Li. In this way, the L matrix
of the LU decomposition is stored implicitly in the lower
triangular matrices Li.

To compute Y = L−1(PG) in (9) (only the non-zero
elements), the following forward substitution algorithm can
be employed.

Algorithm 2: Block-forward substitution to solve LY =PG.

Y = G

for i = 1, . . . , N−1

Compute
[

Yi,1 · · · Yi,i Yi,N

Yi+1,1 · · · Yi+1,i Yi+1,N

]
:=

L−1
i Pi

[
Yi,1 · · · Yi,i−1 0 Yi,N

0 · · · 0 Yi+1,i 0

]

end
Compute YN,N := L−1

N PNYN,N .

Algorithm 2 basically applies the performed elementary
transformations and permutations to the right hand side
G. The computational effort for constant dimensions is
max{ 3

2n2m(N − 1)(N + 2), n2m} flops.
To compute X = U−1Y with U of the form (8) and Y of

the form (9), we assume that both X and Y are partitioned
row-wise compatibly with the column structure of U in N
block-rows Xi and Yi, i = 1, . . . , N , respectively. The
following back substitution algorithm can be employed to
compute X .

Algorithm 3: Block-back substitution to solve UX = Y .

Solve UNN XN = YN

If N > 1, then solve UN−1,N−1 XN−1 = YN−1−UN−1,N XN .

for i = N−2, . . . , 1

Solve UiiXi = Yi − Ui,i+1Xi+1 − Ui,N XN

end

The number of operations for Algorithms 3 is
max{3n2m(N − 1)N,n2m} flops.

When evaluating W (λi) block-wise as

W (λi) =

W11 · · · W1N

...
. . .

...
WN1 · · · WNN

where the (i, j)-th block is pi×mj , it is possible to avoid
forming the matrices G, H and J . For example, using
Algorithms 1-3, we can solve successively RXj = Gj ,
for j = 1, . . . , N , where Gj is formed from the j-th block-
column of G. Let Xij be the i-th block-row of Xj of size
ni × mi. Then, the multiplication HXj + Dj amounts
to compute the products Wij = CiXij , i = 1, . . . , N ,
i 6= j, and Wjj = CjXjj +Dj . The number of operations
to evaluate all Xij , assuming constant dimensions, is
2pmnN2 flops.

To determine W (λi) the total number of operations is
(assuming N > 1)

Nop,f =

(
23

3
n3 −

3

2
n2m

)
N +

(
9

2
n2m + 2pmn

)
N2

(10)
The necessary additional storage is not larger than

Nst = max{4n2N,nmN}

provided the column oriented computation of W (λi) is
employed.

Interestingly, it appears that there exists no general pur-
pose numerically stable method to solve BABDs systems
[5]. Moreover, a special class of these systems represents a
notorious example for the failure of Gaussian elimination
with partial pivoting [7] due to excessive growth factors.
Therefore, as an alternative to the structured GEPP, the
structured orthogonal QR-decomposition has been sug-
gested in [5]. Having the QR-decomposition QU = R,
where Q is orthogonal and U is upper triangular, the
solution can be computed as Y = QT G and X = U−1Y .

The resulting Q has an upper block-Hessenberg structure,
with a lower bandwidth of 2n. We can store Q also in a
factored form, so to compute Y , there is no need to form
explicitly Q. The number of operations to compute Y is
roughly twice as much as in the case when employing the
GEPP to compute Y using the LU decomposition of R.

III. METHODS FOR STANDARD PERIODIC SYSTEMS

In this section we discuss methods for standard periodic
systems where Ek = Ink+1

.

A. Hessenberg method

The matrix R = λiL − F is generally in a block-
Hessenberg form, with a lower bandwidth of at most 2n.
By reducing the N -periodic matrix Ak to an extended
periodic Hessenberg form (EPHF) (a generalization of the
periodic Hessenberg form introduced in [8]), we can reduce
the lower bandwidth to n+1. For convenience we assume
n = mink{nk} = nN . According to [9], given the matrices
Ak ∈ Rnk+1×nk , k = 1, . . . , N , with nN+1 = n1 there
exist orthogonal matrices Qk ∈ Rnk×nk , k = 1, . . . , N ,
QN+1 := Q1, such that the transformed matrices

Ãk := QT
k+1AkQk =

[
Ãk,11 Ãk,12

0 Ãk,22

]
, (11)

are block upper triangular, where Ãk,11 ∈ Rn×n, Ãk,22 ∈

R(nk+1−n)×(nk−n) for k = 1, . . . , N . Moreover, ÃN,11

is in Hessenberg form, Ãk,11 for k = 1, . . . , N− 1 are
upper triangular and Ãk,22 for k = 1, . . . , N are upper
trapezoidal.

The computation of the EPHF is bounded by 10
3 n3N

flops and the application of the transformation

B̃k = QT
k+1Bk, C̃k = CkQk

involves additionally at most 2n2(m + p)N flops. Thus,
for constant dimensions the operation count for the initial
preprocessing gives

Nop,0 =

(
10

3
n + 2m + 2p

)
n2N

Let (F̃ − zL̃, G̃, H̃, J) be the lifted descriptor system
corresponding to the transformed periodic system and
define R̃ := λiL̃ − F̃ . This matrix with reduced lower
bandwidth, has the typical BABD shape shown in Fig. 1,
where N = 4 and ni = 4, i = 1, . . . , 4.

If we exploit the reduced bandwidth of R̃, then the com-
putation of the LU-decomposition of R̃ using Algorithm 1
requires about 5n3N flops and the forward substitution to
solve LY = PG̃ requires max{n2m(N−1)(N+2), n2m}
flops. The total number of operations for N > 1 is

Nop,f =
(
5n3 − 2n2m

)
N +

(
4n2m + 2pmn

)
N2 (12)

The additional storage required by this method is approx-
imately the same as for the general BABD approach.

Fig. 1. BABD structured matrix R̃.

B. Hessenberg method with perfect shuffle

On the matrix R̃ we can perform a special permutation
of the rows and columns known as perfect shuffle. The
corresponding permutation matrix P is applied to R̃, G̃
and H̃ , to get the permuted matrices

R̂ = PT R̃P, Ĝ = PT G̃, Ĥ = H̃P,

Consider R̃ partitioned as R̃ = [R̃T
1 , R̃T

2 , . . . , R̃T
N]T ,

where R̃i ∈ Rni×ν . The perfect shuffle permutation matrix
P corresponds to the following reordering of the rows of
R̃: take the first rows from each block R̃i and move them
in front of other rows; take the second rows from each
block and move them behind the previous set of chosen
rows; continue in this way with the third, forth, etc. rows
of each block, until finished. In the case when some blocks
have no more rows to be moved, then we simply skip to
the next block.

The result R̂ of the perfect shuffle of R̃ is an upper
Hessenberg matrix with a very special sparse structure [10]
as can be seen in Fig. 2. Ignoring the structure of the upper
triangular part, the computational complexity is unaccept-
ably large: O(n2N2) for the LU decomposition of the
Hessenberg matrix R̂ and O(n2mN3) for the forward and
back substitution based computation of X = U−1L−1PĜ.
In this moment it is not clear how to further exploit the
detailed structure of R̂ to reduce these figures.

The only approach which appears to be a reasonable al-
ternative is to use sparse matrix techniques. Direct solvers
for sparse matrices involve much more complicated algo-
rithms than for dense matrices. Generally one computes the
LU factorization in the form LU = PR̂Q, where P and
Q are row and column permutation matrices, respectively.
The solution is determined by forward substitution to
compute Y = L−1(PĜ) and back substitution to compute
X = QU−1Y . The main complication is due to the need
to choose P and Q for efficiently handling the fill-in in

Fig. 2. Perfect shuffle R̂ of the BABD structured matrix R̃.

the factors L and U . A typical sparse solver consists of
four distinct steps (opposed to two in the dense case):

1) An ordering step that reorders the rows and columns
such that the factors suffer little fill, or that the matrix
has special structure, such as block-triangular form.

2) An analysis step or symbolic factorization that de-
termines the nonzero structures of the factors and
creates suitable data structures for the factors.

3) Numerical factorization that computes the L and U
factors.

4) A solve step that performs forward and back substi-
tution using the factors.

There is a vast variety of algorithms associated with each
step (see for example the review paper by Duff [11]).
Usually steps 1 and 2 involve only the graphs of the
matrices (i.e., the zero/non-zero structure), and hence only
integer operations. Steps 3 and 4 involve floating-point
operations. Step 3 is usually the most time-consuming part,
whereas step 4 is about an order of magnitude faster (for
one vector in the right-hand side). The algorithm used in
step 1 is quite independent of that used in step 3. But the
algorithm in step 2 is often closely related to that of step 3
and the solver may combine steps 2 and 3 (e.g., SuperLU)
or even combine steps 1, 2 and 3 (e.g., UMFPACK) so
that the numerical values also play a role in determining
the elimination order [11].

It is well known that a complete a priori analysis of the
computational complexity is impossible since the work in
a sparse LU factorization depends on numerical pivoting
choices and the efficacy of additional heuristic column
reordering intended to minimize fill-in. Efficient algorithms
to compute the sparse LU decomposition and perform
forward and backward substitutions have the property that
their computational complexity is O(τ) + O(µ), where
τ = n(n+3)

2 N is the number of nonzero elements in R̂ and
µ = nmN2 is the order of the problem [11]. Moreover,
sparse representation of data allows to perform the matrix
multiplications involved to evaluate HX+J exploiting the
sparse block-diagonal structures of H and J . The required

additional storage covers the index information associated
to store sparse matrices and the unavoidable fill-in.

C. Schur method with perfect shuffle

Instead of reduction to the EPHF, it is possible to
reduce the periodic matrix Ak to the extended periodic
real Schur form (EPRSF) using an N -periodic orthogonal
transformation [9]. In the EPRSF, the reduced matrices Ãk

have the form (11), with the only difference that AN,11 is
in quasi-upper triangular form having only 1× 1 or 2× 2
diagonal blocks. The 2× 2 blocks correspond to complex
conjugated eigenvalues of the product AN · · ·A2A1. For
constant dimensions, the cost of the preprocessing is

Nop,0 = (25n + 2m + 2p) n2N

which is significantly larger than the cost to compute the
EPHF. Note however, that this operation is performed only
once.

The result R̂ of the perfect shuffle of R̃ is a block upper
triangular matrix, with the diagonal blocks in unreduced
Hessenberg form [10]. For constant dimensions, the block
sizes of the Hessenberg matrices are either N or 2N . A
block of order 2N results for each 2 × 2 diagonal block
of AN,11. For large periods (e.g., N ≥ 500), the diagonal
submatrices are still large and sparse. The equation
R̂X = Ĝ can be solved by a block back substitution,
factoring only the diagonal blocks of the matrix R̂. The
following is a general block back substitution algorithm
to solve UX = Y , where we assume U is block upper
triangular with r diagonal blocks and X and G are
accordingly partitioned row-wise in r block-rows of
dimension N ×M or 2N ×M :
Algorithm 4: Block-back substitution to solve UX = Y .

for i = r, . . . , 1

Solve UiiXi = Yi −
∑r

j=i+1 Ui,jXj

end

When employing this algorithm to solve R̂X = Ĝ, the
fine-grain structure of both R̂ and Ĝ can be further
exploited. For example, assuming all blocks are N × N
(thus r = n), forming Ui,jXj involves at most 2mN2

flops. Thus, the number of operations to form the right-
hand sides in Algorithm 4 is at most mn2N2, while
solving the equations with sparse upper Hessenberg Uii

involves additionally O(nN)+O(mn2N2) flops.

D. Fast method

To evaluate Ŵ (λi), we can apply the method of Laub
[12] to the standard lifted representation (5). The prelim-
inary computation involves building the system matrices
followed by the reduction of F̂ to the Hessenberg form
and application of transformations to Ĝ and Ĥ . To build
the system matrices, the following algorithm can be used:

Algorithm 4: Building (F̂ , Ĝ, Ĥ, Ĵ).

Comment. Build F̂ and Ĥ .

F̂ = A1, Ĥ = C1.

for i = 2, . . . , N

Ĥ ←

[
Ĥ

CiF̂

]
, F̂ ← AiF̂

end
Comment. Build Ĝ and Ĵ .

Ĝ = B1, Ĵ11 = D1.

for i = 2, . . . , N

[Ĵi,1 · · · Ĵi,i−1 | Ĵi,i] = [CiĜ |Di]

Ĝ← [AiĜ Bi]

end

For constant dimensions, Algorithm 4 requires about
(n2m + nmp)N2 + (2n3 + 2pn2 − mn2 − mnp)N real
flops. Additionally, the reduction to the Hessenberg form
F̃ = QT F̂Q requires 10

3 n3 flops and the application
of transformations G̃ = QT Ĝ and H̃ = HQ̂ requires
additionally 2Nn2(m+p). It follows that the total number
of preliminary operations is

Nop,0 =(n2m+nmp)N2+(2n3+(4p+m)n2−npm)N+
10

3
n3

The evaluation of Ŵ (λi) = H̃(λiIn1
−F̃)−1G̃+Ĵ requires

Nop,f = 2N2pmn + Nmn2

The additionally needed storage to build the matrices of
the lifted system is

Nst = n2 + (nm + pn)N + pmN(N + 1)/2

We can substantially save operations if we reduce first
the periodic state matrix Ak to an EPHF. In this case,
all multiplications to build the lifted system matrices
(F̂ , Ĝ, Ĥ, Ĵ) which involve upper triangular or Hessenberg
matrices, require practically the half of operations of
those for full matrices. The total number of preliminary
operations is

Nop,0 =

(
n2m

2
+nmp

)
N2+

(
11

3
n3+3(p+

m

2
)n2−npm

)
N

while for the evaluation of Ŵ (λi) the same number of
flops is necessary.

E. Transfer-function based computation

We can evaluate first the TFM W (z) using the method
proposed in [13] and then compute W (λi) for i =
1, . . . , Nf . The main part of the computational effort is the
evaluation of W (z), which for constant dimensions is of
order Nop,0 = O(N3pmn3). The effort to compute W (λi)
with W (z) given in a TFM form is Nop,1 = O(N2pm).
Thus, this method can be an alternative to other methods
only for very large Nf .

IV. NUMERICAL EXPERIMENTS

We performed several numerical tests for standard
periodic systems with constant dimensions using
prototype implementations in MATLAB of the proposed
approaches. The obtained timing results on a Pentium
IV 3 GHz machine reflect only very approximately the
real complexity of the computations, being obtained with
implementations which are far to be optimal with respect
to speed and/or memory usage. The following algorithms
have been tested:

FULL GEPP without structure exploitation
GEPP sparse GEPP with BABD structure
GEPP-H sparse GEPP with periodic Hessenberg form
GEPP-S sparse GEPP with periodic Schur form
FAST fast method based on standard lifting

The implementations of GEPP, GEPP-H and GEPP-S are
based on the sparse matrix linear equation solvers available
in MATLAB. In all computations, the resulting frequency
responses have a relative accuracy of order 10−9 at least.

The results have been obtained for randomly generated
periodic systems with m = 3 inputs and p = 6 outputs.
A first set of systems with large periods N but relatively
small state dimension n = 6 has been considered. In Table
I we present CPU timing results (in seconds) obtained for
different periods for a single evaluation of W (λi):

N 50 100 200 500
FULL 0.12 0.64 13.9 88.3
GEPP 0.05 0.20 0.96 5.13
GEPP-H 0.07 0.24 0.86 5.13
GEPP-S 0.12 0.43 1.74 12.64
FAST 0.016 0.031 0.094 0.45

TABLE I
TIMING RESULTS FOR LARGE PERIODS (IN SECONDS)

Note that for N = 500, the frequency response W (λi)
is a 3000×1500 complex matrix. As can be seen, structure
exploiting allows to compute this matrix in a reasonable
time on a desktop computer. Interestingly for this category
of problems, the additional structure added by employing
the periodic Hessenberg or Schur forms brings practically
no benefits in speed over the non-reduced case. The time
requirements to compute either the periodic Hessenberg
or Schur forms are practically negligible (e.g., 0.125 and
0.141 seconds respectively for N = 500). Similarly, the
effect of employing column interchanges to reduce fill in
was not significant, and occasionally even increased the
execution times.

We computed also with a second category of examples
with a small period of N = 10, but relatively large state
dimensions. In Table II we present CPU timing results (in
seconds) obtained for different state dimensions. As can
be observed, the reduction to Hessenberg or Schur form
have the clear consequence of reducing the computational
times, although the use of Hessenberg form led to smaller

execution times than using the Schur form. However since
these implementations are just prototype codes based on
general purpose sparse linear system solvers (thus without
explicitly exploiting the simplified BABD structure of the
linear systems to be solved), this timing results should not
be overemphasized.

n 30 60 120 300
FULL 0.047 0.27 1.7 23.64
GEPP 0.062 0.50 6.36 374.28
GEPP-H 0.047 0.20 2.0 63.0
GEPP-S 0.057 0.32 2.77 75.82
FAST 0.003 0.006 0.019 0.18

TABLE II
TIMING RESULTS FOR LARGE STATE DIMENSIONS (IN SECONDS)

V. DISCUSSION

We presented several methods to evaluate the frequency-
response of linear periodic discrete-time systems. Struc-
ture exploitation allows to compute more efficiently the
frequency-response for systems of large orders and/or large
periods. For standard systems, the method of reference is
Laub’s method [12] which has a computational complexity
of O(n3)+O(mn2)+O(pn2) for the preprocessing phase
and O(mn2) + O(pmn) for the evaluation for a single
frequency value. In the case of periodic systems, the TFM
of the lifted system is a (pN)× (mN) matrix. It follows
that the ideal computational complexity for the preprocess-
ing phase should be O(n3N)+O(mn2N2)+O(pn2N2).
This order of magnitude is practically achieved by all
presented methods, if we assume max(m, p) ≤ n for the
”fast” method where the term nmpN 2 is also present.
The extrapolated ideal computational complexity for the
evaluation phase should be O(mn2N)+O(pmnN2). This
complexity is achieved only by the ”fast” method, the rest
of methods having complexity terms of the form O(n3N)
and O(n2mN2). This difference in the computational
complexity is indirectly confirmed by the timing results
presented in the previous section.

In light of these considerations, for standard periodic
systems, the ”fast” method based on using the standard
lifted representation in conjunction with the standard Hes-
senberg approach appears to be a satisfactory algorithm
from the point of view of computational complexity. Note
however, that the generation of the lifted model requires
forming explicitly products of matrices, which, besides the
undesirable accumulation of roundoff errors, can lead for
large periods, to severe numerical difficulties (e.g., over-
flows). An important problem to be additionally considered
is how to monitor the conditioning of the linear systems
to be solved (to avoid ill-conditioned systems for certain
values of λ).

The Hessenberg, Schur and ”fast” methods for stan-
dard periodic systems can be extended to compute the
frequency-response of descriptor periodic systems, by em-
ploying appropriate preliminary similarity transformations.

More details on these approaches will be provided in a
companion paper (in preparation).

VI. ACKNOWLEDGMENTS

The work of the author has been performed in the
framework of the Swedish Strategic Research Foundation
Grant “Matrix Pencil Computations in Computer-Aided
Control System Design: Theory, Algorithms and Software
Tools”.

REFERENCES

[1] O. M. Grasselli and S. Longhi, “Finite zero structure of linear
periodic discrete-time systems,” Int. J. Systems Sci., vol. 22, pp.
1785–1806, 1991.

[2] R. A. Meyer and C. S. Burrus, “A unified analysis of multirate and
periodically time-varying digital filters,” IEEE Trans. Circuits Syst.,
vol. 22, pp. 162–168, 1975.

[3] O. M. Grasselli and S. Longhi, “Zeros and poles of linear periodic
discrete-time systems,” Circuits, Systems and Signal Processing,
vol. 7, pp. 361–380, 1988.

[4] P. Amodio, J. R. Cash, G. Roussos, R. W. Wright, G. Fairweather,
I. Gladwell, G. L. Kraut, and M. Paprzycki, “Almost block diagonal
linear systems: sequential and parallel solution techniques, and
applications,” Numerical Linear Algebra with Applications, vol. 7,
pp. 275–317, 2000.

[5] G. Fairweather and I.Gladwell, “Algorithms for almost block diag-
onal linear systems,” SIAM Review, vol. 46, pp. 49–58, 2004.

[6] G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore:
John Hopkins University Press, 1989.

[7] S. Wright, “A collection of problems for which gaussian elimination
with partial pivoting is unstable,” SIAM J. Scientific and Statistical
Computing, vol. 14, pp. 231–238, 1993.

[8] A. W. Bojanczyk, G. Golub, and P. Van Dooren, “The periodic
Schur decomposition. Algorithms and applications,” in Proceedings
SPIE Conference, F. T. Luk, Ed., vol. 1770, July 1992, pp. 31–42.

[9] A. Varga, “Balancing related methods for minimal realization of
periodic systems,” Systems & Control Lett., vol. 36, pp. 339–349,
1999.

[10] D. Kressner, “Numerical methods and software for general and
structured eigenvalue problems,” Ph.D. dissertation, TU Berlin,
Institut für Mathematik, Berlin, Germany, 2004.

[11] I. Duff, “Direct methods,” Technical report RAL-TR-1998-054,
Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX UK.,
1998. [Online]. Available: citeseer.ist.psu.edu/duff98direct.html

[12] A. J. Laub, “Efficient multivariable frequency response computa-
tions,” IEEE Trans. Automat. Control, vol. 26, pp. 407–408, 1981.

[13] A. Varga, “Computation of transfer functions matrices of periodic
systems,” Int. J. Control, vol. 76, pp. 1712–1723, 2003.

