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Abstract  

This contribution is concerned with the mathematical formulation and theoretical background of the Gersgorin�  
discs in the context of Radar Polarimetry. We consider strict radar backscattering, the monostatic case, character-
ised by the random Sinclair matrix S(t) in a common linear basis. Using the target feature vectors leads to the 
Hermitian positive semidefinite Covariance matrices, where the eigenvalues are obtained by unitarily diagonali-
zation. A special region G(A), called the Gersgorin�  discs and the associated boundaries denoted by 
Gersgorin� circles is considered to be of possible value in revealing information about the eigenvalues of a given 
Covariance matrices. We arrive at particular classes of easily computed regions in the plane that are guaranteed 
to include the eigenvalues of a given covariance matrix. 
 

1 Introduction 

We consider strict radar backscattering (the 
monostatic case) characterized by the random Sin-
clair matrix ( )S t  in the common linear { , }x y - ba-
sis  
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In the case of reciprocal backscattering the Sinclair 
matrix is symmetric xy yxS S= for a deterministic or 

point target and ( ) ( )xy yxS t S t=  for any instant of 
time or space for a reciprocal random target. A 
change of the orthonormal polarization basis in-
duces a unitary consimilarity transformation for 

( )S t . 
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This implies that the Sinclair matrix ( )S t  due to its 
symmetry can be condiagonalized for any instant of 
time by unitary consimilarity with the unitary ma-
trix ( )U t . This follows from Takagi’s theorem. 
There is, however, a unique unitary matrix only for 
point targets with a delta-type probability density 
function. We consider the backscatter case and omit 
the subscript. The standard target feature vector in 
the general case  are given by 
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The corresponding covariance matrices are given 
by 
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4 4 4( )C k t k= < >
G G

                 (4) 
 The covariance matrices are Hermitian positive 
semidefinite and can be diagonalized by general 
unitary similarity transformations with a certain 
4 4× unitary matrice V   
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With 11 2 3 4ˆ ˆ ˆ ˆ[ , , , ]V x x x x=  we obtain the eigen-
value/eigenvector equations                                                                   
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All the eigenvectors can be multiplied by arbitrary 
phase factors ˆ ˆexp( )i i ix j xφ→ . If all four eigenval-
ues are different there are four one-dimensional 4C  
invariant subspaces: Span( ˆix ), 1, ..., 4i = . The total 
number of invariant subspaces (including the zero 



subspace and the entire space 4C ) is 42 8= . These 
subspaces assumes a particularly simple form if the 
unitary similarity to the diagonal form 4Λ is used. 
Then 
 

4
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For backscattering  the space 4^  containing the 
general vectors 4 ( )k t

G
 is restricted to the subspace 

4
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 with 

( ) ( )xy yxS t S t= . For the covariance matrix this can 
be expressed in the form 
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where P  is a projector 2P P= . The projector P  
can be expressed in the following way: 
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B  is a 3 4×  matrix and hence has no inverse in the 
ordinary sense, The matrix B+  is the so-called 
Moore-Penrose inverse of B  and is characterized 
as the solution of the following equations 
 

and .BB B B B BB B+ + + += =       (11) 
 
Note that 3BB I+ = , the 3 3×  unit matrix. 
The operator B  is a transformation from 

4 Im P→^  with the properties 
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From the general bi-static scattering matrix 4C  we 
obtain for strict backscattering the singular matrix 
given by (14) 
This matrix can be decomposed as  
 

4, 4, 4,Re Imb b bC C j C= +                 (13) 
 
where 4,Re bC  is given by (15) and 4,Im bC  by (16). 

4,Re bC is symmetric and 4,Im bC  skew-symmetric. 
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This matrix operator acts in the restricted space 4

sC  
which is invariant with respect to the projector P . 
Hence we can write 
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or explicitly 
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Being a similarity transformation the matrices 4bC  

and 4bC�  have the same eigenvalues and the matrix 

4bC� h is also Hermitian positive semidefinite. Defla-
tion can be performed in any basis of the target fea-
ture vector. 
The 3 3× covariance matrix 3C  can thus be gener-
ated directly from the feature vector 
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by the standard definition 
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The unitary matrix T TU U⊗  has the form 
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and if  applied to a vector  
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This in particular applies to the standard target fea-
ture vector 4,bk

G
,  

i.e., the subspace 4

sC  is invariant under the unitary 
transformation T TU U⊗ . 
 
In general the unitary transformations that diago-
nalize the covariance matrices are not of the form 
of a polarimetric basis transformation, i.e., in gen-
eral 
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In the following we refer to some results contained 
in Horn and Johnson [1] and Varga [2] 
 
2 Gersgorin� disc Theorem 
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denote the deleted absolute row sums of A . Then 
all the eigenvalues of A  are located in the union of 
n discs 
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Furthermore, if a union of k of these n  forms a 
connected region that is disjoint from all the re-
maining n k−  discs then there are precisely k ei-
genvalues of A  in this region. 
 
The region ( )G A if often called the Gersgorin� re-
gion (for rows) of A ; the individual discs in 

( )G A are called Gersgorin� discs, and the bounda-
ries of these discs are called Gersgorin� circles. 
Since the matrices A and TA have the same eigen-
values, one can obtain a Gersgorin� disc theorem for 
columns by applying the Gersgorin� disc theorem 
to TA to obtain a region that contains the eigenval-
ues of A  and is specified in terms of deleted abso-
lute column sums 
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Corollary. If [ ]ij nA a M= ∈ , then all the eigenval-
ues of A are located in the union of n  discs 
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All eigenvalues of A  lie in the intersection 

( ) ( )TG A G A∩ . 
 
In the following we understand by C  covariance 
matrix SC . With the antenna transform 2U  and 
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The diagonal elements of 1
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unitary 4U  matrix form the diagonal matrix  
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In both cases for any matrix aC  and pC  we have 

for the sum of diagonal elements 
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This is the trace invariance of unitary transforma-
tions.  
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The matrices 2U  will be given in the form 
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where ρ  is the complex polarization ratio. Then  
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with 2 2det( ) 1U U⊗ = . These matrices form a true 
subgroup of the group of all unitary 4 4×  matrices 

4U  and depend only on the complex parameter ρ  
or on two real parameters for which we take the el-
lipticity angle ε  with 45 45ε− ≤ ≤

D D and the orienta-
tion angle θ  with 90 90θ− < ≤

D D . Since the set of 
these matrices 2U  is compact and all functions in-
volved are continuous then invoking the Weierstrss 
theorem the functions 2( )iR U assume a maximum 

and a minimum at maxρ  and minρ , respectively. 

Since the set 2 2( ) ( )U Uρ ρ⊗  is only a subset of 

4U  we have in general  
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These minima are best determined numerically for 
any given covariance matrix. 
The precise relationship between the main diagonal 
elements and the eigenvalues is given by the notion 
of majorization, see Horn and Johnson [1] 
 
 
3 Conclusions 

 
The Gersgorin�  disc theorem is presented and 
adopted to the covariance matrices used in radar 
polarimetry, where the theorem shows potential to 
allow for target identification and classification 
which has to be further investigated.  
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