374-00 November 2000

Mode Transition Behavior in Hybrid Dynamic Systems

P.J. Mosterman

Vortrag
Mathematical Modeling of Open Dynamical Systems, 21.-23.09.00, Enschede

DLR Oberpfaffenhofen Deutsches Zentrum für Luft- und Raumfahrt e.V. Institut für Robotik & Mechatronik Entwurfsorientierte Regelungstechnik D-82234 Wessling

Mode Transition Behavior in Hybrid Dynamic Systems

Pieter J. Mosterman Institute of Robotics and Mechatronics DLR Oberpfaffenhofen Germany

at Marfelons of Onni Denational

Institute of Robotics and Machatronic

1

Introduction

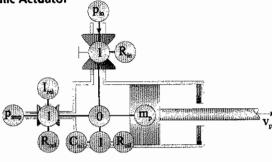
Mode Transitions in Hybrid Models of Physical Systems

- hybrid because
 - · continuous, differential equations
 - · discrete, finite state machine
- overview of phenomena involved

Illustrated by Hydraulic Actuator Used for Aircraft Attitude Control Surfaces

control Determent Notion

Institute of Robotics and Mechatronics



Modeling of Physical Systems

Ideal Picture Model (Schematic) Identify Behavioral Phenomena

For Example, A Hydraulic Actuator

Institute of Pohotics and Machetroples

4

Equation Generation

Compile Constituent Equations

 $\begin{array}{ll} \bullet & R_{in} & f_{in}R_{in} = p_{Rin} \\ \bullet & R_{oil} & f_{R}R_{oil} = p_{Roil} \\ \bullet & C_{oil} & C_{oil}\dot{p}_{C} = f_{R} \\ \bullet & m_{p} & m_{p}\dot{v}_{p} = A_{p}p_{cyl} \end{array}$

• R_{rel}^r $f_{rel}R_{rel} = p_{rel}$ • I_{rel} $I_{rel}f_{rel} = p_{rel}$

 $\begin{array}{ll} \bullet & \theta_{\rm r} \ {\rm cylinder} \ {\rm chamber} & v_p = f_{\it in} + f_{\it rel} \\ \bullet & I_{\rm r} \ {\rm relief} \ {\rm flow} \ {\rm pipe} & p_{\it rel} = p_{\it smp} - f_{\it rel} R_{\it rel} + p_{\it cyl} \\ \end{array}$

• 1, intake pipe $p_{Rin} = p_{in} - p_{cyl}$ • 1, oil compression $p_{Roil} = p_{oil} - p_C$

Institute of Robotics and Mechatronics

Equation Processing

Before Simulation

- the number of equations is reduced
 - · substitution/elimination
- equations are sorted
 - · each equation computes one variable
- equations are solved
 - · high index problems may require differentiation of certain equations

Institute of Robotics and Marketronia

5

Hybrid Behavior

Introduce Valves

- make highly nonlinear behavior piecewise linear
 - intake valve if v_{in} then $p_{Rin} = p_{in} p_{cyl}$ else $f_{in} = 0$
 - relief valve if v_{rel} then $p_{rel} = p_{smp} f_{rel}R_{rel} + p_{cyl}$ else $f_{rel} = 0$

Switching Between Modes of Continuous Behavior

- intake valve, v_{in} , external switch (control law)
- ightharpoonup relief valve, $v_{rel'}$ autonomous switch triggered by physical quantities

$$v_{rel} = p_{cyl} > p_{th}$$

different sets of equations

Insitute of Robotics and Machetronics

Computational Causality

When Switching Equations

- computational causality may change
 - re-ordering
 - re-solving

Example

when the intake valve closes, equations change

• from
$$p = p - p_{cyl}$$

• to $f_{in} = 0$

- therefore, in this equation
 - p_{Rin} becomes unknown
 - f_m becomes known

Insitute of Robotics and Mechatronics

Implicit Modeling

Deal With Causal Changes Numerically

Valve Behavior

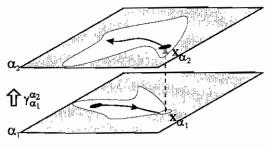
- residue on f_m $0 = if v_{in}$ then $-p_{Rin} + p_{in} p_{cyl}$ else f_{in}
- residue on f_{rel} $0 = if v_{rel} then p_{rel} + p_{smp} f_{rel}R_{rel} + p_{cyl} else f_{rel}$

Implicit Numerical Solver (e.g., DASSL)

designed to handle this formulation

of Open Dynamical Springs

Insitute of Robotics and Mechatronics



Hybrid Dynamic Behavior

Geometric View

- modes of continuous, smooth, behavior
- patches of admissible state variable values

institute of Robotics and Mechatronics

Specification Parts

Hybrid Behavior Specification

lacksquare a function, $f_{\rm r}$ that defines continuous, smooth, behavior for each mode

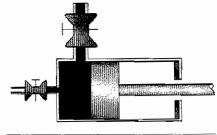
$$f_{\alpha_i}: E_{\alpha_i}\dot{x} + A_{\alpha_i}x + B_{\alpha_i}u = 0$$

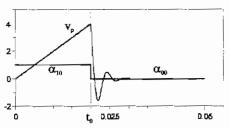
an inequality, 7, that defines admissible state variable values

$$\gamma_{\alpha_i}^{\alpha_{i+1}}: C_{\alpha_i} x + D_{\alpha_i} u \ge 0$$

deling of Opea Dynamical System

Insitute of Robotics and Mechatronic


Dynamics


Behavior Characteristics

- Co, i.e., no jumps in state variables
- steep gradients

Example

 when the intake valve closes, piston velocity quickly reduces to 0

Institute of Robotics and Mechatronia

4

The Next Step

Remove Steep Gradients

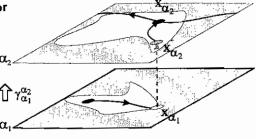
• e.g., singular perturbation

Algebraic Constraints Between State Variables

- high index systems
- subspace with admissible (continuous) dynamic behavior
- discontinuities (jumps) in state behavior

pey Dynamical Systems

Insitute of Robotics and Mechatronics



Hybrid Dynamic Behavior - Refined

Geometric View

- modes of continuous, smooth, behavior
- patches of admissible state variable values

manifold of dynamic behavior

13

Specification Parts

Hybrid Behavior Specification

- a function, f, that implicitly defines for each mode
 - · continuous, smooth, behavior
 - · state variable value jumps

$$f_{\alpha_i}: E_{\alpha_i}\dot{x} + A_{\alpha_i}x + B_{\alpha_i}u = 0$$

- an inequality, γ , that defines admissible generalized state variable values $\gamma_{\alpha_i}^{\alpha_{i+1}}: C_{\alpha_i} x + D_{\alpha_i} u \geq 0$
- for explicit reinitialization (semantics of x)

$$f_{\alpha_i}: E_{\alpha_i}\dot{x} + A_{\alpha_i}x + B_{\alpha_i}^u u + B_{\alpha_i}^x x^- = 0$$

Insitute of Robotics and Mechatronics

Handling of Systems With High Index

DASSL Handles Index 2 Systems

implicit formulation for continuous behavior

Requires Consistent Initial Conditions When Mode Changes Occur

- compute from implicit formulation to make jump space (projection) explicit
- for example, sequences of subspace iteration
 - space of dynamic behavior: Vⁿ⁻¹ = A⁻¹ E Vⁿ, V⁰ = Rⁿ
 - jump space: $T^{n+1} = E^{-1} A T^n$, $T^0 = \{0\}$
- or, decomposition in (pseudo) Kronecker Normal Form

Incitate of Bobotics and Machatra-i-

1

Projections

Linear Time Invariant Index 2 System

derive pseudo Kronecker Normal Form (numerically stable)

$$\begin{bmatrix} E_{11} & 0 & 0 \\ 0 & 0 & E_{22,12} \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{x}_f \\ \dot{x}_{i,1} \\ \dot{x}_{i,2} \end{bmatrix} + \begin{bmatrix} A_{11} & A_{12,1} & A_{12,2} \\ 0 & A_{22,11} & A_{22,12} \\ 0 & 0 & A_{22,22} \end{bmatrix} \begin{bmatrix} x_f \\ x_{i,1} \\ x_{i,2} \end{bmatrix} + \begin{bmatrix} B_1 \\ B_{2,1} \\ B_{2,2} \end{bmatrix} u = 0$$

after integration (no impulsive input behavior), consistent values are

$$x_{f} = x_{f}^{-} - E_{11}^{-1} A_{12,1} A_{22,11}^{-1} E_{22,12} (x_{i,2} - x_{i,2}^{-})$$

$$x_{i,1} = A_{22,11}^{-1} (-B_{2,1} u + E_{22,12} \dot{x}_{i,2}) - A_{22,12} x_{i,2}$$

$$x_{i,2} = -A_{22,22}^{-1} B_{2,2} u$$

Insitute of Robotics and Mechatronics

The Hydraulic Actuator

Generalized State Jumps for Each Mode

Mode	Projection
α ₀₀	$f_{rel} = 0$
	$v_p = 0$
$\alpha_{_{01}}$	$v_p = (m_p v_p - I_{rel} f_{rel})/(m_{rel} + m_p)$ $f_{rel} = (m_p v_p - I_{rel} f_{rel})/(m_{rel} + m_p)$
α,,,	$egin{aligned} v_p &= v_p \ f_{rel} &= 0 \end{aligned}$
α,,	$egin{aligned} olimits_p &= olimits_p \\ f_{rel} &= f_{rel} olimits_p ol$

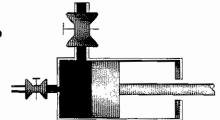
g of Open Oymerskill

Insitute of Robotics and Mechatronic

17

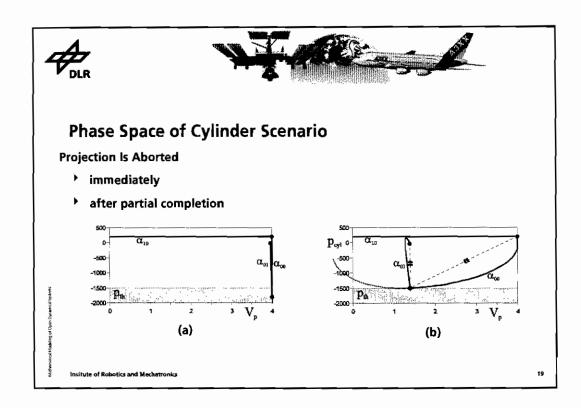
A Scenario

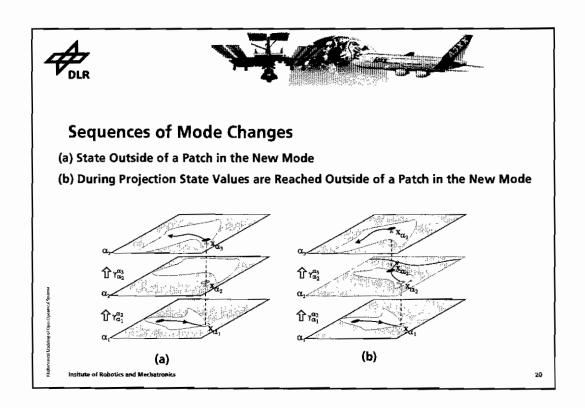
Intake Valve Is Open


piston starts to move

Intake Valve Closes

- piston inertia causes pressure build-up
- pressure reaches critical value


Relief Valve Opens


cylinder pressure decreases

⇒ Interaction Between Mode Transition Behavior

Institute of Robotics and Mechatronics

Impulses

High Index Systems May Contain Impulsive Behavior

- in case of the hydraulic cylinder, $p > p_{gh}$ would always hold if not $v_p = v_p$
- unknown where the patch is abandoned

In-Depth Analysis of Switching Conditions

- solve for required x(t)
- compute earliest $t = t_s$ at which $\gamma(x(t), u(t), t) \ge 0$
- substitute t_s to compute x(t)

Complex Switching Structure

Additional Difficulty When Interacting Fast Transients (e.g., collision)

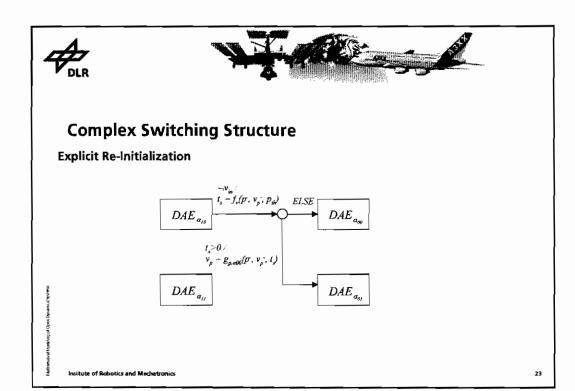
Insitute of Robotics and Mechatronic

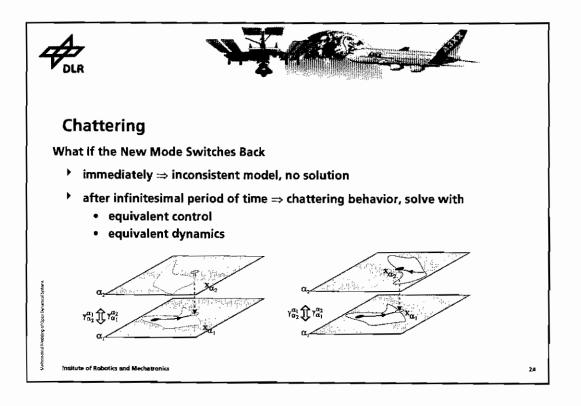
,

Detailed Analysis of the Projection

Cylinder Example (Imaginary Eigenvalues, $\lambda = \lambda_r + i \lambda_i$)

- from detailed model
 - solve for p

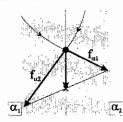

$$p(t) = e^{\lambda_{\tau}t} \left(p^{-} \cos(\lambda_{i}t) - \frac{1}{\lambda_{i}} \left(\frac{1}{C_{1}} v_{p}^{-} + \lambda_{\tau} p^{-} \right) \sin(\lambda_{i}t) \right)$$


• substitute t at which $p(t) > p_{th}$

$$v_{p} = e^{\lambda_{r}t_{s}}(v_{p}^{-}\cos(\lambda_{i}t) - (\frac{R_{2}}{I_{1}}v_{p}^{-} - \frac{p_{1}}{I_{1}} + \lambda_{r}v_{p}^{-})\frac{\sin(\lambda_{i}t_{s})}{\lambda_{i}})$$

Insitute of Robotics and Mechatroni

..



Equivalent Dynamics

Chattering

- fast component
 - remove
- slow component
 - weighted mean of instantaneous vector fields (Filippov Construction)
- sliding behavior

Institute of Robotics and Machatronics

25

Ontology

Phase Space Transition Behavior Classification

- mythical (state invariant)
- pinnacle (state projection aborted)
- continuous
 - interior (continuous behavior)
 - boundary (further transition after infinitesimal time advance)
 - sliding (repeated transitions after each infinitesimal time advance)

Combinations of Behavior Classes

Institute of Robotics and Mechatronics

Conclusions

Mode Transition Behavior

- Rich
- Complex

Requires

- > special algorithms/computations
- model verification analyses

How to Efficiently Generate Behavior (e.g., for Real-time Applications)?

Insitute of Robotics and Mechatronic