NICONET Report 1999-8

Model Reduction Routines for SLICOT!

Andras Varga?

December 1999

!This document presents research results of the European Community BRITE-EURAM III
Thematic Networks Programme NICONET (contract number BRRT-CT97-5040) and is
distributed by the Working Group on Software WGS. WGS secretariat: Mrs. Ida Tassens,
ESAT - Katholieke Universiteit Leuven, K. Mercierlaan 94, 3001-Leuven-Heverlee, BEL-
GIUM. This report is also available by anonymous ftp from wgs.esat.kuleuven.ac.be in the

directory pub/WGS/REPORTS/nic1999-8.ps.Z
?Deutsches Zentrum fiir Luft und Raumfahrt, Institut fiir Robotik und Mechatronik, DLR

Oberpfaffenhofen, Postfach 1116, D-82230 Wessling, Germany






Contents

1 Introduction 1
2 Selection and collation of subroutines for standardization 1
2.1 Overview of balancing related model reduction methods . . . . ... .. .. ... 1
2.2 Algorithms for stable and unstable system . . . . . .. .. ... ... ....... 3
2.3 Standardization of software for model reduction . . . . . . .. ... .00 )
2.4 Additional software tools for model reduction . . . . . . . ... ... ... .. 7
3 Integration of subroutines in user-friendly environments 7
3.1 Integration in MATLAB . . . . . . . . . .. ... .
3.2 Imtegration in Scilab . . . . . .. ... 9
4 Selection of benchmark problems, testing and performance comparisons 9
4.1 PS: Power system model — continuous-time. . . . . ... ... ... 0oL 10
4.2 PSD: Power system model — discrete-time. . . . . . .. ... ... oL 12
4.3 TGEN: Nuclear plant turbo-generator model. . . . . . ... ... ... ...... 12
4.4 PSU: Unstable continuous-time model. . . . . . . . ... ... .. ... .. ... 13
4.5 ACT: Actuator model . . . . . . . .. .. .. 13
4.6 Randomly generated systems . . . . . ... .. L oo 14
4.7 Further test problems. . . . . . . . .. . Lo 15
5 Testing on industrial benchmark problems and comparisons with currently
used software 15
5.1 Industrial benchmark problems . . . . . . . ... ... ... . o oL 15
5.1.1 ATTAS: Linearized aircraft model . . . . . ... ... ... ... ..... 16
5.1.2  CDP: CD-player finite element model . . . . . .. ... .. ... .. ... 17
5.1.3 GAS: Gasifiermodel . . . . . . ..o 18
5.2 Comparison with other packages . . . . . . . ... ... ... ... ... ..., 19
5.2.1 Model reduction tools in ANDECS. . .. ... ... ... ......... 19
5.2.2  Model reduction tools in MATLAB Control Toolbox V4.2. . . . . . .. .. 20
5.2.3 Model reduction tools in MATLAB Robust Control Toolbox V2.0 . ... 20
5.2.4 Model reduction tools in MATLAB p-Analysis and Synthesis V3.0 . . . . 21
5.2.5 Model reduction tools in MATRIX x Model Reduction Module . . . . .. 21

5.2.6  Other available model reduction tools . . . . . . . . . . ... ... .... 21



Summary of achieved results and perspectives

List of standardized model reduction routines

List of standardized routines related to model reduction
MATLAB interface to model reduction routines

Sample MATLAB m-function for B&T model reduction
Sample Scilab sci-function for B&T model reduction

Benchmark problems for model reduction

F.1 State space matrices of the PSmodel . . . . . . . .. .. ... ... ...
F.2 State space matrices of the PSD model . . . . . . .. ... ... ... ..
F.3 State space matrices of the TGEN model . . .. .. ... ... .....
F.4 State space matrices of the ACT model . . ... ... ... .......

Summary of comparisons of available model reduction tools

Preamble of ABO9MD.F used for automatic documentation

ii

22

25

26

28

29

31

32
32
33
34
35

36

37



1 Introduction

Model reduction is of fundamental importance in many modeling and control applications. How-
ever, reliable and high quality model reduction software tools are scarce. Even the model reduc-
tion tools available in commercial packages have strong limitations because using inappropriate
algorithms or poor software implementations. The lack of good general purpose model reduc-
tion software was the motivation to develop with the highest priority a dedicated chapter of
SLICOT library for model reduction. The standardization of model reduction tools on basis of
the collection of routines available in the RASP-MODRED library [19] was the main objective
of Task II.A. This document reports on the main developments of model reduction software for
SLICOT within this task.

Three basic model reduction algorithms belonging to the class of methods based on or related
to balancing techniques [13, 10, 6] form the basis of model reduction software in SLICOT. These
methods are primarily intended for the reduction of linear, stable, continuous- or discrete-time
systems. They rely on guaranteed error bounds and have particular features which recom-
mend them for use in specific applications. The basics of balancing related model reduction
is presented in Section 2. Specific computational methods for reduction of stable systems and
associated software available in SLICOT are presented in Section 3. Section 4 discuss the model
reduction of unstable system by combining the basic methods either with coprime factorization
or with spectral decomposition techniques [9]. Available SLICOT software for reduction of un-
stable systems is also described here. Section 5 presents new SLICOT routines implemented in
conjunction with the model reduction software, while Section 6 presents available model reduc-
tion software running in user-friendly environments (MATLAB,Scilab) implemented on basis
of SLICOT routines. Performance comparisons shows the superiority of SLICOT based model
reduction tools over existing model reduction software.

2 Selection and collation of subroutines for standardization

The basis for developing the model reduction software for SLICOT was the SLICOT Working
Note SLWN 2-1998!, describing the selection of model reduction routines to be standardized.
For concrete needs of model reduction algorithms, a selection of related software has been also
performed as part of standardization activity within Task I.A.1. In this section we present an
overview of implemented model reduction approaches using enhanced accuracy techniques, and
of the performed standardization activities.

2.1 Overview of balancing related model reduction methods

Three basic model reduction algorithms belonging to the class of methods based on or related
to balancing techniques [13, 10, 6] form the basis of model reduction software in SLICOT. These
methods are primarily intended for the reduction of linear, stable, continuous- or discrete-time
systems. They rely on guaranteed error bounds and have particular features which recommend
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them for use in specific applications. In what follows we present succinctly the main features of
balancing related model reduction.

Consider the n-th order original state-space model G := (A, B,C, D) with the transfer-
function matriz (TFM) G(\) = C(\I — A)™'B + D, and let G, := (A, B,,C,, D,) be an r-th
order approximation of the original model (r < n), with the TFM G, = C,.(A\ — A,) ' B, + D,..
A large class of model reduction methods can be interpreted as performing first a similarity
transformation Z yielding

Z'AZ | Z'B An Aw | B
7 ‘ o) = | Aoy Axn | B |,
¢, Cp|D

and then defining the reduced model (A,, B, C,, D,) as the diagonal system (A1, By, C1, D).
When writing Z := [T U] and Z~! := [LT VT]T then Il = TL is a projector on T along L
since LT = I,. Thus the reduced system is (A,, By, C,, D,) = (LAT, LB, CT, D). Partitioned
forms as above can be used to construct a so-called singular perturbation approzimation (SPA).
The matrices of the reduced model in this case are given by

Ay = Ap+ Apa(yI — Ag) LAy,

B, = B;+ Alg(’)’f — A22)_IBQ, (1)
Cy + Co(yI — Ago) ' Agy,

D, = D+ 02(")/1 — A22)71B2.

[e
I

where v = 0 for a continuous-time system and v = 1 for a discrete-time system. Note that SPA
formulas preserve the DC-gains of stable original systems.

Specific requirements for model reduction algorithms are formulated and discussed in [24].
Such requirements are: (1) applicability of methods regardless the original system is minimal
or not; (2) emphasis on enhancing the numerical accuracy of computations; (3) relying on
numerically reliable procedures.

The first requirement can be fulfilled by computing L and T directly, without determining
Z or Z 1. In particular, if the original system is not minimal, then L and T can be chosen to
compute an ezact minimal realization of the original system [18].

The emphasis on improving the accuracy of computations led to so-called algorithms with
enhanced accuracy. In many model reduction methods, the matrices L and T are determined
from two positive semi-definite matrices P and @, called generically gramians. The gramians
can be always determined in Cholesky factorized forms P = STS and Q = RTR, where S and
R are upper-triangular matrices. The computation of L and T can be done by computing the
singular value decomposition (SVD)

SR = [ Uy U, ]diag(zlvz2) [ Vi Ve ]T

where
21 :diag(al,...,or), Egzdiag(0r+1,...,0n),

and 01 > ... > 0p > 0py1 > ... > 0y > 0 are the Hankel singular values of the system.



The so-called square-root (SR) methods determine L and T as [16]
L=x;"?VI'R,  T=5"U%,"%

If r is the order of a minimal realization of G then the gramians corresponding to the resulting
realization are diagonal and equal. In this case the minimal realization is called balanced. The
SR approach is usually very accurate for well-equilibrated systems. However if the original
system is highly unbalanced, potential accuracy losses can be induced in the reduced model if
either L or T is ill-conditioned.

In order to avoid ill-conditioned projections, a balancing-free (BF) approach has been pro-
posed in [15] in which always well-conditioned matrices L and T can be determined. These
matrices are computed from orthogonal matrices whose columns span orthogonal bases for the
right and left eigenspaces of the product PQ corresponding to the first r largest eigenvalues

2 2

07,...,0;. Because of the need to compute explicitly P and () as well as their product, this

approach is usually less accurate for moderately ill-balanced systems than the SR approach.

A balancing-free square-root (BFSR) algorithm which combines the advantages of the BF
and SR approaches has been introduced in [18]. L and T are determined as

L=xTx)"vT, T=X,

where X and Y are n X r matrices with orthogonal columns computed from the QR decomposi-
tions STU; = XW and R"V; = Y Z, while W and Z are non-singular upper-triangular matrices.
The accuracy of the BFSR algorithm is usually better than either of SR or BF approaches.

The SPA formulas can be used directly on a balanced minimal order realization of the original
system computed with the SR method. A BFSR method to compute SPAs has been proposed
in [17]. The matrices L and T are computed such that the system (LAT, LB, CT, D) is minimal
and the product of corresponding gramians has a block-diagonal structure which allows the
application of the SPA formulas.

Provided the Cholesky factors R and S are known, the computation of matrices L and T
can be done by using exclusively numerically stable algorithms. Even the computation of the
necessary SVD can be done without forming the product SRT. Thus the effectiveness of the
SR or BFSR techniques depends entirely on the accuracy of the computed Cholesky factors of
the gramians. In the following sections we discuss the computation of these factors for several
concrete model reduction approaches.

2.2 Algorithms for stable and unstable system

In the Balance & Truncate (B&T) method for stable systems [13] P and @ are the controllability
and observability gramians satisfying a pair of continuous- or discrete-time Lyapunov equations

AP+ PAT + BB =0, ATQ+QA+CTC =0;

APAT + BBT =P, ATQA+CTC =qQ.

These equations can be solved directly for the Cholesky factors of the gramians by using numer-
ically reliable algorithms proposed in [7]. The BFSR version of the B&T method is described



in [18]. Its SR version [16] can be used to compute balanced minimal representations. Such
representations are also useful for computing reduced order models by using the SPA formulas
[10] or the Hankel-norm approzimation (HNA) method [6]. A BFSR version of the SPA method
is described in [17]. Note that the B&T, SPA and HNA methods belong to the family of absolute
error methods which try to minimize ||A,||~, where A, is the absolute error A, = G — G,.. For
an r-th order approximation, we have generally

n
1G=Grlo<2 S o
k=r+1

In case of optimal HNA method, the optimum G, achieves
inf||G — Gy ||lg = or41

and even a feedtrough matrix D, can be chosen (see [6] for details) such that the error bound is
one half of the bound for B&T and SPA. This feature is however not available in the implemented
SLICOT routine for HNA.

The reduction of unstable systems can be performed by using the methods for stable systems
in conjunction with two embedding techniques. The first approach consists in reducing only the
stable projection of G and then including the unstable projection unmodified in the resulting
reduced model. The following is a simple procedure for this computation:

1. Decompose additively G as G = G1 + G, such that G1 has only stable poles and G2 has
only unstable poles.

2. Determine (1., a reduced order approximation of the stable part G;.

3. Assemble the reduced model G, as G, = G, + Go.

Note that for the model reduction at step 2 any of methods available for stable systems can be
used.

The second approach is based on computing a stable rational coprime factorization (RCF)
of G. The following procedure can be used to compute an r-th order approximation G, of an
n-th order (not necessarily stable) system G:

1. Compute a left coprime factorization of the transfer-function matrix G in the form G =
M~'N, where M, N are stable and proper rational TFMs.

2. Approximate the stable system of order n [N M | with [ N, M, ] of order r.

3. Form the r-th order approximation G, = M, "' N,.

The coprime factorization approach used in conjunction with the B&T or BST methods fits in
the general projection formulation introduced in Section 2. The gramians necessary to compute
the projection are the gramians of the system [ N M |. The computed matrices L and T by using
either the SR or BFSR methods can be directly applied to the matrices of the original system.
The main computational problem is how to compute the RCF to allow a smooth and efficient



embedding which prevents computational overheads. Two factorization algorithms proposed
recently compute particular RCFs which fulfill these aims: the RCF with prescribed stability
degree [20] and the RCF with inner denominator [21]. Both are based on a numerically reliable
Schur technique for pole assignment. The state matrix of the resulting factors is already in a real
Schur form, thus the method has no overhead if the system is already stable since this reduction
is always necessary even for stable systems. Note that the approximations computed for the
factors of a coprime factorization with inner denominator by using the SPA method preserve
these property also at the level of the reduced factors.

2.3 Standardization of software for model reduction

The basis for standardization of the model reduction routines in SLICOT formed the collection
of routines available in the RASP-MODRED library [19], implemented on basis of the linear
algebra standard package LAPACK [1]. The underlying algorithms represent the latest devel-
opments of various procedures for solving computational problems appearing in the context of
model reduction. Most algorithms possess desirable attributes as generality, numerical reliabil-
ity, enhanced accuracy, and thus are completely satisfactory to serve as bases for robust software
implementations. Although most of new SLICOT routines originate of RASP-MODRED soft-
ware, all routines have been practically rewritten and some of them are even completely new
implementations. A special emphasis has been put on an appropriate modularization of rou-
tines, such that a set of three low level routines forms practically the basis for all user callable
routines. It is worth mentioning that the available model reduction algorithms in SLICOT li-
brary are generally superior to those implemented in the model reduction tools of commercial
packages [11, 3, 2, 12].

Both the SR and BFSR versions of the B&T and SPA algorithms are implemented in SLI-
COT library. The implementation of the HNA method uses the SR version of the B&T method
to compute a balanced minimal realization of the original system. All implemented routines are

applicable to both continuous- and discrete-time systems. Note that implementations provided
in commercial software [11, 3, 2, 12] are mostly for continuous-time systems (see Appendix G).

The following routines are available in SLICOT for stable model reduction:

Name Function

ABO9AD | computes reduced (or minimal) order balanced models using either the SR or
the BFSR B&T method

ABO09AX | computes reduced (or minimal) order balanced models using either the SR or
the BFSR B&T method (scaled system with state matrix in real Schur form)
ABO9BD | computes reduced order models using the BFSR SPA method

ABO09BX | computes reduced order models using the BFSR SPA method (scaled system
with state matrix in real Schur form)

ABO9CD | computes reduced order models using the optimal HNA method based on SR
balancing

ABO09CX | computes reduced order models using the optimal HNA method based on SR
balancing (scaled system with state matrix in real Schur form)

ABO9DD | computes a reduced order model by using the singular perturbation formulas




Three user callable routines AB09AD, AB09BD and ABO9CD implement the three basic
algorithms for B&'T, SPA and HNA methods, respectively. All these routines perform optionally
scaling of the initial system. Each of routines handles both continuous-time as well as discrete-
time systems. For implementing the discrete-time HNA method, bilinear continuous-to-discrete
transformation techniques have been employed. Three lower level routines ABO9AX, AB0O9BX
and AB09CX perform basically the same reductions as the main user callable routines, but for
systems with the state matrix already reduced to the real Schur form and possibly already scaled.
These lower level routines are called by the corresponding user-callable routines for reduction of
both stable and unstable systems.

SLICOT provides several tools to perform the reduction of unstable system. On basis of new
routines to compute left/right RCFs with prescribed stability degree or with inner denomina-
tors, or to compute additive spectral decompositions (see next paragraph), several user callable
routines have been implemented for reduction of unstable systems. A modular implementation
allowed flexible combinations between various factorization/decomposition and model reduction
methods for stable systems.

The following routines are available to perform model reduction of unstable systems:

Name Function

ABO9ED | computes reduced order models for unstable systems using the optimal HNA
method in conjunction with additive stable/unstable spectral decomposition
ABO9FD | computes reduced order models for unstable systems using the BFSR B&T
method in conjunction with left/right coprime factorization methods
ABO09GD | computes reduced order models for unstable systems using the BFSR SPA
method in conjunction with left /right coprime factorization methods

ABO9MD | computes reduced order models for unstable systems using the B & T method
in conjunction with additive stable/unstable spectral decomposition
ABOIND | computes reduced order models for unstable systems using the SPA method
in conjunction with stable/unstable additive spectral decomposition

The routines ABO9ED, ABO9IMD and ABOIND implement the spectral separation approach
in combination with HNA, B&T, and SPA methods, respectively. They provide an additional
flexibility by allowing to specify an arbitrary stability boundary inside the standard stability
regions (continuous or discrete). The dominant part of the system having poles only in the
"unstable” region is retained in the reduced model, and only the ”stable” part is approximated.
This leads to an effective combination of balancing methods with the dominant modal reduction
(see also [23]). The coprime factorization based routines ABOJFD and AB09GD allows arbitrary
combinations of B&T and SPA methods, respectively, with four types of coprime factorizations.

It is important to emphasize that the model reduction routines for unstable systems can be
applied with practically no efficiency loss to reduce stable systems too. Thus, these routines
can be seen as completely general universal tools for order reduction of linear time-invariant
systems. This is why they form the basis to implement the interface software to user-friendly
environments (see Section 3).



2.4 Additional software tools for model reduction

An important number of user-callable and auxiliary routines have been implemented for the
special needs of the model reduction routines. To evaluate the approximation errors for the
resulting reduced order models, different transfer matrix norms are necessary to be computed.
The following routines have been implemented for computing system norms:

Name Function

AB13AD | computes the Hankel norm and the Hankel singular values of the stable pro-
jection of a transfer-function matrix

AB13AX | computes the Hankel norm of a stable system with the state matrix in real
Schur form

AB13BD | computes the Hs- or Lo-norm of a transfer-function matrix

A routine to compute the H, norm is presently in standardization.

Several factorization and decomposition routines of transfer matrices have been also imple-
mented for the special needs of model reduction routines for unstable systems:

Name Function

TBO1KD | computes the terms G; and G2 of an additive spectral decomposition of a transfer-
function matrix G with respect to a specified region of the complex plane

SBO8CD | computes the state-space representations of the factors of a left coprime factorization
with inner denominator

SBOSDD | computes the state-space representations of the factors of a right coprime factoriza-
tion with inner denominator

SBOSED | computes the state-space representations of the factors of a left coprime factorization
with prescribed stability degree

SBOSFD | computes the state-space representations of the factors of a right coprime factoriza-
tion with prescribed stability degree

SBO8GD | computes the state-space representation corresponding to a left coprime factorization

SBOSHD | computes the state-space representation corresponding to a right coprime factoriza-
tion

A complete list of implemented auxiliary routines for the needs of model reduction is given in
Appendix B.

3 Integration of subroutines in user-friendly environments

One of the main objectives of the NICONET project is to provide, additionally to standardized
Fortran codes, high quality software embedded into user-friendly environments for computer
aided control system design (CACSD). Two target environment have been envisaged: the popular
commercial numerical computational environment MATLAB and the public domain MATLAB-
like environment Scilab. Both allows to easily add external functions implemented in general
purpose programming languages like C/C++ or Fortran. In case of MATLAB, the external



functions are called mez-functions and have to be programmed according to precise programming
standards. In Scilab, external functions can be similarly implemented and only several minor
modifications were necessary to the MATLAB mez-functions to use them in Scilab. It is to be
expected that generally MATLAB mez-functions could serve a starting points for other similar
environments (e.g., Matrixx).

3.1 Integration in MATLAB

One important consideration implementing mez-functions is to keep their total size as small as
possible. Since the standardized model reduction programs in SLICOT share many routines from
BLAS, LAPACK and even from SLICOT, it was decided to implement a single function covering
all model reduction functionality provided in SLICOT. The mez-function for model reduction
is called sysred and provides interface to the model reduction routines ABO9MD, ABOIND,
ABO9ED, ABO9FD, AB0O9GD for reduction of stable/unstable linear systems using the B&T,
SPA and HNA methods in conjunction with stable coprime factorization and stable/unstable
spectral decomposition. The MATLAB help function of this function is listed in Appendix C.

To provide a convenient interface to work with control objects defined in the Control Toolbox,
several easy-to-use interface functions have been additionally implemented explicitly addressing
some of supported features. The following table contains the list of implemented m-functions.
A sample m-function, bta.m, is listed in Appendix D.

Table 1: MATLAB m-functions for model reduction

Name Function

bta for balancing-free square-root B & T method in combination with sta-
ble/unstable additive spectral decomposition

btabal for square-root B & T method in combination with stable/unstable additive
spectral decomposition

bta_cf for balancing-free square-root B & T method in combination with stable

left /right coprime factorizations
btabal_cf | for square-root B & T method in combination with stable left/right coprime

factorizations

spa for balancing-free square-root SPA in combination with stable/unstable ad-
ditive spectral decomposition

spabal for square-root SPA in combination with stable/unstable additive spectral
decomposition

spa_cf for balancing-free square-root SPA in combination with stable left/right co-

prime factorizations

spabal_cf | for square-root Singular Perturbation Approximation in combination with sta-
ble left /right coprime factorizations

hna for HNA in combination with stable/unstable additive spectral decomposition




3.2 Integration in Scilab

The Scilab interface has been realized in such a way to be mostly compatible with the MATLAB
interface. In particular, the names of the mex-files and m-files are the same. The source code of
the mex files can be used nearly as it is. The only significant difference is that we have chosen,
for portability reasons, not to make use of the Fortran 90 ”ALLOCATE” function. This choice
implies that the needed variables are allocated into Scilab internal stack. To be more specific,
here is the modified sequence in the source code for sysred.f:

C

C Allocate variable dimension local arrays.

C !Fortran 90/95

C ALLOCATE ( A( LDA, MAX( 1, N ) ), B( LDB, MAX( 1, M ) ),

C $ C( LDC, MAX( 1, N ) ), D( LDD, MAX( 1, M) ),

C $ DWORK( LDWORK ), HSV( MAX( 1, N ) ),

C $ IWORK( MAX( 1, 2%N, M ) ) )

C

C Copy inputs from MATLAB workspace to locally allocated arrays

C !'Fortran 77

C
if( .not.createvar( rhs+1, ’d’, LDA, MAX(1,N), ptrA ) ) return
if( .not.createvar( rhs+2, ’d’, LDB, MAX(1,M), ptrB ) ) return
if( .not.createvar( rhs+3, ’d’, LDC, MAX(1,N), ptrC ) ) return
if( .not.createvar( rhs+4, ’d’, LDD, MAX(1,M), ptrD ) ) return
if( .not.createvar( rhs+5, ’d’, 1, LDWORK, ptrDWORK ) ) return

if( .not.createvar( rhs+6, ’d’, 1, MAX(1,N), ptrHSV ) ) return
if( .not.createvar( rhs+7, ’i’, 1, MAX(1,2*N,M), ptrIWORK ) ) return

Then the variables are referred to by their position into the Scilab internal stack, e.g., A should
be replaced by stk(ptrA) and the integer array IWORK by stk (ptrIWORK).

These minor modifications allow the use of a standard Fortran 77 compiler such as £2c or
g77. The MATLAB m-files also require some modification to follow the Scilab syntax. As an
illustration, in Appendix E is the Scilab code bta.sci corresponding to the MATLAB m-file
bta.m given in Appendix D. For compatibility purposes, the calling sequences are the same both
in MATLAB and Scilab, and the help files are very similar. The only difference is that Scilab help
files are formatted ASCII texts which can be automatically generated from the corresponding
m-files.

4 Selection of benchmark problems, testing and performance
comparisons

Extensive testing has been performed of the implemented software using several benchmark
problems. In what follows we describe examples used to test the model reduction routines for
stable and unstable systems.



4.1 PS: Power system model — continuous-time.

This is a continuous-time linearized state space model of a two-area interconnected power system
[5]. The model has the form

T = A$+Blu+32w

y = Cx

where z € R” is the state vector, v € IR? is the command input vector, w € IR? is the disturbance
input vector and y € R? is the measurable output vector. The matrices of this model are given
in Appendix F. Note that the partial model (A, By, C) has been used as test example by several
SLICOT test programs.

The PS model is stable, minimal and has the Hankel-singular values
{3.9137,3.5944, 2.5277,1.0888, 0.6526, 0.0276, 0.0275} .

Taking into account the gap between the 5-th and 6-th singular values, a 5-th order model seems
to be appropriate for a lower order approximation. The B&T, SPA and HNA methods produced
reduced order models of order 5, PS;, PSs and PSs, respectively, which approximately preserve
the dominant poles of the original system

Poles of PS Poles of PS; Poles of PSy Poles of PS3
—0.5181 + 3.1259: —0.5053 + 3.12064 —0.5186 + 3.1228: —0.5118 + 3.1221:
—0.5181 — 3.1259: —0.5053 — 3.12061 —0.5186 — 3.1228: —0.5118 — 3.12211¢
—1.3550 + 2.1866¢ —1.2923 + 2.1162: —1.3598 + 2.1692: —1.3250 + 2.1430:
—1.3550 — 2.18661 —1.2923 — 2.1162¢ —1.3598 — 2.1692¢ —1.3250 — 2.1430:
—1.6916 —1.4233 —1.6578 —1.5351
—13.1438
—13.1617

However, the three methods approximate differently the zeros of the original system, the B&T
and SPA methods producing even non-minimum phase zeros:

Zeros of PS Zeros of PSy Zeros of PSy Zeros of PS3
o0 1.4438 1.4438 —9.2069
o0 o0 0 00
o0 o0 00
o0

There is little difference in step responses for different input-output channels and also the Nyquist
plots show good agreements. In Figures 1 and 2 the corresponding plots for the u;—y; chanel
are presented. Each of the computed 5-th order approximate models is suitable to perform
controller synthesis.
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Step Response
From: U(1)
T

Amplitude
To: Y(1)

Time (sec.)

Figure 1: Comparison of step responses of element g11(s) of PS.

Nyquist Diagrams
From: U(1)

Imaginary Axis
To: Y(1)
o

Real Axis

Figure 2: Comparison of frequency responses for element g11(s) of PS.

11



4.2 PSD: Power system model — discrete-time.

This is the PS model discretized with a sampling period of T" = 0.1 sec. The matrices of
sampled-data system matrices are given in Appendix F. Three 5-th order approximations have
been computed using the B&T, SPA and HNA methods. Figure 3 shows the good agreement
both in time domain and frequency-domain of the original and reduced models.

Step Response Step Response
From: U(1) From: U(2)

2 2
[} [}
RS 2s
5 5
< "

~05 -0.5
1 2 3 4 5 6 0 2 4 6
Time (sec.) Time (sec.)
Nyquist Diagrams Nyquist Diagrams
From: U(1) From: U(2)

4 2

3
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Figure 3: Comparison of time and frequency responses for elements g11(s) and gi2(s) of PSD.

4.3 TGEN: Nuclear plant turbo-generator model.

This is a 10-th order linearized model of a 1072 MVA nuclear powered turbo-generator [8]. The
system is stable and minimal phase. The Hankel-singular values of the system are

{455.9850, 76.5248, 68.5691, 10.4294, 7.2374,0.2704,0.1115,0.0022, 0.0019, 0.0014 },

thus a 5-th order approximation seems to be appropriate. Figure 4 compares the three different
methods (B&T, SPA, HNA) on basis of element g;1(s) of the transfer function matrix. It is
easy to see the good low frequency approximation property of SPA method and the good high-
frequency approximation property of B&T and HNA methods. Note that all three methods
produce non-minimum phase approximations.
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Figure 4: Comparison of frequency responses for element g;1(s) of TGEN.

4.4 PSU: Unstable continuous-time model.

This model is only for numerical test and resulted by replacing in the PS model A by A +
al, for different values of a leading to unstable systems. For o = 1 we applied the B&T
method to the PSU model in combination with additive spectral decomposition and four types
of coprime factorizations: stable letft/rigth coprime factorizations and letft /rigth right coprime
factorizations with inner denominators. Figure 5 shows good agreements of the Nyquist plots
for the transfer function of 1-1 input/output chanel for all five methods. Similar results are
obtained for the SPA and HNA methods used in combination with factorization/decomposition
techniques.

4.5 ACT: Actuator model

This 5-th order single-input model resulted from the physical modelling of a hydraulic actuator
for helicopter active vibration damping. The state space representation for this model is given
in Appendix F. Due to its extremely poor scaling originated from the usage of International
System (SI) units, it is expected that this model will rise numerical difficulties to many category
of programs thus leading often to wrong numerical results.

The computed Hankel singular values by sysred are:

{ 1.38934e 4 007 6.10346e +- 006 1.04050e + 006 1.03985e + 006 8.26634e + 005 }
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Figure 5: Comparison of frequency responses for element g1 (s) of PSU.

Note that the Hankel singular values computed by the MATLAB function balreal without
scaling are completely wrong

{ 3.33570e + 008 1.92108e + 008 9.92157e¢ 4+ 005 1.47773e 4004 1.91871e + 003 } .

After a preliminary scaling with ssbal, the Hankel singular values computed by balreal agree
to 15 decimal figures with those computed by sysred.

4.6 Randomly generated systems

Randomly generated systems have been used to compare the speed of methods with carefully
implemented MATLAB m-functions from the HTOOLS Toolbox [25]. In the following table,
we present timing results for randomly generated stable systems of orders up to 512 comparing
for the square-root B&T method the efficiency of the mez-function sysred, the m-functions
sqrmr from HTOOLS and balreal from the Control Toolbox [11]. Note that for dimensions
above n = 32, balreal systematically exited with the message "System must be reachable",
which is evidently a nonsense. The results in Table 2 have been obtained on a Pentium II 400
Hz Personal Computer running under Windows NT 4.0. Themez-function sysred has been
produced using Digital Visual Fortran V 5.1.

This table illustrate not only the numerical robustness of structure exploiting numerical
algorithms, but also the advantage in the speed of executions (up to one order of magnitude)
allowing to solve relatively large order dense problems on a desktop PC.
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Times [sec]

Order
sysred | sqrmr | balread
16 0.003 0.17 0.04
32 0.01 0.5 0.17
64 0.11 2.14 *
128 0.78 10.55 *
256 6.12 63.75 *
512 76.23 | 478.69 *

Table 2: Timing results for sysred, sqrmr and balreal.

4.7 Further test problems.

Recently the model reduction mez-function sysred has been employed as basic computational
tool for exact and approximate order reduction of linear parametric uncertain systems described
by linear fractional transformations (LF'Ts). An LFT model arises for instance by expressing
the state space matrices A(p), B(p), C(p), D(p) of a symbolically linearized system depending
rationally on parameters in a vector p, as a diagonal structured feedback around a constant linear
system. LFT-models are basically multi-dimensional (m-D) systems and no general algorithms
are known to compute m-D minimal realizations or approximations. Since typically the resulting
orders of ad-hoc built LFTs, even for relatively simple parametric uncertain models, are high,
order reduction (exact or approximate) is an important aspect of LET-modelling. Sequential
1-D minimal realization techniques can be successfully employed to achieve substantial order
reduction. Since most of LFT descriptions are basically similar to discrete-time systems, model
reduction techniques able to handle non-minimal 1-D discrete-time systems can be employed
not only to perform exact reductions but also to compute lower order approximations. In [26],
several LF'T-models have been generated starting from a rational parametric linear state space
of a generic aircraft model. The order of initial LE'T models were up to 300 and reduction with
sysred led to low order exact and approximate LFT models. The high accuracy of approxima-
tions was assessed by using Monte-Carlo analysis. Note that the features required for this order
reduction (discrete-time, non-minimal, unstable) are not available in the commercial CACSD
software (see Appendix G).

5 Testing on industrial benchmark problems and comparisons
with currently used software

5.1 Industrial benchmark problems

Several industrial problems have been used to test the SLICOT software via the mez-function
sysred.
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5.1.1 ATTAS: Linearized aircraft model

This model describes the linearized rigid body dynamics of the DLR Advanced Technology
Testing Aircraft System (ATTAS) during the landing approach. The nonlinear model of ATTAS
used for linearization has been obtained using the object oriented modelling tool Dymola [4].
Besides flight dynamics, this model includes actuators and sensors dynamics, as well as engine
dynamics. Several low pass filters to eliminate structure induced dynamics in outputs are also
included. The total order of the model is 51. The linearized model has an unstable spiral mode.
Moreover, because of presence of position states, there are three pure integrators in the model
and an additional one for the heading angle. There are 6 control inputs and 3 wind disturbance
inputs, and 9 measurement outputs. This model serves basically for the evaluation of linear
handling criteria in a multi-model based robust autopilot design.

To speed-up the evaluation of different handling quality criteria, lower order design models
have been obtained by using model reduction techniques. A 15-th order approximation has been
computed using model reduction followed by minimal realization which fits almost exactly the
original 51 order model both in time as well as in frequency domain. Figure 6 shows a very
good agreement obtained between the frequency responses of the original and reduced model for
element g9s of the corresponding transfer function matrix.
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Figure 6: Comparison of frequency responses for element gos(s) of ATTAS.

For longitudinal flight, a minimal order stable model has been derived by combining model
reduction and minimal realization techniques. The reduced longitudinal ATTAS model has 7
states, 4 inputs and 4 outputs. For lateral flight, a minimal order model has been computed
having 10 states, 2 inputs and 5 outputs. Both these models approximate practically exactly
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the corresponding parts of the dynamics of the original 51 order model. Note that handling
this model raises several difficulties for currently available model reduction software such as the
presence of unstable modes or of redundant dynamics (non-minimal model). For instance, this
model is intractable with standard model reduction tools available in the Control Toolbox of
MATLAB.

5.1.2 CDP: CD-player finite element model

This is a 120-th order single-input single-output system which describes the dynamics between
the lens actuator and radial arm position of a portable compact disc player discussed in [27].
Due to physical constraints on the size of the systems’s controller, a reduced model with order
r < 15 is desired. Only to test our software, three 10-th order models have been determined
using the B&T, SPA and HNA methods. Figure 7 compares the performance of different com-
puted approximations on basis of Bode plots. All methods approximate satisfactorily the central
peek at frequency about 120 Hz, but have different approximation properties at low and high
frequencies. Both SPA and HNA approximations seems to be inappropriate, although the sta-
tionary error for the SPA method is zero. However, the B&T methods appears to provide a
good 10-th order approximation.
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Figure 7: Comparison of frequency responses for CDP.
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5.1.3 GAS: Gasifier model

A detailed nonlinear gasifier model has been developed by GEC ALSTHOM, in October 1997 as a
benchmark problem for simulation and robust control. The model includes all significant effects;
e.g., drying of coal and limestone, pyrolysis and volatilisation of coal, the gasification process
itself and elutriation of fines. This model has been validated using measured time histories from
the British Coal CTDD experimental test facility and it was shown that the model predicts the
main trends in fuel gas quality. Linearized models at 0%, 50% and 100% load are available
to support a multi-model based robust controller design. Some analysis results on the 100%
load models are discussed in [14]. Numerical difficulties with respect to using MATLAB model
reduction tools, but also of the symbolic manipulation tools in Mathematica, have been reported.
The apparent cause of difficulties is the poor scaling of the model. This can be seen by comparing
the step response for element gq1(s) for the original and scaled system at 0% load in Figure 8.

Step Response
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18 = T T

T T
— Original system at 0% load
\ — - Scaled system at 0% load

Amplitude
To: Y(1)

0 1 1 1 1 1
0 2 4 6 8 10 12 14

Time (sec.)

Figure 8: Comparison of step responses for original and scaled GAS.

The GAS model has order 25 and is non-minimal. The norm of state matrices for the three
models ranges between is about 7.64-10% ——1.03-10°, but after scaling with the SLICOT routine
TBO1ID, all norms can be reduced below 100. However, the preliminary is not obligatory for
using sysred, being an implicit feature for this mez-function. Still, for simulations we used
the scaled models to avoid numerical difficulties with MATLAB plotting functions and to make
comparison more reliable. The three models are non-minimal. For example, the last 10 Hankel
singular values of the 100% load model are

o16-25 = {0.64046,1.0852 - 107,0,0,0,0,0,0,0,0, }
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Figure 9: Comparison of frequency responses for gss(s) elements of GAS models.

and the Hankel-norm (the largest singular value) for this model is 3.4078 - 105. The same
qualitative results are true for the other two models. The computed three 16 order reduced
models can be practically not distinguished from the original models on basis of time or frequency
responses. Several lower order approximations have been also computed of orders 6, 8 and 12.
The 12 order models represent very good approximation of the original models and can serve
as basis for designing a unique robust controller ensuring satisfactory performance for all three
models. A comparison on basis of elements g35(s) of the corresponding transfer-function matrices
is shown in Figure 9.

5.2 Comparison with other packages

We present shortly the model reductions tools available in other control packages and compare
them with the model reduction tools provided in SLICOT. Test results for SLICOT have been
obtained via the mez-function sysred. A summary of capabilities of the reviewed software is
presented in Appendix F.

5.2.1 Model reduction tools in ANDECS.
The facilities provided by the model reduction tools of the control system design environment

of DLR ANDECS are based on the Fortran routines available in the RASP-MODRED package
[22]. Since the SLICOT model reduction relies basically on RASP-MODRED routines, the only

19



difference between the SLICOT and RASP-MODRED model reduction tools is that the SLICOT
routines are implemented according to the SLICOT standard. The SLICOT implementations
are slightly more efficient and possibly numerically more robust than the original codes from
RASP-MODRED, because of better implementation of several supporting routines, as those to
solve non-negative Lyapunov equations directly for the Cholesky factors.

5.2.2 Model reduction tools in MATLAB Control Toolbox V4.2.

The available function balreal performs the balancing by computing first the Gramians by
solving Lyapunov equations and then computing the Cholesky factors of the Gramians. Although
less accurate than the square-root method, the current version of balreal behaves numerically
better than that one from the previous release of the Control Toolbox. Still there are several
problems with this function. First, the original system must be minimal. This is a serious
limitation since, many systems are almost or numerically non-minimal, which leads to the failure
of this function. This has as consequence, that random stable system up to order 25-30 can not
be reduced, although they are certainly minimal. Second, by performing always balancing,
additional accuracy loss can occur in case of poorly scaled systems. Further, since no scaling
is performed by this function, for badly scaled problems the results can be very inaccurate (see
also Section 77). Finally, practically there is no support for reduction of unstable systems, which
once again restricts the applicability of this function to stable models.

5.2.3 Model reduction tools in MATLAB Robust Control Toolbox V2.0

There are several model reduction tools in the Robust Control Toolbox [3] which cover simi-
lar model reduction problems as sysred. The B&T method is implemented in the functions
obalreal, balmr and schmr and the optimal HNA method is implemented in ohklmr. Only
continuous-time systems can be reduced and for reduction of discrete-time systems bilinear
transformation techniques are recommended to be used. obalreal is practically the same im-
plementation as balreal from the Control Toolbox, thus has the same limitations. balmr, schmr
and ohklmr can be applied also to non-minimal order systems as well as to unstable system.
Without preliminary scaling, all this routines fail to compute accurate Hankel singular values
for the ACT model. They also fail on unstable models with eigenvalues on the imaginary axis
like ATTAS. On a Pentium IT 400 MHz PC, schmr needed 17.2 sec to compute a 10-th order
approximation for the 120-th order CDP model. In comparison, sysred performed the same
computation in 0.27 sec.

Besides additive error methods, there are two functions for relative error model reduction via
balanced stochastic truncation. These functions are better suited to approximate uniformly the
frequency responses than additive error. In particular, phase information is better approximated,
thus approximations of minimum-phase models lead often to minimum-phase reduced models.
This functionality is not covered by SLICOT and is intended to be added in the second part of
the project.
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5.2.4 Model reduction tools in MATLAB p-Analysis and Synthesis V3.0

There are several model reduction tools in the p-Analysis and Synthesis Toolbox [2] which
cover similar model reduction problems as sysred. The square-root B&T method is imple-
mented in the functions sysbal and the optimal HNA method is implemented in hankmr. Only
continuous-time stable systems can be reduced and for reduction of discrete-time systems bilin-
ear transformation techniques are recommended to be used. sysbal and hankmr can be applied
also to non-minimal order systems. Even without a preliminary scaling, sysbal was able to
compute up to b digits accurate Hankel singular values for the ACT model. On a Pentium II
400 MHz PC, schmr needed 2.8 sec to compute a 10-th order approximation for the 120-th order
CDP model.

Besides additive error methods, there are two functions for relative error model reduction
via balanced stochastic truncation, frequency weighted model reduction and normalized coprime
factorization based model reduction.

5.2.5 Model reduction tools in MATRIX y Model Reduction Module

The model reduction functions in the MATRIX x Model Reduction Module [12] are very similar
to those available in the Robust Control Toolbox of MATLAB. No functions are provided to
handle directly discrete-time or unstable systems. Besides additive model reduction methods,
also relative error and frequency weighted methods are implemented. A comprehensive docu-
mentation is provided with the package, which clearly presents the restrictions of the module
and offers hints to overcome some of them.

5.2.6 Other available model reduction tools

The model reduction tools in the HTOOLS (Ho Tools) Toolbox for MATLAB [25], has been
implemented having as basis the numerical algorithms with enhanced accuracy described in
[22]. Both continuous- and discrete-time models can be reduced and a suite of square-root and
balancing-free square-root algorithms are implemented for both additive as well as for stochas-
tic balancing based relative methods. The structure exploiting careful implementations of all
functions ensured practically the same numerical performances as those of robust Fortran im-
plementations available in RASP-MODRED and now in SLICOT. For instance, positive Lya-
punov solvers are implemented using the Hammarling’s algorithms in both continuous- as well
as discrete-time variants. Still, the very detailed structure exploiting implementations have the
consequence of much larger execution time as equivalent Fortran implementations. This aspect
is however is general for all model reduction tools implemented exclusively in Matlab.

A collection of model reduction functions for frequency weighted order reduction, forms the
WOR-Toolbox for MATLAB. This toolbox has been implemented in connection with the Ph.D.
thesis of Wortelboer [27] and provides several functions implementing several non-standard meth-
ods for model and controller reduction. Functions are available for Ho-norm reduction, balanced
modal reduction, reduction of unstable systems using normalized coprime factorization. Func-
tions for interactive order reduction in a user-defined configuration are also provided. This
comprises open-loop and closed-loop, weighted and unweighted configurations. The WOR Tool-
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box calls several low level functions of the pu-Toolbox.

In the previous version of Scilab no complete model reduction functions were available. Still
model reduction was possible using several supporting functions to compute Gramians, Hankel-
singular values, factors of the projection associated with the small eigenvalues of the product
of Gramians, and computation of projected systems. The last version of Scilab integrates the
same functionalies as those available for MATLAB (see section 3).

6 Summary of achieved results and perspectives

The model reduction tools of SLICOT consists of a functionally reach collection of standardized,
comprehensively documented and fully tested Fortran routines implementing rigorously selected
methods for order reduction of continuous-/discrtete-time, stable/unstable linear time-invariant
systems. The final model reduction package consists of 12 user-callable routines. All this routines
are thoroughly documented. The documentation is automatically generated from the preamble
of each routine (see Appendix H for ABO9MD). The documentation is available in html format
and can be viewed with standard browsers like Windows Internet Explorer or Netscape. The
documentation also includes a test program example, test data and the corresponding test
results.

Besides standardized Fortran routines, the SLICOT model reduction tools include interface
software to two popular user-friendly CACSD environments: MATLAB and Scilab. A special
mez-function sysred has been implemented as Fortran interface to MATLAB to provide access
to all facilities available in the SLICOT routines. This mez-function also served to prepare the
interface software with Scilab. Additional 9 m-functions (see Section 3) have been implemented
which exploit the advanced object oriented facilities available both in MATLAB Control Toolbox
as well as in Scilab to manipulate control objects. The mez-function and m-functions are
completely documented according to MATLAB/Scilab standards.

Two main directions are envisaged to continue the efforts to develop reliable numerical model
reduction software for SLICOT. The first direction focuses on the reduction of very high order
systems using special implementations exploiting parallel architecture machines. The second
direction continues the efforts to develop model reduction software for relative error methods
and frequency weighted problems, with the main objective to have a powerful collection of tools

for controller reduction. This software will complement the Hy/ H, software currently developed
for SLICOT.
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A List of standardized model reduction routines

Routines for reduction of stable systems

Name Function

ABO9AD | computes reduced (or minimal) order balanced models using either the SR or
the BFSR B&T method

ABO09AX | computes reduced (or minimal) order balanced models using either the SR or
the BFSR B&T method (scaled system with state matrix in real Schur form)

AB09BD | computes reduced order models using the BFSR SPA method

ABO09BX | computes reduced order models using the BFSR SPA method (scaled system
with state matrix in real Schur form)

ABO9CD | computes reduced order models using the optimal HNA method based on SR
balancing

ABO09CX | computes reduced order models using the optimal HNA method based on SR
balancing (scaled system with state matrix in real Schur form)

ABO9DD | computes a reduced order model by using the singular perturbation formulas

Routines for reduction of unstable systems

Name Function

ABO9ED | computes reduced order models for unstable systems using the optimal HNA
method in conjunction with additive stable/unstable spectral decomposition

ABO9FD | computes reduced order models for unstable systems using the BFSR B&T
method in conjunction with left /right coprime factorization methods

ABO09GD | computes reduced order models for unstable systems using the BFSR SPA
method in conjunction with left /right coprime factorization methods

ABO9IMD | computes reduced order models for unstable systems using the B & T method
in conjunction with additive stable/unstable spectral decomposition

ABOIND | computes reduced order models for unstable systems using the SPA method
in conjunction with stable/unstable additive spectral decomposition
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B List of standardized routines related to model reduction

Transformation routines

Name Function

TBO1KD | computes the terms G; and G2 of an additive spectral decomposition of a
transfer-function matrix G with respect to a specified region of the complex
plane

TBO1LD | performs an orthogonal similarity trasformation to reduce the system state
matrix to an ordered real Schur form

TBO1IWD | performs an orthogonal similarity trasformation to reduce the system state
matrix to a real Schur form

Mathematical routines

Name Function

MBO03QD | reorders the eigenvalues of a real Schur matrix according to several reordering
criteria

MBO3UD | computes the singular value decomposition of a square upper-triangular matrix

Analysis routines

Name Function

AB13AD | computes the Hankel norm and the Hankel singular values of the stable pro-
jection of a transfer-function matrix

AB13AX | computes the Hankel norm of a stable system with the state matrix in real
Schur form

AB13BD | computes the Hs- or Lo-norm of a transfer-function matrix

Factorization routines

Name Function

SBO8CD | computes the state-space representations of the factors of a LCFID of a TFM

SBO8DD | computes the state-space representations of the factors of a RCFID of a TFM

SBOSED | computes the state-space representations of the factors of a LCF with pre-
scribed stability degree

SBOSFD | computes the state-space representations of the factors of a RCF with pre-
scribed stability degree

SBO8GD | computes the state-space representation of the TFM corresponding to a LCF

SBOSHD | computes the state-space representation of the TFM corresponding to a RCF
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Lower level/auxiliary routines

Name Function

MAO2AD | transposes all or a part of a matrix

MAO02BD | reverses the order of rows and/or columns of a matrix

MAOQO2CD | pertransposes a diagonal band of matrix

MBO1SD | scales a matrix by rows or columns

MBO03QX | computes the eigenvalues of a matrix in real Schur form

MBO03QY | computes the eigenvalues of a 2 by 2 block of matrix in real Schur form and
reduces it to the standard LAPACK form

SBO1IBY | solves an N by N pole placement problem for N =1 or N = 2

SBO1FY | computes the inner denominator of a right-coprime factorization of a system
of order N, where N is either 1 or 2

MB040OX | performs a rank-one update of a Cholesky factorization
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C MATLAB interface to model reduction routines

%SYSRED MEX-function based on SLICOT model reduction routines.

b
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[Ar,Br,Cr,Dr,HSV] = SYSRED(METH,A,B,C,D,TOL,DISCR,ORDER,ALPHA)

SYSRED returns
state-space sy
(Ar ,Br,Cr,Dr)

ALPHA-stable p

for an original continuous- or discrete-time
stem (A,B,C,D) a reduced order space-system

and the Hankel singular values HSV of the

art. The order of the reduced model is determined

either by the number of Hankel-singular values greater than TOL or

by the desired

Description of
METH - method
m sp

c sp

us

Allowe

Allowe
C=
C=

C=

TOL - (optio
reduce

toll

tol2

tol3

ORDER - (optio

order ORDER.

other input parameters:

flag with decimal form c*10+m, where:

ecifies the basic model reduction method;

ecifies the comprime factorization approach to be
ed in conjunction with the method specified by m.
d values for m:

1 : for Balance & Truncate method with balancing

= 2 : for Balance & Truncate method (no balancing)

3 : Singular Perturbation Approximation with balancing
4 : Singular Perturbation Approximation (no balancing)
5 : Optimal Hankel-Norm Approximation

d values for ¢ (only for m = 1..4):

0 : no coprime factorization is used (default)

: RCF with inner denominator

: LCF with inner denominator

: RCF with ALPHA stability degree

W N =

4 : LCF with ALPHA stability degree

nal) tolerance vector for determining the order of
d system of form TOL = [toll, tol2, tol3], where
specifies the tolerance for model reduction;
default: toll = epsilon_machine*Hankel norm(A,B,C)
specifies the tolerance for minimal realization in
case of m = 3, 4 or 5
default: tol2 = epsilon_machine*Hankel norm(A,B,C)
specifies the controllability/observability tolerance
for computing coprime factorizations, as follows:
controllability tolerance in case ¢ = 1 or 3
default: epsilon_machine*max(norm(A),norm(B))
observability tolerance in case c = 2 or 4
default: epsilon_machine*max(norm(A) ,norm(C))
nal) desired order of reduced system

default: ORDER = -1 (order determined automatically)

DISCR - (optio

=0 :

=1
ALPHA - (optio

nal) type of system
continuous-time (default)
: discrete-time
nal) stability boundary for the eigenvalues of A

default: -sqrt(epsilon_machine) for continuous-time

1.0-sqrt(epsilon_machine) for discrete-time
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D Sample MATLAB m-function for B&T model reduction

function [sysr,hsv] = bta(sys,tol,ord,alpha)

%BTA
h
h
h
b
b
h
h
h
b
b
b
h
h
b
b
b
h
h
h
b
b
h
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h
b
h
h
b
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b
h
h
h
b
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h
h
b
b
b
h
h
b
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Balance & Truncate approximation without balancing.
[SYSR,HSV] = BTA(SYS,TOL,ORD,ALPHA) calculates for the
transfer function
-1
G(lambda) = C(lambdaI-A) B + D

of an original system SYS = (A,B,C,D), an approximate
transfer function
-1
Gr(lambda) = Cr(lambdal-Ar) Br + Dr

of a reduced order system SYSR = (Ar,Br,Cr,Dr) using the
balancing-free Balance & Truncate approximation method on
the ALPHA-stable part of SYS (see Method with ’type bta’).

TOL is the tolerance for model reduction.
ORD specifies the desired order of the reduced system SYSR.

ALPHA is the stability boundary for the eigenvalues of A.

For a continuous-time system ALPHA <= 0 is the boundary value
for the real parts of eigenvalues, while for a discrete-time
system, 1 >= ALPHA >= O represents the boundary value for the
moduli of eigenvalues.

HSV contains the decreasingly ordered Hankel singular values of
the ALPHA-stable part of SYS.

The order NR of the reduced system SYSR is determined as follows:

let NU be the order of the ALPHA-unstable part of SYS and let

NSMIN be the order of a minimal realization of the ALPHA-stable

part. Then

(1) if TOL > 0 and ORD < O, then NR = NU + min(NRS,NSMIN), where
NRS is the number of Hankel singular values greater than TOL;

(2) if ORD »= 0, then NR = NU+MIN(MAX(O,O0RD-NU),NSMIN).

SYSR = BTA(SYS) calculates for a stabilizable and detectable
system SYS a minimal state-space realization SYSR.

Method:
The following approach is used to reduce a given G:

1) Decompose additively G as
G =Gl + G2
such that G1 = (As,Bs,Cs,D) has only ALPHA-stable poles and

G2 = (Au,Bu,Cu,0) has only ALPHA-unstable poles.
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h

yA 2) Determine Glr, a reduced order approximation of the
yA ALPHA-stable part Gl using the balancing-free

yA Balance & Truncate Approximation method.

b

h 3) Assemble the reduced model Gr as

b

yA Gr = Gir + G2.

b

h Interface M-function to the SLICOT-based MEX-function SYSRED.
) A. Varga 04-05-1998.

b

if “isa(sys,’1ti’)
error (’The input system SYS must be an LTI object’)
end

ni = nargin; discr = sys.ts > 0;

if ni < 4
alpha = -sqrt(eps);
if discr
alpha = 1 + alpha;
end
end if ni < 3
ord = -1;
end if ni < 2
tol = 0;
end

[a,b,c,d]=ssdata(sys);
[ar,br,cr,dr,hsv]=sysred(2,a,b,c,d,tol,discr,ord,alpha);

sysr = ss(ar,br,cr,dr,sys);

% end bta
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E Sample Scilab sci-function for B&T model reduction

function [sysr,hsv] = bta(sys,tol,ord,alpha)

[no,nil=argn(0);
if “typeof (sys)==’state-space’

error (’The input system SYS must be a state-space system’)
end

discr = bool2s( sys(’dt’)=="d’ );

if ni < 4
alpha = -sqrt(%eps);
if discr
alpha = 1 + alpha;
end
end
if ni < 3
ord = -1;
end
if ni < 2
tol = 0;
end

[a,b,c,d]=abcd(sys);
[ar,br,cr,dr,hsv]=sysred(2,a,b,c,d,tol,discr,ord,alpha);

sysr = syslin( sys("dt"),ar,br,cr,dr);

// end bta
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F Benchmark problems for model reduction

F.1 State space matrices of the PS model

Name PS
Description Power system model
Reference 5]
Type State space model, continuous-time
# states 7
# control inputs 2
# disturbance inputs 2
# outputs 3
[ —0.04165 0 492 —4.92 0 0
—5.21 —12.5 0 0 0 0
0 333 —-3.33 0 0 0
A= 0.545 0 0 0 —0.545 0
0 0 0 492 —-0.04165 0
0 0 0 0 —-5.21 —12.5
i 0 0 0 0 0 3.33
0 0] —4.92 0 |
12.5 0 0 0
0 0 0 0 10 00
By = 0 0|, By= 0 0|, ¢C=]1010 01
0 0 0 —4.92 0 000
0 125 0 0
0 0 | i 0 0 |
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F.2 State space matrices of the PSD model

Name
Description
Reference
Type

# states

# control inputs
# disturbance inputs

# outputs

B

0.97277

PSD

Sampled-data power system model (7" = 0.1 sec)

[5]

State space model, discrete-time

7

W N DN

0.053759 0.001022
0.013281 0.00013525
—0.0017394 —1.2118e—5 —0.00021161

| —0.00014322  —6.829e—7 —1.3998e—5 —0.0097701

0.023476
0.71091
0.12681

0.00034405
3.5533e—5
—2.6922e—6

i —1.2878e—7

C =

0.049697 0.41432
—0.29382 0.2793  —0.077754
—0.052626 0.15561

—0.48531
0.087312

0.013281 0.00013525 0.002015 |
—0.0017394 —1.2118e—5 —0.00021161

0.7078 0.0097701 —0.00014322 —6.829e—7 —1.3998e—5

0.011948
0.002015

3.5533e—5 |
—2.6922¢—6
—1.2878e—7
—0.00034405 |,
0.023476
0.71091
0.12681

_— O O

1
0
0

o O O
o O O
S = O
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0.97337
0.48531
—0.087312

By

o O O

o O O

—0.0563759 —0.001022 —0.011948
0.97277 0.049697 0.41432
—0.29382 0.2793  —0.077754
—0.052626 0.15561 0.7078

—0.4875 —0.0021858 |
0.087539 0.00022642
0.0097849  1.481e—5
—0.013314  0.013314 |,
—0.0021858 —0.4875
0.00022642  0.087539
1.481e—5  0.0097849

, D=0.




F.3 State space matrices of the TGEN model

Name TGEN
Description Nuclear-powered turbo-generator
Reference 8]
Type State space model, continuous-time
# states 10
# control inputs 2
# disturbance inputs 0
# outputs 2
[ 0 1 0 0 0 0 0 0 0 07
0 —0.11323 —0.98109 —11.847 —11.847 —63.08 —34.339 —34.339 —27.645 0
324.121 —1.1755 —29.101 0.12722 2.83448 —967.73 —678.14 —678.14 0 —129.29
—127.3 0.46167 11.4294 —1.0379 13.1237 380.079 266.341 266.341 0 1054.85
A —186.05 0.67475 16.7045 0.86092 —17.068 555.502 389.268 389.268 0 —874.92
341.917 1.09173 1052.75 756.465 756.465 —29.774 0.16507 3.27626 0 0
—30.748 —0.09817 —94.674 —68.029 —68.029 2.67753 —2.6558 4.88497 0 0
—302.36 —0.96543 —930.96 —668.95 —668.95 26.3292 2.42028 —9.5603 0 0
0 0 0 0 0 0 0 0 —1.66667 0
L 0 0 0 0 0 0 0 0 0 —10 ]
_ 0 07
0 0
0 0
0 0
0 0 10 000 00000
B= 0 0}’ ¢= —0.49134 0 —0.63203 0 0 —0.20743 0 0 0 O |’ D=0
0 0
0 0
1.66667 0
L 0 10 ]
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F.4 State space matrices of the ACT model

Name

Description
Reference

Type
# states

# control inputs

# disturbance inputs

# outputs
0
—1580000
A= 3.541le+14
0
0
C =

ACT
Hydraulic actuator model

State space model, continuous-time

Y
2
0
5

1
—1257
0
0
0

e
O%OO»—A

0 0
0 0
—1434 0
0 0
0 —18630
0 0
0 1
0 0
0 —6.2¢e—13
0 —0.001

0
0
—5.33e+11
1
—1.482
0 0
0 0
1 0
0 0
1896000 150
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G Summary of comparisons of available model reduction tools

o
AR s
S & & S & S
Software N\ & N 5 S N3 o &S
C’% NQQ $O ~Q§ &00 QQ § &
X D d S ) s > O
R S O NS ¥ o SRS

| Provided features | ‘ |
continuous-time 4+ + + + + + 4 T
discrete-time + + + - - + _ _
unstable + + - + _ _ _ +
non-minimal + + - + + + + +

‘ Method ‘ ‘
balancing + + + + + + + +
balancing-free (BF) + + — + - + + -
square-root (SR) + + - — + n - T+
BF-SR + + - - - + , -

‘ Problem classes ‘ ‘
additive error + + + + + i + I
relative error + - - + + i + _
frequency weighted + - - - + — i +
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H Preamble of ABO9IMD.F used for automatic documentation

e EH NN NN NN N Eo NN NN NoNoNo o NoNoNoNoNoNoNoNoNoNoNoNoNoNo NN NGO NONONONP!

SUBROUTINE ABO9MD( DICO, JOB, EQUIL, ORDSEL, N, M, P, NR, ALPHA,

$ A, LDA, B, LDB, C, LDC, NS, HSV, TOL, IWORK,

$ DWORK, LDWORK, IWARN, INFO )

RELEASE 3.0, WGS COPYRIGHT 1999.

PURPOSE

To compute a reduced order model (Ar,Br,Cr) for an original
state-space representation (A,B,C) by using either the square-root
or the balancing-free square-root Balance & Truncate (B & T)

model reduction method for the ALPHA-stable part of the system.
ARGUMENTS

Mode Parameters

DICO CHARACTER*1
Specifies the type of the original system as follows:

= ’C’: continuous-time system;
= ’D’: discrete-time system.
JOB CHARACTER*1

Specifies the model reduction approach to be used
as follows:
= ’B’: use the square-root Balance & Truncate method;
= ’N’: wuse the balancing-free square-root
Balance & Truncate method.

EQUIL CHARACTER*1
Specifies whether the user wishes to preliminarily
equilibrate the triplet (A,B,C) as follows:
= ’S’: perform equilibration (scaling);
= ’N’: do not perform equilibration.

ORDSEL CHARACTER*1
Specifies the order selection method as follows:
= ’F’: the resulting order NR is fixed;
= ’A’: the resulting order NR is automatically determined
on basis of the given tolerance TOL.

Input/Output Parameters

N (input) INTEGER
The order of the original state-space representation, i.e.
the order of the matrix A. N >= 0.

M (input) INTEGER

The number of system inputs. M >= 0.
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NR

ALPHA

LDA

(input) INTEGER
The number of system outputs. P >= 0.

(input/output) INTEGER

On entry, with ORDSEL = ’F’, NR is the desired order of

the resulting reduced order system.

On exit, if INFO = O, NR is the order of the resulting
reduced order model. For a system with NU ALPHA-unstable
eigenvalues and NS ALPHA-stable eigenvalues (NU+NS=N),

NR is set as follows: if ORDSEL = ’F’, NR is equal to
NU+MIN(MAX(0,NR-NU) ,NMIN), where NR is the desired order

on entry, and NMIN is the order of a minimal realization

of ALPHA-stable part of the given system; NMIN is

determined as the number of Hankel singular values greater
than NS*EPS*HNORM(As,Bs,Cs), where EPS is the machine
precision (see LAPACK Library Routine DLAMCH) and
HNORM(As,Bs,Cs) is the Hankel norm of the ALPHA-stable

part of the given system (computed in HSV(1));

if ORDSEL = ’A’, NR is the sum of NU and the number of Hankel
singular values greater than MAX(TOL,NS*EPS*HNORM(As,Bs,Cs)).

(input) DOUBLE PRECISION.

Specifies the ALPHA-stability boundary for the eigenvalues of
the state dynamics matrix A. For a continuous-time system
(DICO = °C’), ALPHA =< 0 is the boundary value for the real
parts of eigenvalues, while for a discrete-time system

(DICO = ’D’), 1 >= ALPHA >= 0O represents the boundary value
for the moduli of eigenvalues.

(input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the state dynamics matrix A.

On exit, if INFO = O, the leading NR-by-NR part of this
array contains the state dynamics matrix Ar of the
reduced order system.

The resulting A has a block diagonal form with two blocks.
For a system with NU ALPHA-unstable eigenvalues and

NS ALPHA-stable eigenvalues (NU+NS=N), the leading
NU-by-NU block contains the unreduced part of A
corresponding to ALPHA-unstable eigenvalues in an

upper real Schur form.

The trailing (NR+NS-N)-by-(NR+NS-N) block contains

the reduced part of A corresponding to ALPHA-stable
eigenvalues.

INTEGER
The leading dimension of array A. LDA >= MAX(1,N).

(input/output) DOUBLE PRECISION array, dimension (LDB,M)
On entry, the leading N-by-M part of this array must
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contain the original input/state matrix B.

On exit, if INFO = O, the leading NR-by-M part

of this array contains the input/state matrix Br of
the reduced order system.

LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,N).

C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the leading P-by-N part of this array must
contain the original state/output matrix C.
On exit, if INFO = O, the leading P-by-NR part
of this array contains the state/output matrix Cr of
the reduced order system.

LDC INTEGER
The leading dimension of array C. LDC >= MAX(1,P).

NS INTEGER
(output) The dimension of the ALPHA-stable subsystem.

HSV (output) DOUBLE PRECISION array, dimension (N)
If INFO = O, the leading NS elements of HSV contains the
Hankel singular values of the ALPHA-stable part of the
original system ordered decreasingly.
HSV(1) is the Hankel norm of the ALPHA-stable subsystem.

Tolerances

TOL DOUBLE PRECISION
If ORDSEL = ’A’, TOL contains the tolerance for
determining the order of reduced system.
For model reduction, the recommended value is
TOL = c*HNORM(As,Bs,Cs), where c is a constant in the
interval [0.00001,0.001], and HNORM(As,Bs,Cs) is the
Hankel-norm of the ALPHA-stable part of the given system
(computed in HSV(1)).
If TOL <= 0 on entry, the used default value is
TOL = NS*EPS*HNORM(As,Bs,Cs), where NS is the number of
ALPHA-stable eigenvalues of A and EPS is the
machine precision (see LAPACK Library Routine DLAMCH) .
This value is appropriate to compute a minimal realization
of the ALPHA-stable part.
If ORDSEL = ’F’, the value of TOL is ignored.

Workspace
IWORK  INTEGER array, dimension (LIWORK)

LIWORK = 0, if JOB = ’B’;
LIWORK = N, if JOB = ’N’.
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DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = O, DWORK(1) returns the optimal value
of LDWORK.

LDWORK INTEGER
The length of the array DWORK.
LDWORK >= MAX(1,N*(2+xN+MAX(N,M,P)+5) + Nx(N+1)/2).
For optimum performance LDWORK should be larger.

Warning Indicator

IWARN  INTEGER

= 0: no warning;

= 1: with ORDSEL = ’F’ the selected order NR is greater
than NSMIN, the sum of order of the ALPHA-unstable
part and the order of a minimal realization of the
ALPHA-stable part of the given system. In this case,
the resulting NR is set equal to NSMIN.

= 2: with ORDSEL = ’F’ the selected order NR is less
than the order of the ALPHA-unstable part of the
given system. In this case NR is set equal to the
order of the ALPHA-unstable part.

Error Indicator

INFO INTEGER

= 0: successful exit;

< 0: 1if INFO = -i, the i-th argument had an illegal
value;

= 1: the computation of the ordered real Schur form of A
failed;

= 2: the separation of the ALPHA-stable/unstable diagonal
blocks failed because of very close eigenvalues;

= 3: the computation of Hankel singular values failed.

METHOD
Let be the following linear system

dlx(t)]
y (t)

Ax(t) + Bu(t)
Cx(t) ¢D)

where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
for a discrete-time system. The subroutine ABO9MD determines for
the given system (1), the matrices of a reduced order system

d[z(t)] = Arxz(t) + Brxu(t)
yr(t) Cr*z(t) (2)

such that

40



eNoNoNoNo N NN NoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNONONO NGO NP

HSV(NR+NS-N) <= INFNORM(G-Gr) <= 2%[HSV(NR+NS-N+1)+...+HSV(NS)],
where G and Gr are transfer-function matrices of the systems
(A,B,C) and (Ar,Br,Cr), respectively, and INFNORM(G) is the
infinity-norm of G.

The following procedure is used to reduce a given G:

1) Decompose additively G as

G =Gl + G2

such that G1 = (As,Bs,Cs) has only ALPHA-stable poles and
G2 = (Au,Bu,Cu) has only ALPHA-unstable poles.

2) Determine Glr, a reduced order approximation of the
ALPHA-stable part G1.

3) Assemble the reduced model Gr as
Gr = G1lr + G2.
To reduce the ALPHA-stable part G1, if JOB = ’B’ the square-root

Balance & Truncate method of [1] is used and for a ALPHA-stable
continuous-time system (DICO = ’C’), the resulting reduced model

is balanced. For ALPHA-stable systems, setting TOL < O, the routine

can be used to compute balanced minimal state-space realizations.
If JOB = 'N’ the square-root balancing-free version of the
Balance & Truncate method is used [2] to reduce the ALPHA-stable
part G1.

REFERENCES

[1] Tombs M.S. and Postlethwaite I.
Truncated balanced realization of stable, non-minimal
state-space systems.
Int. J. Control, Vol. 46, pp. 1319-1330, 1987.

[2] Varga A.
Efficient minimal realization procedure based on balancing.
Proc. of IMACS/IFAC Symp. MCTS, Lille, France, May 1991,
Eds. A. E1 Moudni, P. Borne, S. G. Tzafestas,
Vol. 2, pp. 42-46.

NUMERICAL ASPECTS
The implemented methods rely on accuracy enhancing square-root or
balancing-free square-root techniques.

3
The algorithms require less than 30N floating point operations.
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. Scalar Arguments ..

CHARACTER DICO, EQUIL, JOB, ORDSEL
INTEGER INFO, IWARN, LDA, LDB, LDC, LDWORK, M, N, NR,
$ NS, P

DOUBLE PRECISION ALPHA, TOL
. Array Arguments ..
INTEGER IWORK (*)
DOUBLE PRECISION A(LDA,x*), B(LDB,*), C(LDC,*), DWORK(*), HSV(x)
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