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Abstract

�-Analysis is a powerful tool for the assessment
of the stability of uncertain parametric systems
by means of the Structured Singular Value
�. The peak upper bound value of � over a
frequency range provides information on the
stability margin of a system for given variations
of uncertain parameters, while the computed
lower bound on � allows to obtain worst-case
parameter combinations destabilizing the sys-
tem. The applicability of �-analysis is however
conditioned by the availability of adequate un-
certainty models based on Linear Fractional
Transformations (LFTs). For complex systems,
like aircraft models, LFT modeling is a very
demanding and time-consuming task.
In this paper we present the generation of
an LFT-based uncertainty model for a civil
aircraft, starting from a nonlinear dynamic
model with explicit parametric dependencies.
This nonlinear model was the basis for the
design of twelve di�erent 
ight controllers ac-
cording to identical speci�cations. We applied
�-analysis for stability robustness assessment of
the twelve control con�gurations to uncertain-
ties in the aircraft mass, the center of gravity
location, and the on-line computational time
delay. We determined the corresponding sta-
bility margins and the worst-case destabilizing
parameter combinations. We used nonlinear
simulations to validate our results.

1. Introduction

Flight control laws require extensive validation before
they can be implemented in a 
ight control computer.
An important step in this validation is the assessment
of performance and stability robustness of the closed
loop system to potential inaccuracies in the available
model. These inaccuracies can principally be expressed

as uncertainties in physical parameters, like for exam-
ple the aircraft mass.

In such a robustness assessment, the designer wants
to �gure out if the required performance level and
stability are maintained for all possible parameter com-
binations within their assumed bounds. Possibilities to
do this are for example Monte-Carlo type simulations,
computing eigenvalues over a grid of parameter values,
or a worst-case parameter search via optimization.(13)

In this respect, �-analysis is an interesting option. This
analysis method basically consists of two steps. First,
the set of linear models is captured as a function of the
uncertain parameters, and transformed into a Linear
Fractional Transformation (LFT) representation. In an
LFT the uncertain parameters are normalized, pulled
out of the system, and augmented in a so-called �-
matrix: the unknowns are thus separated from the rest
of the model.
Next, the �-value is determined, indicating the magni-
tude of the worst-case �. Exact computation of � is a
hard problem, but algorithms for tight upper and lower
bounds are available.(2) If � is smaller than one, the
worst-case is outside the parameter bounds. Hence, the
required performance level or stability is guaranteed
within the parameter bounds.

In the period 1995-1997 an action group of the Group
for Aeronautical Research and Technology in EURope
(GARTEUR) worked on a robust 
ight control project,
assessing the applicability of modern robust control
design concepts to 
ight control problems.(14) To this
end, two benchmarks were de�ned, based on the so-
called Research Civil Aircraft Model (RCAM(11)) and
the High Incidence Research Model (HIRM(12)), rep-
resenting a high-performance jet-�ghter. Teams from
member organizations of the action group made 12
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designs for the RCAM (10 di�erent methods), and 6
designs for the HIRM (5 methods) � .

In the �nal phase of the project, the designs and
the applied methods were evaluated by members from
industry. In addition, we assessed stability robustness
of the RCAM designs with �-analysis. This paper
describes how we performed this analysis, and the
results that we obtained.

The paper is organized as follows. We brie
y review
LFT modeling and the structured singular value. Next,
we describe the RCAM and show how we obtained
an LFT description of the model. We perform �-
computations, and validate the found worst-cases in
nonlinear simulations. Finally we will summarize our
�ndings and indicate future plans.

2. Review of LFTs and �

A lot of material has been published about LFTs and
�, see Refs.(7, 8, 18, 23, 24) We will give a brief review here.

Let M be a complex matrix M 2 Cm�n, relating two
pairs of signals, r1, v1 and r2, v2 respectively. We may
close the loop using either signal couple via matrix �:
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so that v2 = Fu(M;�)r2, and v1 = Fl(M;�)r1, with:

Fu(M;�)=M22 +M21(I ��M11)
�1�M12 (1)

Fl(M;�)=M11 +M12(I ��M22)
�1�M21 (2)

The expressions Fu(M;�) and Fl(M;�) are called
Linear Fractional Transformations (LFTs), where the
subscripts 'u' and 'l' mean upper-LFT and lower-LFT,
respectively.

LFTs can be used to describe uncertainties in the
elements of a matrix. For such a case, � is a structured
matrix with uncertain nonzero elements. For example,
� may belong to a set:

� := f� = diag [�1I2; �2; �3;�4] :
�1; �2 2 R; �3 2 C;�4 2 C

2�2
	

Usually, � can be normalized: ��(�) � 1, where �� is
the maximum singular value. Note that an LFT can

� All GARTEUR reports can be downloaded from
http://www.nlr.nl/public/hosted-sites/garteur/tplst.html

be used to capture a set of possible relations between
the free input-output pair in a single representation.

An important reason for using LFTs for representing
uncertainty is that standard interconnections (cascade,
parallel, or feedback) of LFTs can be rewritten as one
single LFT by 'pulling-out' the delta's, as illustrated in
Fig. 1. This means that composing a model from LFT-
submodels results in a new LFT. What is also apparent
from the �gure, is that uncertainties that appear
locally, scattered all over the place, become structured
at a system level in a newly de�ned structured �-
matrix.
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Fig. 1. Interconnection of LFTs

As can be seen from (1), the LFT corresponds to a
feedback connection, with � in the feedback path. This
results in the fractional term in the LFT. An important
question is how large � may become without making
the LFT singular. Since the structure of � is problem
speci�c, an indicator is needed that accounts for this
structure. This indicator is the Structured Singular
Value (SSV), or �:

��(M) :=
1

min f��(�) : � 2�; det(I �M�) = 0g

In words: �� is the reciprocal of the smallest � (with ��
as the norm) that can be found in the set� that makes
the matrix I �M� singular. If no such � exists, ��
is taken to be zero.

Applying � toM11 (upper LFT) results in the norm of
the worst-case perturbation making the LFT singular.
If �� > 1, there exists a �; ��(�) � 1 for which the
LFT is singular. On the other hand, if �� < 1, the
worst-case � is larger than 1. It is then guaranteed
that no combination of �'s < 1 exists, that violates the
well-de�nedness of the LFT.

In General:

��(M11) < 1 :
()

LFT is well-de�ned for all � 2�; ��(�) � 1
(3)
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Exact computation of � is a hard problem. The best
way is to �nd tight upper and lower bounds. By
squeezing the gap between these bounds, a good ap-
proximation is obtained. For a good description of the
underlying algorithms we refer to Ref,(2) the manual
of the �-Analysis and Synthesis Toolbox for Matlab,
which we used for the computations.
Extensive experience has shown that the gap between
the upper and the lower bound for mixed real/complex
perturbations may be up to 10 { 20%, but is usually
smaller.

Robust stability assessment in face of the perturbations
in � is based on the following theorem:

Robust stability () ��(M11(j!)) < 1 8!

where M is the transfer matrix of a system. This
theorem has an easy interpretation: in fact we walk
along the imaginary axis and at each frequency ! we
�nd the smallest � required to move a pole over the
axis at that frequency. Thus, if ��(M11(j!)) < 1 8!,
we are guaranteed that no pole will travel from one half
plane into the other for any � 2�; ��(�) � 1.

A robust stability test with � consists of the following
steps:

(1) obtain M , de�ne the set �,
(2) calculate frequency response of M ,
(3) calculate bounds on ��(M(j!)),
(4) �nd peak value (upper bound),
(5) peak < 1: system is robustly stable.

The �rst step involves the generation of the LFT-based
uncertainty description of the plant. Closing the loop
with the controller to be analyzed, K, we obtain the
system M . In step 3 we calculate the bounds over a
chosen grid of frequency points. We have to be careful
here: the grid must be dense enough to avoid that a
thin peak is missed.

3. The aircraft model

A detailed description of the nonlinear rigid-body
equations of motion for an aircraft can be found
in.(4, 20) More details about the aircraft under consider-
ation are given in.(11, 14) We will give a brief description
here, introducing some notations simultaneously.

The axis systems are earth-�xed inertial axes FE ,
vehicle-carried vertical axes FV (same orientation as
FE , attached to the center of gravity), body-�xed axes
FB , and wind axes, FW . The dynamics are described
using twelve states:

� P = [x y z]TE position of the vehicle center of
gravity in FE . z is positive downward; the altitude
is h = �z.

� � = [� �  ]T the attitude of the body-�xed axes
relative to FV .

� 
 = [p q r]TB the angular rates around the x, y,
and z axes respectively in FB .

� V = [u v w]TB the velocity components along the
FB axes.

The vehicle is depicted in �g 2. The model is based on
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Fig. 2. Attitude of aircraft

the Newton-Euler equations of motion:

_
B = I�1 [MA +MT �
B � I 
B ] (4)

_VB =
1

m
FA +

1

m
FT +RBE(�) FG �
B �VB (5)

The following kinematic relations hold:

_PE = REB(�) VB
_� = R�B(�) 
B

The matrix RY X denotes the transformation from axis
system X into axis system Y , I is the inertia tensor,
m is the mass, the subscripts A, T, and G denote
aerodynamic, thrust and gravity contributions respec-
tively, to the forces and moments. The aerodynamic
forces and moments depend on the angular rates 
,
the airspeed VA, the angle of attack �, and the sideslip
angle �. The wind speed vector in FB is given as:
WB = [uw vw ww ]

T
B . The airspeed vector in FB is

Va = VB�WB = [ua va wa]
T
B . VA, �, and � are obtained

from:

VA =
q
V T
a Va; � = tan�1(

wa
ua

); � = sin�1(
va
VA

)

The aircraft has two engines. The control inputs are
throttles (�TH1, �TH2), ailerons �A, elevator �E , and
rudder �R. The engine dynamics and the actuator dy-
namics of aerodynamic control surfaces are represented
by simple �rst order models, with rate and position
limits.
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The measured outputs are:

y1 = [q nx nz wV z VA V ]
T
(longitudinal)

y2 = [� p r � uV wV y �]
T

(lateral)

y3 = [ � � 
 xny]
T

where only y1 and y2 may be used for feedback. No
sensor models are used. nx, ny, and nz are load factors.

The designers had to cope with uncertain parameters
in the model, see table 1. In this table, m is the mass,

parameter unit min max nominal

m kg 100 000 150 000 120 000
Xcg m 0.15�c 0.31�c 0.23�c

Zcg m 0.0�c 0.21�c 0.0�c
� s 0.05 0.10 0.075
(VA) m/s 1.23 Vstall 90 80

Table 1. Parameter ranges RCAM

Xcg and Zcg are the horizontal and vertical center of
gravity shifts respectively, � is a computational time
delay in the 
ight control computer, and �c is the mean
aerodynamic chord. Although the designers had to
consider varying airspeed as well, they were allowed
to use it as a scheduling parameter. We performed the
analysis at a constant speed of 80 m/s; the reason is
discussed in the following section.

The RCAM was implemented in Dymola,(9, 10) an
object-oriented modeling package. This is described in
more detail in.(17)

4. LFT-modeling of RCAM

�-Analysis applies to parametrized linear systems.
Therefore we need to linearize the aircraft dynamics
�rst, and obtain a state space model that explicitly
depends on the uncertain parameters, collected in p =
[m; Xcg; Zcg]

T .

Beginning with the nonlinear equations of motion:

_x = f(x; u; p)
y = h(x; u; p)

(6)

we use the following procedure:

(1) Compute an equilibrium point f�x; �ug of the sys-
tem, for nominal values of the model parameters
pnom:

0 = f(�x; �u; pnom) : (7)

(2) De�ne

�
A(p) B(p)
C(p) D(p)

�
=

2
66664

@F (�x; �u; p)

@(�x)
;
@F (�x; �u; p)

@(�u)

@H(�x; �u; p)

@(�x)
;
@H(�x; �u; p)

@(�u)

3
77775
�x=0
�u=0

(8)

where

F (�x; �u; p) := f(�x+ �x; �u+ �u; p)
H(�x; �u; p) := h(�x+ �x; �u+ �u; p)

(9)

The linearized model (6) around the equilibrium
point is:

� _x = A(p)�x +B(p)�u
�y = C(p)�x +D(p)�u;

(10)

Note that a linear representation of the nonlin-
ear system is obtained, where the entries in the
matrices depend on m, Xcg and Zcg in a rational
way.

(3) Correct some matrix entries for the dependence of
equilibrium points of p. In step (2) we neglected
that in fact �x = �x(p) and �u = �u(p), and thus
that a number of the matrix elements depends on
the trim condition. Using text-book approxima-
tions(4) we identify and correct these elements,
if necessary, using polynomial �ts as a function
of p. Data for these �ts is obtained by trimming
and linearizing the RCAM at a range of operating
points.

(4) Generate rational expressions of the system matri-
ces by replacing m, Xcg and Zcg with normalized
expressions:

m = m0 + sm�m = 125000 + 25000 �m
Xcg = Xcg0 + sxcg�xcg = 0:23�c + 0:08�c �xcg
Zcg = Zcg0 + szcg�zcg = 0:105�c + 0:105�c �zcg

(11)

their substitution in (10) gives:

� _x = A(�p)�x +B(�p)�u
�y = C(�p)�x +D(�p)�u;

(12)

with �p = [�m; �xcg; �zcg ]
T .

Once the parameter dependent state realization in (12)
is available, an LFT representation can be obtained
automatically.

Except for the correction of trim-dependencies, the
procedure has been automated. For this purpose soft-
ware tools have been developed utilizing Dymola(9)

for modeling, Maple(5) for symbolic computations
and MATLAB(16) (with the PUM-toolbox(21) and �-
Tools(2)) for numerical computations. The procedure

4



and the software implementation are described in de-
tail in Refs..(17, 22) The intention was to take depen-
dence of the (trimmed) airspeed VA into account. How-
ever, the order of �V in � obtained from PUM became
very large and was certainly non-minimal.(22) Rather
than going into implementing better algorithms for
obtaining lower �-orders or analyzing longitudinal and
lateral dynamics separately, we decided to con�ne to
the nominal design speed of 80 m/s.

We end up with an LFT-model y that looks like:

p∆

u
RCAM
(linear)

z w

y

where �p is:

�p =

2
4 �mI17 0 0

0 �xcgI15 0
0 0 �zcgI3

3
5 (13)

The output vector y contains the measurements that
may be used by the control system (see sect. 3) and u
contains the control inputs. The obtained realization is
non-minimal, but of su�ciently low order to allow the
use of �-analysis.

LFT-model the for uncertain delay

The time delay � is approximated with a �rst order
Pad�e-�lter:

e��s =
2� �s

2 + �s
(14)

This approximation is reasonable up to a frequency
of �10 rad/s. With � 2 [0:05; 0:10] s, we scale this
parameter as follows:

� = �0 + s��� = 0:075 + 0:025�� (15)

The inverse of this expression is written as an LFT,
Fu(M� ; �� ), with:

M� =

2
64�

s�
�0

1

�0

�
s�
�0

1

�0

3
75

y This model is available, contact Gertjan.Looye@dlr.de

In a picture the Pad�e-�lter looks like:

1

S
2 2-

τ
-

M

δτ

In the closed-loop system the delay occurs between
the controller and the actuators/engines.(11) Therefore
Pad�e-�lters are placed at the �ve actuator/engine
inputs. The �ve �lters are augmented in a single LFT
description: Fu(M� ;�� ). Since �� is identical for each
input, the diagonal of �� consists of �ve repeated �� 's:
�� = ��I5.

Interconnection structure for analysis

For analysis of the controllers, we have to interconnect
all the subsystems. This is depicted in Fig. 3. Between

p∆

Mτ

Kref

Act

0.01cRCAM
(linear)

z w
∆τ

u
y

∆

Fig. 3. Interconnection of the sub-systems

the LFT-model for the delay and the actuators/engines
(Act) a small extra complex perturbation is added.
Since ��(�c) � 1, the perturbation is only 1%. The �-
structure now contains complex elements, which make
the computation of the �-bounds more tractable.(2) �c

is diagonal and consists of �ve independently varying
�'s (2 C).

K

P

∆ tot

y u

wz

Fig. 4. The �nal LFT-system for analysis

The �nal LFT-representation is depicted in Fig. 4. In
this �gure the system P consists of the RCAM and the
actuator/engine models. The controller K is drawn as
a separate block. In this block we may implement each
(linearized) controller. The closed-loop is obtained as
a lower LFT:

Mtot = Fl(P;K)
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�tot 2�tot is the complete perturbation structure:

�tot := fdiag (�mI17; �xcgI15; �zcgI3; �� I5; �da; �dt;

�dr; �dth1; �dth2) : �m; �xcg; �zcg; �� 2 R

�da; �dt; �dr; �dth1; �dth2 2 Cg (16)

The total order of � is thus 17 + 15 + 3 + 5 + 5*1 =
45.

LFT-modeling is the most time consuming task in
�-analysis: once the model is available, the actual
analysis is a matter of running a single computation
routine.

5. Robustness assessment using �-analysis

The robustness analysis of the controllers with � con-
sists of the following steps:

(1) Linearize the controller. Prior to numerical lin-
earization with LINMOD,(15) derivative blocks
are replaced by �rst-order high-pass �lters.

(2) Make a grid of frequency points along the imagi-
nary axis. The frequency range of interest for the
designs is: 10�1 � ! � 101:5 rad/s. In this interval
we select 100 logarithmically spaced frequency
points.

(3) Interconnect the linear controller with the LFT-
model (Fig. 4) using SYSIC in �-Tools(2) and
calculate the frequency response at the selected
frequencies.

(4) Calculate the bounds of � at each frequency
point with the �-Tools command MU.(2) MU
returns the bounds, the optimal D{G scales and
a destabilizing perturbation.

(5) Plot the �-bounds, �nd the peak and the corre-
sponding frequency.

(6) Figure out the worst-case perturbation from the
lower bound, at the frequency where the �-peak
occurs.

(7) Verify the perturbation in a nonlinear simulation.

We will discuss the analysis of the preliminary RCAM
design(1) in detail, and comment on some of these
steps. Next, we present the results with the other
RCAM controllers.

5.1 Example �-analysis

The design of the preliminary controller for RCAM
is described in.(1) This design is basically linear, so
that linearization of the SIMULINK structure goes
without problems. The steps 1{5 are straightforward.
The obtained �-plot is given in Fig. 5. We can see that

10
−1

10
0

10
1

0

0.5

1 0.9436

Robust stability: prel. controller

frequency (rad)

m
u(

M
11

)

lower bound

upper bound

Fig. 5. �-plot of the example controller

the upper bound shows a peak of 0.94 at a frequency
of ! � 0:7 rad/s. The lower bound calculation is poor,
except near the peak.

The peak of the upper bound is less than 1. This
guarantees that we can not �nd any � 2 �tot,
��(�) � 1 that destabilizes the system. In other words,
at least one of �m, �xcg etc. has to be larger than
one to destabilize the closed-loop system, and thus the
worst-case constellation of parameters is outside the
operating range.
On the other hand, the robust stability margin is small.
The critical ��(�) will be slightly larger than one:
1=�peak � 1=0:94 = 1:06. The stability margin is thus
only 6%. It is expected that the system gets unstable
just outside the operating range of the parameters.

It is possible to �nd the lowest values of the param-
eters leading to instability. We can obtain a critical
� = �crit from the maximum of the lower bound,
close to the worst-case.
We can check the stability of eigenvalues by substitu-
tion of �crit in the analysis structure (Fig. 4). With
the complex �'s set to zero, we found a worst-case real
perturbation. The critical �'s can be found in Table 2.

parameter �:: value

mass �m 1.1092
Xcg �xcg 1.1092
Zcg �zcg 1.1092
delay �� 1.1092
compl. pert. �da:::dth2 0

Table 2. Worst-case perturbations

Note that ��(�crit) = 1:1092, and thus 1=��(�crit) �
0:90. The small gap compared to the upper bound peak
of 0.94, is caused by the complex �'s and the use of D-G
scalings(2) for computation of the upper bound.

In table 3 we give the critical eigenvalue pair of the
closed-loop system for three di�erent parameter com-
binations. We observe that, increasing the perturbation
from 0:95�crit to 1:05�crit, the eigenvalue pair moves
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across the imaginary axis. Note that the real part

0.95 �crit �crit 1.05 �crit

-0.0137 � 0.6954i 0.0 � 0.6899i +0.0131 � 0.6844i

Table 3. Eigenvalues passing the imag. axis

corresponds to the location of the �-peak, found at
! � 0:7 rad/s.

It is remarkable that all critical �0s are identi-
cal. This appeared to be inherent to the RCAM;
for all controllers stability improves or deteriorates
monotonously with each of the scaled parameters near
the edges of the operating range. The equal val-
ues then result from the norm we use for �. For
example, � = diag (1:1092; 1:1092; 1:1092; :::) and
� = diag (1:1092; 0; 0; :::) both have a norm ��(�) =
1:1092, but the �rst case is worse, as in the second
case we need to increase the non-zero parameter con-
siderably (and thus ��(�)) in order to destabilize the
system.

For the critical �'s substituted in (11) and (15), we
obtain:

m = 125 000+ 25 000 � 1:092 = 152 300 kg
Xcg = 0:23�c+ 0:08�c � 1:092 = 0:317�c
Zcg = 0:105�c+ 0:105�c � 1:092 = 0:220�c
� = 0:075 + 0:025 � 1:092 = 0:102 s

(17)

Note that these values are only slightly outside the
ranges speci�ed in table 1.

As a �nal veri�cation we implement the controller with
the original nonlinear aircraft model and perform simu-
lations. As we did for �crit in (17), we use (11) and (15)
to compute two additional parameter combinations,
corresponding to 0:95�crit and 1:05�crit.

We trim the aircraft with the three parameter sets and
perform nonlinear simulations. The results of a small
single block-shaped wind input are shown in Fig. 6.

It is interesting to see that for 1:05�crit the simulation
shows unstable, and for 0:95�crit it shows stable
behavior. For �crit the response is oscillatory, being
at the limit of stability.

5.2 Analysis results

The analysis of the other controllers goes in a very
similar way. We will give the results and only comment
on interesting details.

The �-plots (upper bounds) of all designs can be found
on the last two pages. The results are summarized in
Table 4. Most of the columns in the table are self-
explanatory. The designs and methods are described

0 10 20 30 40
−1

−0.5

0

0.5

1

time (s)

q 
(d

eg
/s

)

Prel. controller

____ 1.00*pert
− − − 0.95*pert
........ 1.05*pert

Fig. 6. Nonlinear simulations with worst-case parame-
ters

in.(14) �peak is the peak of the upper bound, freq. is the
frequency in the �-plot where this peak occurs. At this
frequency the critical eigenvalue crosses the imaginary
axis. The worst-case (scaled) parameter combination
is also given, with the motion that becomes unstable
(lateral or longitudinal).
The value 1=��(�crit) gives an indication of the con-
servatism of the found upper bound peak. This con-
servatism is caused by setting the complex perturba-
tions to zero (table 2), and by approximating � with
an upper bound using D-G scalings.(2) The percent-
age in the column consv. is computed from [(�peak �
1=��(�crit)]=[1=��(�crit)].

There are considerable di�erences between the con-
trollers. The controllers LY-14(1), MS-19 and HI-21 do
not meet the robustness speci�cations, as �peak > 1.
Controllers MO-16 and MM-12 are very robust in face
of the considered parameters: �peak � 1. The �0s may
be increased with almost a factor three outside their
range of [�1; 1] without the closed-loop system going
unstable.

In �-synthesis design(3, 19) a �-value of 0.5 for robust
stability is considered as a good value in the trade-
o� between performance and robustness. It must be
noted that both �-synthesis controllers result from
completely di�erent uncertainty descriptions in the
synthesis model.

Note that, as in the example, in nearly all cases the
critical values of the �'s have equal magnitude: only
signs di�er. If �peak > 1, the critical parameter values
are all within the operating envelope. We can check
this by substitution in (11) and (15).

Typical computation times for �-analysis on a 166MHz-
Pentium PC are about half an hour. Computations for
the highest order controllers take somewhat more, but
do not cause any numerical problems. This is inher-
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worst-case parameters
No. Design method �peak freq. �m �xcg �zcg �� mode 1=��(�crit) consv.

bnd. rad/s (lon/lat)

MO-16 Multi-objective Param. Synth. 0.35 6.0 -2.92 2.92 2.92 2.92 lon 0.34 3%
MM-12 Modal Multi-model Control 0.36 8.0 -2.95 -2.95 -2.95 2.95 lon 0.34 6%
EA-22 Eigenstructure Assignment 0.39 0.5 2.67 2.67 2.67 2.67 lon 0.38 3%
FL-15 Fuzzy Logic 0.44 5.5 -2.35 -1.82 -2.35 2.35 lon 0.43 2%
MS-11 �-Synthesis 0.49 2.9 -2.21 -2.21 2.21 2.21 lat 0.45 9%

0.6 2.21 -2.21 -2.21 2.21 lon 0.45 9%
CC-13 Classical Control 0.51 0.8 2.01 2.01 2.01 2.01 lon 0.50 2%
LY-14(2) Lyapunov 0.57 0.8 1.84 1.84 1.84 1.84 lon 0.54 6%
MF-25 Model Following 0.65 0.6 1.54 1.54 1.54 1.54 lon 0.65 1%
EA-18 Eigenstructure Assignment 0.83 7.0 -1.30 1.30 1.30 1.30 lon 0.77 8%
HI-prel H1 Loop Shaping 0.94 0.7 1.11 1.11 1.11 1.11 lon 0.90 4%
LY-14(1) Lyapunov 1.14 0.5 0.90 0.90 0.90 0.90 lon 1.11 3%
MS-19 �-Synthesis 1.36 15.1 -0.76 -0.41 0.76 0.76 lon 1.32 3%

HI-21 H1 Loop Shaping 1.53 1.3 0.67 0.67 0.67 0.67 lon 1.49 3%

Table 4. Results of the �-analysis

ent to the followed approach: the algorithm computes
tight bounds, rather than considering the behaviour
of individual poles due to parameter variations. The
computation time is primarily determined by the order
of the �-block and the number of frequency points.
In the following paragraphs we brie
y discuss some
interesting aspects of our analysis.

Controller MS-11 The upper bound for this controller
is depicted in Fig. 7: it shows two equal peaks. Two
�'s (table 4) are found for which an eigenvalue passes
the imaginary axis. For the left peak a longitudinal and
for the right peak a lateral mode goes unstable. Since
the critical �'s have magnitude 2.21 the instability
occurs far outside the speci�ed parameter ranges. The
stability margin is thus good.

Controller LY-14(1,2). Although an improved con-
troller was submitted (LY-14(2)), the original design
LY-14(1) has an interesting feature. In the original
RCAM software a small bug existed in the imple-
mentation of the vertical center of gravity location.
The robustness assessment is based on the corrected
model. For the original controller instability is found
within the envelope (� > 1), which is mainly caused
by �zcg (see �gs 11). Veri�cation in a nonlinear closed-
loop simulation is depicted in �g. 19. With 1:05�crit

the system becomes unstable (corrected model). If we
simulate with the design model (not corrected), the
simulation is stable.

Controllers EA-18 and MS-19. These controllers have
problems with the time delay � . The �-upper bounds
in Fig. 14 and 15 show sharp peaks in the higher fre-
quency range. The approximation has been su�cient to
detect the problem, but apparently, a �rst-order Pad�e
approximation is not accurate enough for determining
the critical �� . Simulation with the critical � imme-
diately results in instability (we removed rate limiters
and saturations in the actuators, otherwise limit-cycles
arose). Therefore we �rst veri�ed the analysis with

Pad�e-�lters in nonlinear simulations. However, looking
for example at EA-18 (Fig. 20), the simulation with
0:95�crit is stable with the Pad�e approximation, but
unstable with a pure time delay.

6. Conclusions

We applied �-analysis for stability robustness assess-
ment of the RCAM design entries. As this assessment
is only a part of the complete evaluation of all entries,
we will not comment on the quality of the designs; for
this we refer to Ref.(14)

We found �-analysis a potentially useful tool for post-
design robustness analysis. Most of the work consists
of obtaining a su�ciently accurate LFT-description of
the model with uncertain parameters. Especially for
aircraft models this is not a trivial task.

In an LFT the uncertain scaled parameters are pulled
out of the system and put in the �-block, leading
to a highly structured uncertainty description. Fur-
thermore, interconnecting LFTs preserves the LFT
structure. These aspects make LFTs a very powerful
standard form for representing uncertainties.
We succeeded partially in automating the LFT mod-
eling,(17, 22) but for example the dependency of the
trimmed states on the uncertain parameters required
additional �tting of elements in the state-space matri-
ces. The procedure also led to very high orders of �.

Once the LFT description is available and we have
interconnected the controller, �-analysis is a matter
of a single computation run, for which software tools
are readily available.(2) We were able to �nd the ac-
tual worst-case parameter combinations, and to verify
them in nonlinear simulations with the original aircraft
model.
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�-Analysis is performed by computation of upper and
lower bounds over a grid of frequency points. The
upper bound gives hard guarantees for the stability
margin. We found conservativeness levels between 1
and 9%. Part of this conservativeness was caused by
introducing additional complex elements to the �-
block. This was necessary in order to 'smoothen' the
usually very thin peaks in the �-plots, that could
otherwise easily be missed due to the gridding.
It is therefore interesting to use computation methods
that avoid frequency gridding. Such a method for the
lower bound is described in.(6)

Automated LFT-generation is a great relief. There-
fore we intend to improve the algorithms, especially
addressing the high �-orders, using advanced order-
reduction schemes.
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Fig. 7. MS-11 { �-Synthesis
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Fig. 8. MM-12 { Modal Multi-Model Synthesis
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Fig. 9. CC-13 { Classical Control
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Fig. 10. FL-15 { Fuzzy Logic (linearized version)
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Fig. 11. LY-14(1) { Lyapunov Approach, original
entry
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Fig. 12. LY-14(2) { Lyapunov Approach, improved
entry
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Fig. 13. MO-16 { MOPS approach
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Fig. 14. EA-18 { Eigenstructure Assignment
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Fig. 15. MS-19 { �-Synthesis
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Fig. 16. HI-21 { H1
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Fig. 17. EA-22 { Eigenstructure Assignment
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Fig. 18. MF-25 { Model Following
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Fig. 19. LY-14 { comparison design model with
analysis model
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