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SUMMARY 
A neutrally stratified Ekman layer limited in depth by a stress-free rigid lid has been simulated using four 

different large-eddy simulation computer codes. This is the second large-eddy simulation intercomparison study 
in a series of simulations of different flows aimed at a systematic analysis of large-eddy simulation sensitivity 
to subgrid scale model assumptions and numerical methods. The resolution was chosen to be coarse so that 
the results might be sensitive to the details of the various subgrid scale model formulations. Stochastic 
backscatter of subgrid kinetic energy and scalar variance was included in one subgrid scale model. 

Profiles of first and second moments, budgets of resolved-scale second moments, and spectra have been 
analyzed. It is found that significant differences in the lowest third of the boundary layer result from moderate 
changes in subgrid scale eddy diffusivities or from the inclusion of backscatter. 

To isolate effects of the various numerical methods, a set of tests with a fixed subgrid scale K-profile were 
made. When run with a common subgrid scale model the results from the four large-eddy simulation codes 
converge. This test indicates that the large-eddy simulation results are more sensitive to the subgrid scale model 
formulations than to the various numerics. 

1. INTRODUC~ON 

Large-eddy simulation (LES) has become a useful tool to investigate characteristics 
of turbulent flows. Using this method, turbulent flow structures, transport dynamics, 
ensemble average statistics, and closure assumptions used in ensemble average model- 
ling, have been examined within various types of planetary boundary layers (PBLs) 
(Nieuwstadt and Brost 1986; Mason 1989; Moeng and Wyngaard 1989; Schmidt and 
Schumann 1989; AndrCn and Moeng 1993). 

For fine grids, LES should be insensitive to the particular choice of subgrid scale 
(SGS) parametrization, except close to the ground where the turbulence scales must 
become smaller and an increased sensitivity to SGS parametrization is inevitable. 
However, results in the bulk of the boundary layer may be more sensitive to the subgrid 
model when using coarse grids which only marginally resolve the inertial subrange. In 
addition numerical details may also affect the simulation results. 

In this paper, we present results from simulations of a particular flow by a set of 
LES codes that use a variety of SGS parametrizations as well as different numerical 
methods. The flow studied is a neutrally stratified atmospheric boundary layer limited in 
depth by a stress-free rigid lid, i.e. an analogue to the classical Ekman layer. A similar 
exercise was carried out by Nieuwstadt et al. (1992) (hereafter NMMS92) for a convective 
atmospheric boundary layer, using the same four LES codes as in the present study. 
NMMS92 found that all four LES simulations performed about equally well, i.e. differ- 
ences, which typically were not greater than about lo%, were found to lie within the 
scatter of available observations, even with a rather coarse resolution. The main dif- 
ferences between the various LES results were attributed to the use of different values 
of the so-called Smagorinsky constant in the SGS model, which is the ratio between the 
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subgrid mixing length and a representative grid size. However, it was felt that the good 
agreement of all LES results was partly due to the fact that the convective boundary 
layer is a rather easy case for LES, because its structure is dominated by large-scale 
thermals. It was therefore decided to extend the comparison to study a more challenging 
case, namely the neutral shear-driven boundary layer. In this type of boundary layer the 
turbulent eddies are smaller than in the convective boundary layer case, and the inertial 
subrange is reached at higher wavenumbers. For given domain size and grid resolution 
a larger impact of the SGS formulation is thus expected in a neutral case than in a 
convective case. This makes the neutral boundary layer more difficult to simulate by the 
LES technique since one has to rely more on the SGS model. 

We consider a neutral turbulent Ekman layer, i.e. a flow driven by a constant large 
scale pressure gradient in a rotating system. Resolved-scale turbulent motions are thus 
due to shear instabilities. A passive scalar variable is introduced into the simulations by 
imposing a constant flux at the surface. All LESS were started from the same initial 
conditions and used the same forcing and boundary conditions. 

First, in section 2, we discuss the LES codes with emphasis on differences, specifically 
SGS formulations and numerical methods. Next, in section 3, we describe the calculation 
set up and the boundary conditions. The LES results are presented in section 4. In section 
5 we discuss results from a test in which all LES codes were run with a common SGS 
model, and finally conclusions are given in section 6. 

2. OVERVIEW OF THE LES CODES 

We will refer to the four different LES computer codes (and the co-authors under- 
taking the investigations) as Mason’s (Mason-Brown), Moeng’s (Andren-Moeng), 
Nieuwstadt’s (Nieuwstadt), and Schumann’s (Schumann-Graf). Detailed descriptions of 
the individual codes may be found in Mason (1989); Moeng (1984); Nieuwstadt and 
Brost (1986) and Schmidt and Schumann (1989), respectively. The backscatter model 
used in Mason’s code is described in Mason and Thomson (1992). Here we will focus on 
the differences in the models’ SGS formulations and numerical techniques. 

(a)  Subgrid scale models 
By filtering the Navier-Stokes equations, turbulent motions can be separated into 

the resolved and subgrid scales. The conservation equations for resolved-scale velocities 
and scalars for incompressible flow may be written as 

and 

where an overbar denotes a filtered variable, Ug and Vg are the geostrophic wind 
components, f is the vertical Coriolis component, P, is the resolved-scale pressure field, 
p is the (constant) density, e is the subgrid turbulent kinetic energy (TKE), ti, and tci are 
the anisotropic parts of the SGS stresses, and sZi is the earth rotation vector. Other 
forms of these equations exist and e.g. Moeng’s code uses a vorticity form of Eq. (1). 
Note that we have defined TKE in this incompressible flow to be equal to half the sum 
of the three velocity variances (m2 s-’). 

Whereas the resolved scales are explicitly calculated, SGS motions must be par- 
ametrized. Until quite recently, it was assumed that the only role of the SGS model is 
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to dissipate the energy that is passed down to small scales through the energy cascade 
process. Typically this was achieved by using the Smagorinsky (1963) formulation for the 
anisotropic part of the SGS stresses 

where the eddy viscosity, KM, is given as PS. Here S = = Vh(dEi/dxj + &j/dxi)2 is 
the absolute value of the strain rate of the resolved-scale velocity field and 1 is a 
representative SGS length scale. In Smagorinsky’s original formulation 1 = C,A, where 
A is a characteristic grid size. Mason’s code, without the option of backscatter of kinetic 
energy and scalar variance (see below), uses this formulation. 

In both Moeng’s and Nieuwstadt’s codes, KM is given by 

KM = CLe*, (4) 
where the subgrid TKE is calculated from a prognostic equation and where L is a 
representative subgrid length scale. Lastly, in Schumann’s code, the SGS formulation is 
also based on a prognostic equation for e. However, Schumann’s KM formula is based 
on a single-point closure scheme for the second moments of the subgrid fluctuations. 
Nevertheless, in the present neutral flow simulation, Schumann’s SGS formulation differs 
from that in Moeng’s and Nieuwstadt’s codes only by the values of SGS closure constants 
for diffusion and dissipation. In these simulations Schumann’s code does not include the 
splitting of diffusivities in a locally ‘isotropic’ and ‘homogeneous’ part as in Schumann 
(1975). In the codes of Moeng, Nieuwstadt and Schumann, the SGS length scale L in 
the interior of the flow is proportional to A. However, the codes use different definitions 
of A. 

To clarify differences in the SGS formulations we assume that shear production is 
balanced with dissipation in the SGS TKE budgets. With this balance we obtain the 
anisotro ic SGS stresses as rv = -PSSij = - KMSv, as in Eq. (3), and may calculate 1 = 

Mason, which is prescribed directly without any explicit reference to A. Finally we can 
extract the values of C, using the common definition 1 = C,(AXA~AZ)”~.  

The SGS length scale is constant in Moeng’s code. Close to the surface, Mason’s 
and Schumann’s codes set the SGS length scale to be proportional to height, while 
Nieuwstadt’s code effectively attains this proportionality by using a different formulation 
for the dissipation term in the equation for subgrid TKE near the surface. All the codes 
relate the SGS eddy diffusivity for scalars, Kc,  to the SGS eddy diffusivity for momentum, 
KM, through a constant SGS Schmidt number, Sc, 

( K M / S )  J: for the three codes. These values can be compared with the value of 1 used by 

KM sc = -. 
KC 

Values of SGS Schmidt number, 1 and C, used are given in Table 1. 
A longstanding problem in LES of neutrally stratified, high Reynolds number flows 

has been an inability to obtain a realistic logarithmic velocity profile in the surface layer, 
with excessive shear almost invariably found in the semi-resolved region close to the 
surface. The Smagorinsky model is purely dissipative and is deterministic as it assumes 
that subgrid motions are fully determined by the resolved motions. However, it has been 
recognized (e.g. Leslie and Quarini 1979) that SGS stresses should have stochastic 
fluctuations, and that the effect of these fluctuations is to ‘backscatter’ some energy from 
small to large scales, against the mean direction of energy transfer along the cascade. 
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Mason and Thomson (1992) used a stochastic subgrid forcing model in which the rates 
of backscatter of TKE and scalar variance were C, times the dissipation of energy, and 
CBc times the rate of dissipation of scalar variance, respectively. The magnitude of 
these constants can be estimated from the EDQNM (Eddy-Damping Quasi-Normal 
Markovian) theory, in which the equation for third moments is closed by assuming that 
fourth-order cumulants provide an eddy damping effect on triad interactions (Lesieur 
1990), but, in view of the qualitative uncertainties, the values were empirically tuned to 
give the best results, i.e. logarithmic mean profiles. The spatial scale of fluctuations was 
dealt with by filtering the point wise random numbers with a three-dimensional 1 : 2 : 1 
filter and the temporal variation was treated crudely by varying the random numbers 
every two time steps. Nevertheless, using the backscatter SGS model, Mason and 
Thomson showed that the mean profiles had a marked improvement in the near-wall 
behaviour. In this study, Mason-Brown have performed simulations both with and 
without the backscatter effect. Values of CB = 1.40 and CBc = 0.45 are used in this study. 

TABLE 1. SUMMARY OF INTERIOR VALUES OF I ,  SGS co- 
EFFICIENTS (c$), AND SGS SCHMIDT NUMBERS USED IN THE 

INDIVIDUAL LES CODES 

Mason’s 10.0 0.17 0.70 
Moeng’s 13.6 0.24 0.33 
Nieuwstadt’s 12.7 0.22 0.33 
Schumann’s 7.6 0.13 0.42 

(b )  Numerical solution techniques 
Uniform vertical grid-structures are employed in all codes except Mason’s. In 

Mason’s code the vertical mesh-spacing is reduced from about 40m at the top of 
the domain to about 10m as the surface is approached. To facilitate the present 
intercomparison, Mason-Brown have performed runs with a uniform vertical grid as 
well. 

All codes use a vertically staggered grid. In addition, Nieuwstadt’s, Mason’s and 
Schumann’s codes are staggered in the horizontal directions. Moeng’s code uses the 
pseudo-spectral representation in the horizontal directions and is not horizontally stag- 
gered. The grid structure of each code is given in Fig. 1. 

Mason’s and Nieuwstadt’s codes: 

The various numerical schemes used are summarized below: 

Advection terms are solved by the Piacsek and Williams (1970) variance conserving 
second-order method, and time stepped by the leap-frog scheme with a weak time 
filter. Diffusion terms are second-order central differences and time advanced by the 
first-order forward Euler method. 

Advection terms are designed to conserve integrals of momentum and energy for the 
velocity fields, following Mansour et al. (1979), and volume integrated variances of the 
scalar fields. All horizontal derivatives are calculated by the pseudo-spectral method 
whereas vertical derivatives are approximated by second-order central differences. 
The second-order Adams-Bashforth time stepping is used for time integration. 

Advection of velocity components is approximated by second-order energy-conserving 

0 Moeng’s code: 

Schumann’s code: 
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central differences, as first used by Lilly (1965). Advection of scalars and subgrid 
energy is done using the second-order upwind-scheme of Smolarkiewicz (1984), which 
guarantees positivity of scalar fields but causes some numerical diffusion of second 
order. Second-order central differences are used for the diffusion terms. The Adams- 
Bashforth scheme is used for time advancement. 

In order to reduce discretization errors and to weaken stability limits on the time 
step, a Galilean transformation is used by Mason-Brown, Nieuwstadt and Schumann- 
Graf where the grid moves with velocities ( U G ~ ,  VGd) = (7.5, 0.0) m s-l, ( U G ~ ,  VGd) = 
(10.0, 0.0) m s-l and (UGd, VGd) = (7,2) m s-l respectively. 

The Piacsek and Williams (1970) advection scheme, used in Nieuwstadt’s and 
Mason’s codes, is equivalent to that of Lilly (1965), used in Schumann’s code, when the 
continuity equation is satisfied. 

All codes solve a Poisson equation for pressure through a mixed fast-Fourier and 
finite difference technique. 

n 

Figure 1. Schematic diagrams showing the grid structures used in the individual LES codes. 
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3. FLOW SET-UP AND BOUNDARY CONDITIONS 

We focus here on a PBL at the latitude of 45 degrees north, driven by a constant 
large-scale pressure gradient which, above the boundary layer, would balance a geo- 
strophic wind of (U,, V,) = (10.0,O.O) m s-’. We include in these simulations both vertical 
and horizontal components of the Coriolis force. The flow was simulated with a grid of 
40 x 40 X 40 points in a horizontally periodic box of 4000 m x 2000 m X 1500 m in x - ,  y- 
and z-directions, respectively. In view of the well known streak-like structures present 
near the wall in shear-driven boundary layers, a horizontally anisotropic grid was chosen 
in order to obtain a better spanwise resolution. 

At the lower surface, we applied surface-layer similarity with a roughness length zo 
of 0.1 m. A stress-free upper boundary was used. The height of this boundary is 
approximately 0.35u*/f in these runs, where u* = (uw?, + uW?,)1/4 is the surface friction 
velocity and the vertical component of the Coriolis parameter, f, is equal to 10-4s-’. A 
passive scalar was introduced to the flow through a constant surface flux of kg m-2 
s-’. All codes use a density for air equal to 1 kg m-3. 

The simulation was initialized by a steady state mean flow profile obtained from a 
PBL-model using a single-point closure turbulence scheme. To this mean flow, we added 
a small random perturbation in all velocity components, generated from random numbers 
uniformly distributed between -0.5 and 0.5, with TKE $/2, that is given in Table A.l 
in the appendix. The simulations were run over a period of 10 xf-’, of which the last 
3 x f-’ were used to calculate statistics for analysis. Statistics were built on equidistant 
samples from the analysis period but the number of samples varied among the codes as: 
Andren-Moeng, 18; Mason-Brown, 750; Nieuwstadt, 74; Schumann-Graf, 18. 

Since a variety of numerical schemes as well as computer types have been employed 
in this study, it is of interest to summarize the CPU time usage in order to assess the 
computational efficiency of each individual code. Table 2 presents a summary of some 
key computational parameters. It should be noted that the CPU requirements are slightly 
unrepresentative since sections of the codes calculating buoyancy effects were retained 
although the effective force of gravity was identically zero. 

4. RESULTS 

Including the four different runs made by Mason-Brown (i.e. non-uniform vertical 
grid and uniform vertical grid, both with and without backscatter), a total of seven 
different runs are available for comparison. However, compared with other variations, 
no significant differences were found between the Mason-Brown results with uniform 
and non-uniform grids, and all results presented are from their non-uniform grid runs 
except where otherwise stated. A comparison of results from essentially the same flow 
as simulated here, and, from observational data, has been made by Mason and Brown 
(1993). The scatter in the data does not allow critical discrimination between the results 
and in assessing the credibility of the simulations we have to place some reliance on the 
better known properties of surface layer flows and the expectation of a smooth match 
into the flow interior. We therefore limit ourselves to intercomparisons of the LES results 
from the different runs. In the presentation, we denote the horizontal average of a 
resolved-scale velocity component by, e.g., (Z). A second moment is denoted by, e.g., 
uw, the net vertical turbulent u-momentum flux, which is a sum of the resolved-scale 
part (Zw”) = ((U - o ) ( W  - 0)) and the SGS part, by ( ~ 1 3 ) .  Results are normalized by 
the parameters, u*,f-l, and c* = wco/u*. 

- 

- 
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TABLE 2. ~ L M M A R Y  OF COMPUTATIONAL STATISTICS 
~ 

Code Mason’s Moeng’s Nieuwstadt’s Schumann’s 

40 40 
4000 4000 
2000 2000 
1500 1500 

-67 000 100 000 

DEC3000 CRAY-XMP 

-1.5 1 .o 
2.0 0.94 

40 40 
4Ooo 4Ooo 
2000 2000 
1500 1500 

25 000 20 OOO 
4.0 5.0 

0.25 1.32 
CRAY-YMP CRAY-YMP 

N x ,  Ny, N,: number of points in x-,  y- and z-directions respectively; L,, L, and L,: sue of 
the computational domain; At: time-step; Nr: the total number of time-steps for the total 
simulation period; Tcpu: CPU time per time-step. 

(a)  Time series 
Figure 2 shows the vertically integrated TKE (resolved + subgrid). It is clear 

that the level of TKE is about the same in all runs and that after the first non-dimensional 
time unit when the resolved scales rapidly amplify, a levelling off of the TKE at 
f J@tq2 dz/u$ = 0.7 is found. Fluctuations around this level are slightly larger for runs 
with Moeng’s and Nieuwstadt’s codes, but the turbulence intensity seems to have reached 
a quasi-steady state in all codes. The non-backscatter run of Mason-Brown (not shown) 
has a value of normalized vertically integrated TKE approximately 10% larger than the 
backscatter run, and in good agreement with the other runs. u*/UG is quite constant in 
all runs, with an average value of 0.0425 for Andrkn-Moeng’s run, 0.0448 for Mason- 
Brown’s backscatter run, 0.0402 for Mason-Brown’s non-backscatter run, 0.0402 for 
Nieuwstadt’s run, and 0.0425 for Schumann-Grafs run. The 10% increase in surface 
stress found by Mason-Brown when using backscatter is associated with a change in the 
velocity profile (see below). We also note that a smoother development of the resolved 
scales during the first non-dimensional time unit takes place when backscatter is included. 

Sensitive measures of non-stationarity in the mean fields are given by the quantities 

and 

where ztop is the top of the simulated domain at which the stress-free lid is applied. In 
an exact steady state situation, both Cu and C, should be 1.0. Due to the inertial 
oscillation, this regime is approached only very slowly, as shown in Figs. 3(a) and (b). 
We notice that the different runs are closely in phase, as they should be, since they were 
all initialized in the same way. By averaging over the same time period, we hope to have 
minimized any differences due to this inertial oscillation, which will show up mainly in 
the first-order moments. The mean velocity gradients vary only slowly in time and the 
higher moments which achieve steady state at the turbulence time scale and have been 
calculated with respect to horizontal averages are less sensitive to this oscillation. 

(b )  Profiles of fluxes and variances 
Normalized profiles of the first moments, ($,o, and (3, appear reasonably similar, 
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Figure 2. Time series of normalized vertically integrated turbulent kinetic energy. The run by Mason-Brown 
here is the backscatter case with non-uniform vertical grid. In this and following figures we denote backscatter 

runs with bsct, and non-backscatter runs with nbsct. 

within -10% of each other, and are not shown here. However, it is revealing to look at 
the non-dimensional gradients in the surface layer where, as noted in section 2(a), the 
traditional Smagorinsky model has consistently failed to produce logarithmic mean 
profiles. Values of non-dimensional velocity gradient, (DM, and scalar gradient, aC, 
defined here as 

and 

should be constant in the logarithmic layer. Profiles of aM and (Dc ,  Figs. 4(a) and (b), 
show excessive shear in velocity and scalar fields for all codes used here, except in the 
backscatter version of Mason’s code, which produce a smooth linear transition from the 
boundary in to the interior of the flow. 

Notable differences appear in the velocity variances, which are shown in Fig. 5 .  We 
notice that Moeng’s and Nieuwstadt’s codes give a peakLn u2/u$ at about zf/u* = 0.03. 
Furthermore, at this level, a 50% difference in total u2/& is noted among the four 
results. The non-backscatter runs with Mason’s code show similar peaks although they 
are slightly larger and occur at a lower height. We also notice in both the backscatter 
and non-backscatter runs with Mason’s code that G/u$ is not sensitive to the stretched 
grid option (comparison not shown). Mason and Thomson (1992) noted a similar 
reduction in the magnitude of the peak in z / u $  when using backscatter, and concluded 
that the sharp peak in s/u$ in their non-backscatter runs was due to the excessive shear 
in the mean flow in the semi-resolved region. 
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Figure 3. (a) C, of Eq. (6) showing the deviation from steady-state conditions in the x-component momentum 
equation and (b) C, of Eq. (7) showing the deviation from steady-state conditions in the y-component 

momentum equation. 
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Figure 4. (a) Non-dimensional gradients of mean velocity and (b) non-dimensional gradients of mean scalar 
fields. 
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Figure 5. Normalized velocity variances, showing both the sum of resolved and SGS contributions and the 
SGS part. 

On the whole results from Schumann’s code are closer to Mason-Brown’s backscatter 
runs. This is particularly noticeable in ?/u$, where Schumann’s code gives about the 
same resolved-scale contribution as in the backscatter run with Mason’s code. Since the 
SGS formulation used in Schumann’s code for this non-buoyant case is equivalent to 
what is used in Moeng’s and Nieuwstadt’s codes, we must attribute the difference to the 
value of the Smagorinsky constant, C,, and possibly to the differences in the numerical 
methods. With the coarse resolution used in this simulation, we should expect results to 
have some sensitivity to SGS parameters, especially near the surface. We notice that the 
SGS fraction of the TKE agrees well among the different runs, except for the layer below 
.flu* = 0.05. Here we also note a decrease in SGS TKE when backscatter is included in 
Mason-Brown’s code. 

Profiles of total vertical fluxes of u- and u-momentum agree well among the runs 
(Figs. 6(a) and (b)), although differences are found in the SGS part near the surface. 
Results from Moeng’s and Nieuwstadt’s codes, and from Mason’s code without back- 
scatter are similar, whereas Schumann’s code gives a very small subgrid scale flux. 
Mason’s code with backscatter lies in between. 
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Figure 6. (a) As in Fig. 5 but for the normalized vertical flux of x-component momentum and (b) as in Fig. 
5 but for the normalized vertical flux of y-component momentum. 
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Figure 7 shows the subgrid and total variance of the passive scalar, ?/&. The SGS 
part is roughly the same for all models so that the differences observed in Fig. 7 must be 
due to the resolved motions. In particular, we notice a faster fall-off of resolved-scale 
2 as the surface is approached in the results of AndrCn-Moeng and Nieuwstadt than in 
- those of Mason-Brown and Schumann-Graf. Mason-Brown’s non-backscatter level of 
c’/c$ is almost twice as large as the results from Moeng’s, Nieuwstadt’s and Schumann’s 
codes. This is primarily due to the much larger Schmidt number used by Mason-Brown 
leading to smaller eddy diffusivities for the scalar. A short test run with reduced Schmidt 
number confirmed the expected decrease in ?/&. A further test where all codes were 
run using the same eddy diffusivities will be described in section 5 .  The large reduction 
in 2/& when backscatter is included is again believed to be linked to the changes in 
near-surface gradients, in particular to the reduction in mean scalar gradient. The 
Smolarkiewicz scheme which produces some numerical diffusion may be responsible for 
slightly smaller scalar variances in Schumann’s code. 

Figure 8 shows wC/u*c* and we note significant differences in the magnitude of the 
SGS part between different codes, as we did for the vertical momentum flux, reflecting 
the differences in SGS eddy diffusivities and Schmidt numbers. Again Schumann’s code 
gives a SGS contribution of about the same magnitude as that obtained from the 
backscatter runs with Mason’s code. (Note that differences in u* between the runs puts 
the top of the domain at different zf/u* in this normalized representation.) 

We now direct our attention to the pressure-related correlations. Pr in Eq. (1) 
represents only the resolved-scale pressure. In later figures, however, we will consider 
one third of the trace of the SGS stress tensor, i.e. 3e, into the p notation, so that 
p =PI + 3pe. By doing so, we avoid subtraction of the estimated subgrid energy in 
Mason’s code where the SGS energy is not explicitly calculated. Also, the backscatter 
formulation in Mason’s code does not explicitly cover the irrotational part of the random 
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Figure 7. As in Fig. 5 but for normalized scalar variance. 
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Figure 8. As in Fig. 5 but for the z-component scalar flux. 

stresses preventing extraction of true pressure from the backscatter runs. Since pressure, 
through its dependency on integrals of velocity products, is a second-order quantity, we 
expect larger scatter due to sampling. This is corroborated by, e.g., Wp/pu$, in Fig. 9, 
where the shaded region shows the envelope of plus and minus one standard deviation 
from the 18 instantaneous profiles of Andr6n-Moeng’s data. The width of the shaded 
area in Fig. 9 indicates that in order to get reliable results for the pressure correlations, 
one needs significantly better resolution and a larger data set size than used here. Our 
use of a rather coarse mesh means that a significant part of the correlation comes from 
the 3pe term. For example, if we use only resolved-scale pressure, pr, in the data from 
Moeng’s code, we obtain roughly twice as large a peak in the lower boundary layer, in 
accord with previous high-resolution Ekman layer simulations with Moeng’s code (And- 
r6n and Moeng 1993). 

For the standard deviation of pressure, @)@/pu$, Fig. 10, we find quite varying 
vertical structures in lower levels. Schumann-Grafs run, which has the smallest SGS 
edd diffusivity, and Mason-Brown’s backscatter run both show a continuous increase 

differences largely disappear if the LES codes are run with the same SGS eddy diffusivity 
profile. We notice that the difference between backscatter and non-backscatter runs is 
about 20% in the interior of the flow. An analysis of the results from the simulation with 
Moeng’s code shows that the inclusion of 3pe in the pressure variable changes 
@)@/pu$, by only about 5%. We tentatively conclude that inclusion of backscatter has 
a non-negligible impact on the pressure field even in the interior of the flow of a coarse 
resolution LES. Our results thus confirm the expected sensitivity of coarse LES results 
to the Smagorinsky constant as well as to the backscatter effect. 

of (p f )@/pu$, all the way down to the surface. As will be shown later in section 5 these 



BOUNDARY-LAYER LARGE-EDDY SIMULATION 1471 

Schumann/Grd ---- 
Maaon/Brom. nbsct 

7” 
\ 
y.l 
N 

-0.30 -0.20 -0.10 0.00 0.10 

Resolved scale 
wp/PU3, 
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(c) Budgets of TKE and vertical f lues  
We limit our analysis of budgets to the resolved-scale TKE and vertical fluxes of 

momentum and scalars. We stress that our budgets are for the resolved-scale parts only 
and that the pressure effect is included in the form of p = Pr + 3pe. The inclusion of 3e 
in the definition of pressure completely alters the vertical distributions of the pressure 
terms in the flux budgets as compared to using just pr in these coarse-resolution simula- 
tions. Our budget equations are for the vertical flux of u-momentum 

Tendency Production Turbulent transport 

Pressure 

Subgrid scale 
A 

-f(-'"' w w ) + j(ZV) + f(357), 
C o ri o I i s 

and for the vertical flux of a passive scalar 

Tendency Production Turbulent transport 

Pressure 

Subgrid scale 

+ flZ"d'), 
C o ri o 1 is 

where Z = ii - (E;) and ?is the horizontal Coriolis component. 
In the TKE budgets we find the expected balance between production and SGS 

effects in all simulations, all other terms are negligibly small. Therefore we will show 
only the dissipation rate profile of the TKE budget. Profiles of the dissipation of resolved- 
scale TKE, Fig. 11, show a good agreement in the interior of the flow. Differences are 
found below .flu* = 0.05, in the surface layer. Codes using smaller effective SGS eddy 
diffusivities generally show larger values of the dissipation term in this layer. The increase 
in resolved-scale strain rates thus dominates over the decrease in SGS eddy diffusivities 
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Figure 11. Normalized profiles of dissipation of resolved-scale TKE. 

such that the net dissipation of the normalized resolved-scale TKE is increased toward 
the surface. 

Budgets of the resolved-scale vertical flux of u-momentum in Fig. 12 also show 
negligible tendency terms. The flux budgets are dominated by production and pressure 
terms. Coriolis and turbulent transport terms are minor, except for Schumann-Graf s 
results where the transport term makes a non-negligible contribution. Moeng’s and 
Nieuwstadt’s codes and Mason’s code without backscatter give a small SGS term, leaving 
a close balance between the pressure and the production terms. However, in Mason- 
Brown’s backscatter run, the SGS term becomes a non-negligible contribution, so too in 
Schurnann-Graf s run. This results from the increased turbulence intensity at small scales 
in these runs. Comparing the non-backscatter with the backscatter case we find that the 
increase in the magnitude of the production that follows from the increase in resolved- 
scale WW in the backscatter run is balanced by an increase in the SGS term. The pressure 
term agrees well between the runs in the interior of the flow but is much larger next to 
the surface in Mason-Brown’s backscatter run and Schumann-Graf s run, as compared 
to other runs. Again this is consistent with these runs having more intense resolved-scale 
motions close to the surface. 

Finally, we stress again that using only resolved-scale pressure, p,, in the pressure 
term, as opposed to the use of pr + 3pe. we obtain a radically different picture with a 
large increase in the SGS effect and also with a corresponding change in the pressure 
term as the surface is approached. 

Results for the budgets of the resolved-scale vertical flux of u-momentum are 
generally similar to the results for the vertical flux of u-momentum and are not shown. 

Budget differences similar to those for the (357‘) budgets are found in the budgets 
of the vertical flux of scalar, (ZP), Fig. 13. Again, the budgets from Moeng’s and 
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Figure 13. Normalized budget for resolved-scale vertical flux of the passive scalar. The curves for transport 
and tendency are not shown for Schumann’s code because it turned out to be difficult to compute these terms 

correctly in this code which uses the Smolarkiewicz scheme. 

Nieuwstadt’s codes agree with each other, showing basically a balance between pro- 
duction and pressure terms with some minor influence of the subgrid terms. (Note again 
that a completely different picture emerges if one uses only resolved-scale pressure, pr, 
for the pressure variable. SGS effects are then, together with production and pressure 
redistribution, the leading terms.) Mason’s code without backscatter (not shown) gives 
a vertical structure similar to Moeng’s and Nieuwstadt’s codes, but with about 50% larger 
magnitudes for production and pressure terms. Schumann-Graf s results are close to 
Mason-Brown’s backscatter results. Note that the transport and tendency terms are not 
shown for Schumann’s code because it turned out to be difficult to compute these terms 
correctly in this code which uses the Smolarkiewicz advection scheme for scalars. Due 
to the smaller SGS eddy viscosities, KM (Fig. 14(a)), and larger Schmidt numbers, the 
SGS diffusivities for scalars, Kc, in Schumann-Graf s and Mason-Brown’s runs are only 
about 50% of the Kc in AndrCn-Moeng’s and Nieuwstadt’s runs, as shown in Fig. 14(b). 
Accordingly, we find quite large differences in the budgets. In the Schumann-Graf run 
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Figure 14. (a) Horizontally averaged SGS eddy diffusivity for momentum, KM and (b) horizontally averaged 
SGS eddy diffusivity for scalar, Kc. 



BOUNDARY-LAYER LARGE-EDDY SIMULATION 1477 

and the Mason-Brown backscatter run we find that the production, pressure, and SGS 
terms all dominate and continue to increase all the way down to the surface. This is in 
line with differences shown earlier for profiles of correlations involving the scalar fields. 

(d) Spectra 
We have calculated energy spectra of the velocity and scalar fields and show here 

spectra at zf/u* = 0.10 in Fig. 15. These spectra are calculated from one-dimensional 
Fourier transformations that are then averaged in the horizontal direction perpendicular 
to the wavenumber vector component, and in time. We limit the presentation to spectra 
along the x direction. Note that spectral estimates have been multiplied by a factor of 
lo00 in order to provide more reasonable labels along the ordinate. These spectra show 
that smaller SGS eddy diffusivities push spectral peaks towards higher wavenumbers. 
Results from Moeng's and Nieuwstadt's codes have spectral peaks at nondimensional 
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Figure 15. Normalized spectra at a height of zf/u* = 0.1 of resolved-scale velocities and passive scalar. 
Spectral estimates have been multiplied by a factor of loo0 in order to provide more reasonable labels along 

the ordinate. 
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wavenumbers around 20 whereas spectra from Mason’s and Schumann’s codes peak at 
non-dimensional wavenumbers around 3040. 

Spectra of the passive scalar indicate the dispersive property of the Smolarkiewicz 
advection scheme used in Schumann’s code. Although the SGS diffusivity for scalars, 
Kc, in Schumann-Graf s run is much closer to Mason-Brown’s than to AndrCn-Moeng’s 
and Nieuwstadt’s, as shown in Fig. 14(b), still Schumann-Grafs scalar spectra are closer 
to AndrCn-Moeng’s and Nieuwstadt’s than to Mason-Brown’s. 

Values of SGS eddy diffusivities in Figs. 14(a) and (b) tend to form two groups with 
Mason-Brown’s and Schumann-Graf s showing smaller values than AndrCn-Moeng’s 
and Nieuwstadt’s. When comparing spectra we notice that spectra from the former two 
runs tend to have steeper fall-off at higher wavenumbers. As one decreases SGS eddy 
diffusivities spectra are expected to become increasingly flat, with a drop at the cut-off 
wavenumber. Thus it seems as if a gradual decrease in SGS eddy diffusivities first moves 
the spectral peak to higher wavenumbers, with a steeper spectral roll-off at the highest 
wavenumbers as a result, and then flattens the spectrum. Due to the coarse grid resolution 
used, none of the runs shows a well defined inertial subrange. This is particularly the 
case at low levels where the decrease in discrete spectral intensity at higher wavenumbers 
is significantly faster than -2/3. 

Comparing backscatter with non-backscatter runs from Mason’s code, we find the 
expected shift of spectral peaks to higher wavenumbers when backscatter is included. 
This results from the continuous random excitation of the smallest resolved scales. A 
similar effect is obtained with reduced values of SGS eddy diffusivities. By reducing SGS 
KM and Kc, one effectively reduces the energy dissipation out of the high wavenumbers 
of resolved fields. With the same energy cascade from larger eddies, this results in more 
energy in the higher wavenumbers of the resolved fields. 

5 .  DISCUSSION 

The differences among the four LES codes can only be due to the differences in 
their SGS eddy diffusivities and their numerics. It follows from Eqs. (1)-(3) that if the 
SGS eddy diffusivities are fixed only numerical differences will influence the resolved- 
scale quantities. To isolate these numerical effects all codes were run with fixed SGS 
diffusivities, KM and Kc,  which are set equal to given profiles (and allowed for no 
backscatter in Mason’s model). For this purpose, we have chosen the average K-profiles 
from Mason-Brown’s non-backscatter run with uniform grid, shown in Figs. 14(a) and 
(b). A short test period was used instead of rerunning the whole simulation. Starting 
from the individual results at t = 7/f and integrating to t = 9/f, the last non-dimensional 
time unit was used for averaging. The fixed profiles of SGS K M  and Kc were also used 
in the SGS TKE equation used by AndrCn-Moen Nieuwstadt, and Schumann-Graf. 

the different codes. The spread in profile shapes of @)@/pu$ has to a large extent 
disappeared, as indicated in Fig. 17, such that they closely resemble each other. However, 
a 20% lower @)@/pi level is obtained in Schumann-Grafs test run. The reason for 
this is not clear. The diffusive properties of the Smolarkiewicz advection scheme affects 
SGS TKE, but this is likely of secondary importance for @)@/pu$. The impact of the 
SGS model on our previous results is also revealed by the change in the TKE dissipation- 
rate profiles, as shown in Fig. 18, for which we now find the four profiles from all codes 
more or less on top of each other. 

The spectra are particularly interesting since they directly gave us the response of 
different scales to differences in the numerics. As described in section 2, the numerical 

Figures 16(a) and (b) show that the variances 9 u /u$ and 2/& agree very well among 
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schemes used by Mason-Brown and Nieuwstadt are identical, and accordingly they 
should produce similar results (within the limits given by the rather short sampling period 
of the test). This is the case in the lower part of the boundary layer, as shown in Fig. 19. 
However, we do find some differences at higher levels (not shown) where Nieuwstadt’s 
spectra are significantly flatter than Mason-Brown’s, and also significantly flatter than in 
Nieuwstadt’s run presented in section 4. This is consistent with the smaller KM used in 
this test run. In the upper half of the boundary layer, we still find a steeper decrease in 
the runs by Mason-Brown and Schumann-Graf than in the runs by AndrCn-Moeng and 
Nieuwstadt. For the latter two codes, the scalar exhibits a flat spectrum. In AndrCn- 
Moeng’s results, there is also a tendency for energy to pile up at the highest wavenumbers, 
indicating that the prescribed SGS eddy diffusivities may be too small for the resolved- 
scale strain rates that result after dealiasing. We notice that Mason-Brown’s spectra 
show slightly more energy at higher wavenumbers than their original non-backscatter 
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Figure 19. Spectra as in Fig. 15 but for the test run with fixed profiles of SGS eddy diffusivities. The run by 
Mason-Brown is on a uniform vertical grid, without backscatter. 
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run. Schumann-Graf‘s spectra show a similar but smaller change. Their results for the 
passive scalar also indicate the diffusive property of the Smolarkiewicz advection scheme. 

The convergence of spectral shapes at lower levels with differences still remaining 
at higher levels, where turbulence time-scales are larger, may be an indication that the 
test run is too short for all spectra to reach stationary conditions. Thus we do not 
view the remaining differences between the codes as indications of effects of different 
numerical solution schemes. Rather we take the general convergency of profiles, budgets, 
and, to a lesser extent, spectra as an indication that the numerics have a very little impact 
on the LES solutions, comparing with the SGS effect. 

6. CONCLUSIONS 

A shallow neutrally stratified PBL has been simulated using four different LES 
codes. The grid used is rather coarse and, as a result, spectra do not show a well defined 
inertial subrange. This implies that the Kolmogorov theory used to formulate the SGS 
models is poorly satisfied and we should expect to find results significantly influenced by 
SGS effects. In addition to the differences in SGS models and numerical schemes, 
Mason’s code has also been run with a formulation that includes the stochastic backscatter 
of energy and scalar variance. 

We have found that second-order moments as well as the budgets of such moments 
are sensitive to the magnitude of the SGS eddy diffusivities. In general we found that 
statistics of this neutrally stratified flow were more sensitive to the SGS model than 
corresponding statistics in the convective flow studied by NMMS92. Resolved-scale 
motions are generally more intense in the lower part of the boundary layer in the runs 
with smaller SGS eddy diffusivities. The spectra show that a decrease in SGS eddy 
diffusivities pushes the spectral peaks to higher wavenumbers. The inclusion of stochastic 
backscatter has a similar effect on the spectra and on the resolved-scale second moments 
and budgets. For the mean fields, our findings support the result of Mason and Thomson 
(1992) that the failure of the Smagorinsky SGS model in producing logarithmic mean 
gradients near the wall cannot be corrected by changing the value of the Smagorinsky 
coefficient. Differences between backscatter and non-backscatter runs are in general 
largest close to the surface, but also noticeable in the lower one-third of the boundary 
layer. 

We have isolated the effect of the different numerical schemes by running a short 
test period with fixed profiles of SGS eddy diffusivities, which effectively eliminated the 
effect of the SGS models. Analysis of second-moment profiles, budgets, and spectra 
showed a clear convergence of results from the different LES codes. We conclude that 
the effect of the differences in numerical schemes is minor. 

APPENDIX 

As mentioned in section 1, all LESS were started from the same initial conditions. 
These initial fields were obtained from a PBL model using a single-point closure tur- 
bulence scheme tailored to give a rather shallow neutral PBL. Small random perturbations 
in all velocity components were added to this mean flow. The random perturbations were 
generated from random numbers uniformly distributed between -0.5 and 0.5, and scaled 
to give energy q2/2. Initial profiles are given in Table A.l. 
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TABLE A. 1. INITIAL PROFILES USED FOR THE LES 

Height (m) (U) (m s-’) (U) (m s-I) 

18.75 
56.25 
93.75 

131.25 
168.75 
206.25 
243.75 
281.25 
318.75 
356.25 
393.75 
431.25 
468.75 
506.25 
543.75 
581.25 
618.75 
656.25 
693.75 
731.25 
768.75 
806.25 
843.75 
881.25 
918.75 
956.25 
993.75 

1031.25 
1068.75 
1106.25 
1143.75 
1181.25 
1218.75 
1256.25 
1293.75 
1331.25 
1368.75 
1406.25 
1443.75 
1481.25 

4.44 
5.92 
6.91 
7.73 
8.43 
9.02 
9.52 
9.93 

10.25 
10.47 
10.62 
10.70 
10.71 
10.67 
10.59 
10.48 
10.36 
10.24 
10.13 
10.04 
9.99 
9.96 
9.95 
9.96 
9.98 
9.99 

10.00 
9.99 
9.99 
9.99 

10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 

2.18 
2.67 
2.83 
2.84 
2.75 
2.57 
2.34 
2.06 
1.75 
1.44 
1.12 
0.82 
0.55 
0.31 
0.12 

-0.02 
-0.11 
-0.16 
-0.17 
-0.15 
-0.11 
-0.06 
-0.02 

0.01 
0.02 
0.02 
0.02 
0.02 
0.02 
0.01 
0.01 
0.01 
0.01 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

~ 

0.365 
0.295 
0.245 
0.205 
0.175 
0.145 
0.120 
0.100 
0.085 
0.070 
0.055 
0.045 
0.035 
0.025 
0.020 
0.015 
0.010 
0.010 
0.005 
0.005 
0.005 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
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