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Summary A 2, A 
At 

A numerical model was used to study the behaviour of pro- E 
totype cold fronts as they approach the Alps. Two fronts 
with different orientations relative to the Alpine range have f 
been considered. One front approaches from west, a second g h 
one from northwest. The first front is connected with south- H 
westerly large-scale air-flow producing pre-frontal foehn, k 
whereas the second front is associated with westerly large- K~ h 
scale flow leading to weak blocking north of the Alps. Km' 

Model simulations with fully represented orography and 
parameterized water phase conversions have been compared KM~ 
with control runs where either the orography was cut off or Km 
the phase conversions were omitted. The results show a strong 
orographic influence in case of pre-frontal foehn which warms f 
the pre-frontal air and increases the cross-frontal temperature fc 
contrast leading to an acceleration of the front along the 
northern Alpine rim. The latent heat effect was found to Ef 
depend much on the position of precipitation relative to the {s 
surface front line. In case of pre-frontal foehn precipitation 
only falls behind the surface front line into the intruding cold 2 
air where it partly evaporates. In contrary, precipitation al- rnl, m2, m 3 
ready appears ahead of the front in the case of blocking, p 
Thus, the cooling effect of evaporating rain increases the 
cross-frontal temperature difference only in the first case Pr 
causing an additional acceleration of the front. ,co 

qv 
qc 
qi 
qR 
qs 
Rd 

List of symbols: 

Cpd 

cpv 

CF 
Ax, Ay 

specific heat capacity of dry air at cons- 
tant pressure (Cpd = 1004.71 J k g -  i K -  1) 
specific heat capacity of water vapour at 
constant pressure (Cp~ = 1845.96 J kg -  1 K -  1) 
propagation speed of a front 
horizontal grid spacing (cartesian system) 

Rv 

horizontal grid spacing (geographic system) 
time step 
turbulent kinetic energy 
Coriolis parameter 
gravity acceleration (g = 9.81 m s-1) 
terrain elevation 
height of model lid (H = 9000 m) 
Karman constant (k = 0.4) 
horizontal exchange coefficient of momentum 
horizontal exchange coefficient of heat and 
moisture 
vertical exchange coefficient of momentum 
vertical exchange coefficient of heat and 
moisture 
mixing length 
specific condensation heat ({c = 2500.61kJ 
kg -1) 
specific freezing heat (~'f = 333.56 kJ kg -  i) 
specific sublimation heat ({s = 2834.17 kJ 
kg -1) 
longitude 
metric coefficients 
pressure 
Exner function 
Prandtl number 
latitude 
profile function 
specific humidity 
specific content of cloud droplets 
specific content of cloud ice particles 
specific content of rain drops 
specific content of snow 
gas constant of dry air (Ra= 287.06J 
k g - l K  -1) 
gas constant of water vapour (R~ = 461.51J 
kg-1 K - i )  
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Rie 
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o 
o~ 
o~ 
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Lt, V, W 

R F, "~ F 

x, y, z 

W* 

WR 
Ws 
z *  

radius of earth (re = 637l km) 
flux Richardson number 
density of dry air 
time 
temperature 
period of diastrophy 
potential temperature 
virtual potential temperature 
equivalent potential temperature 
relative humidity 
cartesian wind components 
front-normal and front-parallel wind 
components 
cartesian coordinates 
transformed vertical wind component 
speed of falling rain 
speed of falling snow 
transformed vertical coordinate 

Abbreviations 

GND (above) ground level 
MSL (above) mean sea level 

1. Introduction 

Cold fronts are often strongly modified as they 
cross major mountain ranges like the Alps in Cen- 
tral Europe. The orographically induced distor- 
tion of cold fronts approaching the Alps was an- 
alyzed and illustrated by isochrones for instance 
by Steinacker (1981), Kurz (1984), Heimann and 
Volkert (1988). Further investigations have been 
carried out in connection with the German Front 
Experiment 1987 (refered to as GFE 87 in the fol- 
lowing; for details see Hoinka and Volkert, 1987) 
during which five frontal events were observed in 
detail. Evaluations of measurements gained dur- 
ing this campaign revealed mesoscale features of 
cold fronts as they moved towards the Alps. An 
overview of preliminary results is given by Hoinka 
et al. (1988). It came out that these fronts appeared 
very differently according to their orientation and 
their synoptic scale environment. The front of 8 
October 1987, for instance, was almost south- 
north orientated and passed the Alpine foreland 
without precipitation although it had been con- 
nected with rain over southwestern Germany. A 
mesoscale gravity current like structure developed 
at this front near the Alps after the precipitation 
had stopped (Hoinka et al., 1990 and Kurz, 1989). 
In contrary, the front of 19 December 1987 ap- 
proached the Alps from northwest. It was accom-  

panied by a narrow band of intense precipitation 
embedded in a larger area of rain covering south- 
ern Bavaria almost entirely (Hagen, 1989). Both 
fronts were retarded at the Alps and thus the sur- 
face front lines were bended along the Alpine bow. 
Additionally, there is some evidence that the ob- 
served mesoscale features have been caused or at 
least modified by the orography. Observations, 
also if sampled in dense temporal sequence and 
spatial distribution, only represent the combined 
effect of all interactions and influences envolved. 
Numerical modeling, instead, enables a separation 
of single effects. Therefore, it may contribute to 
a further understanding of the relevant processes, 
and it may support the interpretation of phenom- 
ena which were observed during GFE 87. 

The numerical study presented here does not 
intend to simply imitate observed events. It is 
rather designed to investigate the behaviour of 
synthetic fronts which are comparable among each 
other due to identical, though realistic parameter 
configurations. Stimulated by the above men- 
tioned events of GFE 87 the numerical experi- 
ments consider two differently orientated fronts. 
One front approaches from the west, the other one 
from northwest. In both cases the direction of the 
super-imposed large-scale flow is directly related 
to the frontal orientation by a prescribed angle of 
60 ~ to the surface front line. Thus, the first front 
has a south-westerly flow ahead, which generates 
pre-frontal foehn north of the Atps, whereas the 
second front is connected with a westerly flow and 
has no pre-frontal foehn associated with. But un- 
like the observed cases the synthetic ones do not 
differ in other aspects, like large-scale air speed, 
static stability, temperature contrast across the 
fronts, or moisture content of the relevant air 
masses. 

This strategy offers the possibility to separate 
the influence of the frontal orientation. Additional 
runs with an artificial cut-off orography or turned 
off water phase conversions provide specific 
knowledge about the effects of foehn and latent 
heat conversions on the fronts. 

The paper is organized as follows: Chapter 2 
describes the numerical model. Chapter 3 deals 
with principal mechanisms of latent heat on cold 
fronts. It presents the results of two-dimensional 
simulations which allow to isolate the pure effect 
of water phase conversions on a moving frontal 
system. The combined effects of the real Alpine 
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orography and moisture processes are discussed 
in Chapter 4. Two characteristic frontal systems 
are investigated by three-dimensional numerical 
simulations. The last section of this chapter ad- 
dresses the different appearance of both synthetic 
frontal systems as they are simulated overhead the 
location of Mfinchen. Conclusions are given in 
Chapter 5. 

2. The Numerical Model 

The scale of interest is subsynoptic and can be 
classified as meso-a using Orlanski's (1975) defi- 
nition. For this scale the hydrostatic model ap- 
proximation seems to be fully justified. The model 
used in this study does not differ much from other 
hydrostatic mesoscale models which are prevalent 
as regional weather forecast tools. The model con- 
tains parameterization schemes to account for tur- 
bulent diffusion and water phase conversions. 

2.1 Model  Equations 

The model equations describe a hydrostatic and 
anelastic atmosphere without scale separations, 
i.e. no geostrophic wind is extracted from the pres- 
sure forcing term. The equations are formulated 
in a 2, q~, z*-grid system. 2 and ~0 are the geo- 
graphical coordinates, i.e. longitude and latitude. 
They have been used for convenience, since the 
orographic data base was available in this system 
only. 2 and ~o can be converted to the cartesian x 
and y coordinates by 

x - 
2 

m l  

(o y -  
m2 

with 

m 1 = (rE'cos (p)- 1 
--1 m 2 = r e 

Additional metric terms appear in the equations 
of motion and in the equation of  continuity, which 
account for the curvature of latitudes and con- 
vergence of longitudes, respectively. These terms 
carry the factor 

tan ~o 
m 3 -- 

rE 

tween z* = 0 at the earth's surface (z = h) and 

z* = 1 at the top of the model atmosphere (z = H). 
The relationship between z and z* reads 

z - h  

H - h  

- Equations o f  motion: 

Ou Ou Ou 
- -  u m  I - -  O t  ~-2 vmzo~o 

Ou 
-- W* ~ z ,  + u v m 3 

1 - z *  Oh 
+ f v  - g ~ _ h m l  0--2~ 

Ore 
- Cpdr)vm102 

1 0 Ou 
+ ( H  - h) 20 z ~ KMz 0 z ~ 

/ 202U 2 02 U"~ 

Ov Ov Ov 
Ot u m l ~  vm20~o 

Ov 
- -  W * - - - -  U 2 0 z* m3 

1 - z *  Oh 
- f u  - g-ft--~-~_hm20~ 

07~ 
-- CpdOvm2 0q) 

+ 1 0 0v 
(H - h) 20 z ~ KM~ ~ z* 

(1) 

t / 202V 202V~ 
+ KMh~ml ~s + m2 ~-~2) (2) 

- Equation o f  continuity: 

The equation of continuity is given in its anelastic 
form: 

Opw* Opu Opv 
O z* - m~ ~ m2 0 (o 

+ H p u ml ~ -t- p vm 2 + pv m 3 (3) 
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where w* is the transformed vertical component  
of the wind velocity. It is related to the cartesian 
vertical component  w by 

w = ( H -  h)w* 

+ (1 - z*) u m 1 ~  + vm2~-~ (4) 

2.3 Turbulence Parameterization Scheme 

Sub-grid scale processes are treated identically to 
those in the F I T N A H  model, cf. Gross and Wip- 
permann (1987). The turbulence parameterization 
scheme is based on a prognostic equation for the 
turbulent kinetic energy E as proposed by Yamada 
(1983). 

- Hydrostatic equation: 

Ore g 

8 z cpaO~ 
(5) 

8 0  

- Temperature equation." 

8 0  9 0  w,  8 0  
um I - v m  2 at -~  ~o a ~* 

1 8 8 0  

+ (H - h) ~ 8 7  K.Z-Uzz, 

K {m 2 82 0 2 82 O~ 8~t lat (6) 

The last term represents the latent heat exchange 
due to phase conversions of atmospheric water. 
Radiation processes, however, are neglected 
throughout  this study�9 

2.2 General Definitions 

- Coriolis parameter: 

f(~0) =f0"sin~0; f0 = 1-4584�9 10 -4s -1  

- Exner function: 

rc = (p/po)m/cP~; P0 = 10SPa 

- Potential temperature: 

O =  Trc -1 

- Virtualpotential temperature: 

O~=O(I+[R~RaRd ] q,,) (7) 

8 E  

8 t  

+ 

+ 

8 E  8 E  8 E  
uml ~ -  v m 2 ~ -  w * - -  

O z* 

l 
. . ~ -  - ( ~ h ) 2 / \ ~ z * /  + \ S z * )  _1 x (1 - Riv) 

1.2 8 8 E  
(H - h)2 8 z* Km s z * 

E312 
0 .08  "(tiM" ~ (8) 

The dissipation rate of E depends on a length 
scale d, which is calculated using Blackadar's 
(1962) mixing length formula. 

k z* (H - h) 
E= k z * ( H -  h) ' ( ~ = 3 0 m ;  

1 +  

k =  0.4 (9) 

Profile functions after Businger etal. (1971) are 
determined locally 

~0M = 1 + 4.7 Rie for 8 0/8  z*/> 0 
~Oi = 1 -- 15RiF) -~ for 8 0 / 8 z *  < 0 

with the flux Richardson number 

8 0  

H -  h g 8z  ~; 
Ri = Pr O(OV  2; V=4 +v2 (1o) 

and the Prandtl number 

Pr = 1 
for z (H - h) >~ ZD 

Pr = (1.35 -- 0.35 z* (H - h)/ZD)- 1 

for z* (H - h) < ZD 
ZD = 1000m 
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The vertical exchange coefficients are then deter- 
mined by 

KMz = 0.45. f0M 2" E 0"5 

KMz 
K m -  Pr 

The horizontal exchange coefficients mainly serve 
for smoothing in a damping layer beneath the 
model lid rather than for sub-grid scale parame- 
terization 

: m a x [  10 m2/s, z* -- z*:r K ~ Kvh 
E l - z %  

where z*r is the lower limit of the damping layer, 
which reaches up to the model lid 

a t z = H .  

Z*T = 0.75 ; K T  = 5" 10 5 mZ/s 

The evaluation of model results is restricted to 
altitudes below the damping layer. 

2.4 Moisture Processes 

The transport and conversion of water vapour, 
cloud droplets, cloud ice, rain, and snow, is op- 
tionally considered in the model. If invoked, the 
specific humidities are conserved by the following 
equations. 

~3 qw _ O qw 0 qw 
~3 t t't m l ~ - ~  -- v m 2 c3(/9 

_ w,~?qw _ WwC~qw 
~z* Oz 
1 0 ~. Oq~ 

+ (H - h) 2 • z - g  l~Hz ~ z ~ 

/ 02 02 qw~ 
K.qh\'m2 qw (11) + , ~ff~2 +m220{o2/I 

0 qw 

+ 0 t mic 

where qw are specific contents of 

water vapour qs 
cloud droplets q~ 
cloud ice q; 
rain drops qR 
snow flakes qs 

Ww are the terminal velocities of the respective 
constituents. For water vapour and cloud particles 
they are set to zero, i.e. Wv = Wc = W~ = 0. The 
terminal velocities for rain and snow, WR and Ws, 
are given by Lin etal. (1983). 

~? qw/a tmic represents the conversion rates of the 
respective constituent qw. 

The micro-physical scheme is based on a sum- 
mary given by Pielke (1984, p. 232-238). He pro- 
posed formulas by Kessler (1969), Chang (1977), 
Orville (1980), and Lin etal. (1983). Few of them 
have been slightly modified or have been replaced 
by similar formulas given by H611er (1986). 

The following processes are considered: 

~ qv mic -': -- at 

O~ tq_~c mic 

a q_i 
0 t mic 

o tq R ,~i~ 

eqs 
t mie 

S~ - Ss - Ps4 + PR3 

= + Sc - S f -  Ps3 - PR1 - PR2 

= -4- Ss + S f -  Ps i  - PS2 

= - Ps5 + PR1 + P m -  PR3 

= + Psi + Ps2 + Ps3 + Ps4 + Ps5 

The single conversion rates have the following 
meanings: 

Sc condensation of water vapour to cloud drop- 
lets (So > 0) or evaporation of cloud droplet 
(so < 0) 

S, sublimation of water vapour to cloud ice 
(Ss > 0) or evaporation of cloud ice (S, < 0) 

Sf freezing of cloud droplets to cloud ice (Sf > 0) 
or melting fo cloud ice to cloud droplets 
(s  s < 0) 

PR1 autoconversion of cloud droplets to form 
rain drops (PR1 >~ 0) 

PR2 accretion of cloud droplets by rain drops 
(PR2 • O) 

Pm evaporation of rain drops in subsaturated 
ambient air (Pro ~> 0) 

Psl autoconversion of cloud ice to form snow 
flakes (Psz ~> 0) 

Ps2 accretion of cloud ice by snow (Ps2 >>- O) 
Ps3 accretion of cloud droplets by snow 

(Ps3 > O) 
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Ps4 depositional growth (Ps4 > 0) or evapora- 
tional loss (Ps4 < 0) of snow 

Ps5 melting of snow to form rain (Ps5 <~ O) 

The phase conversions of atmospheric water 
lead to the following diabatic heat exchanges: 

63tl9 lat = [~s ' (Ss  -q- Ps4) -k- ~ c ' ( S c -  PR3) 

19 
+ Yf" (Su + Pss + Ps3)] Cpa T (12) 

This term acts in the temperature Eq. (6) if mois- 
ture processes are invoked, otherwise it vanishes. 

2.5 Numerical Procedure, Initialization, and 
Boundary Conditions 

The model uses a staggered grid. All scalars are 
defined at the mesh volume centers, whereas the 
wind components are placed at the center of the 
respective inflow walls of each mesh volume. The 
scalars are also defined at the earth's surface and 
at the model top. 

Foreward time steps are employed for temporal 
integration. In the advective terms of Eqs. (1) and 
(2) spatial derivatives are approximated by simple 
upstream differences. The advection terms in Eqs. 
(6), (8), and (11) are solved with an upstream- 
spline procedure after Mahrer and Pielke (1978) 
to reduce spurious diffusion. The velocity com- 
ponents of the "new" time step govern the ad- 
vection in the scalar equations. 

All spatial derivatives in non-advection terms 
are approximated by centered differences. 

The numerical integration starts with a geo- 
strophically balanced, frictionless wind field over 
homogeneous terrain. The initial momentum is 
introduced by prescribing a horizontal "supra- 
scale" pressure gradient at the top of the model, 
i.e. at z* = 1. The geostrophic wind is then cal- 
culated from the three-dimensional pressure field 
gained by downward integration of the hydro- 
static Eq. (5). 

During the first hour of integration 
(0 ~< t ~< zd~a = l h) the orography is smoothly 
added by "diastrophy", i.e. by inflating the moun- 
tain linearly with time. The process of diastrophy 
itself does not change the vertical stratification of 
temperature and humidity. This is ensured by an 
additional term in the equations of temperature 

(6) and specific humidity (11), which only acts 
during the period of diastrophy. This term reads 

• dia= ( 1 -  z * ) h  ~ a  
~ ai. H - t h O z* 

for 0 ~< t ~< rdia and a = (O, q,). h is the final terrain 
elevation. 

All friction terms are set to zero at t = 0. During 
the period of diastrophy they are activated linearly 
with time until they act with full efficiency for 
t > ~dia. 

At the lateral boundaries tendencies of all prog- 
nostic model parameters with the exception of O 
and qv are determined using radiative conditions. 
O and qv are treated specially to simulate the in- 
trusion of an undersaturated cold air mass from 
outside the domain. The corresponding procedure 
is explained in Section 2.6. The radiative boundary 
condition follows a suggestion fo Orlanski (1976) 
and is examplarily sketched for the western bound- 
ary (i = 1) at time level v: 

v--1 v--I 
" ai=2 -- ai=l A t +  a~-] 

ai=l = -- Ca A X  

with 

ca = rain i=a i~2 0 v--1 v--1 ' 
ai=3 - ai=l A t  

and a = (u, v, qc, qi, qR, qs, E). 
At the top of the model (z = H) a permeable 

lid is assumed. A zero-gradient condition is ap- 
plied for u, v, and the radiative condition for O 
and q,. The specific contents of water constituents 
other than water vapour, i.e. qc, qi, qR, qs, as well 
as the turbulent kinetic energy E are set to zero. 
The Exner function varies during one time step 
by Arc due to a change of virtual potential tem- 
perature A O~ = A z. 7v caused by an advective ver- 
tical displacement Az = ]w]" A t. w and 7, are the 
vertical velocity and the vertical gradient of O, at 
z = H, respectively. A rc is given by 

ATr = Az.__g. AO~ 
cpa 2 OF 

At the surface (z = h, z* = 0) zero-gradient con- 
ditions are set for O, q,, qc, qi, qR, and qs. All 
velocity components (u, v, w*) and the turbulent 
kinetic energy (E) vanish. 
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2.6 Representation of  a Cold Front in the Model 

At the time of initialization (t = 0) most of the 
model atmosphere is filled with a "warm air" 
mass, characterized by prescribed vertical profiles 
of potential temperature Owarm(Z*) and specific 
humidity q,, warm (Z*) .  In the inflow area of the 
model domain the "warm air" profiles are re- 
placed by "cold air" profiles O~old(z*) and 
q,, cord(z*) beneath an inclined surface H~, which 
intersects the model's bottom (z* = 0) along a pre- 
scribed line. This surface represents a frontal sur- 
face at the time of initialization. Its intersection 
with the model's bottom defines a surface front- 
line. The frontal surface separates both air masses. 
Since the initial air masses are defined to be hor- 
izontally homogeneous, the only horizontal gra- 
dients of O and q~ concentrate on the frontal sur- 
face, which is, of course, a thin layer in the model 
due to the finite spacing of the numerical grid. 

If ~ is a horizontal coordiante perpendicular to 
the surface front-line with ~ = 0 at this line, the 
height of the frontal surface is defined by a formula 
given by Davies (1984): 

f4 

with 

Owarm --  Ocold ! 

g = g" O~old 

HF, oo is the prescribed height of the frontal surface 
which is reached assymptotically far upstream of 
the surface front-line. 

During temporal integration the vertical pro- 
files of potential temperature and specific humid- 
ity are explicitly set at the boundary grid cells to 
allow for cold air advection from outside. H F is 
calculated analytically at these cells by 

HF(t) = He, o0 " [ 1 - e x p (  - f(~~ '+ g'(-~F, oo~g't)~/J 

with 3o as the distance of the respective boundary 
cell centers from the initial surface front-line po- 
sition and 4g as the initial geostrophic wind com- 
ponent in the warm air mass perpendicular to the 
initial surface front-line. Beneath HF the cold air 
profiles (Ocota(z*), q~, cold(z*)), above it the warm 
air profiles (Owarm (Z*), q~. warm (Z*)) are prescribed 
as a lateral boundary condition. Thus, the depth 

of the intruding cold air increases continuously at 
the model's inflow boundaries as time goes on. In 
this point the study differs from numerical inves- 
tigations presented by Garratt and Physick (1986) 
who employed a cold air reservoir of constant 
vertical and horizontal extension at the inflow 
boundary. 

3. Principal Mechanisms of Latent Heat Effects on 
Cold Fronts 

3.1 Theoretical Considerations 

The behaviour of cold fronts and also that of 
gravity currents is strongly influenced by the strat- 
ification of the air masses involved and by the 
temperature contrast between them. In the fol- 
lowing we concentrate on two characteristics of a 
front, namely its steady speed of propagation over 
a plain, and its changed speed across or along a 
mountain range. 

In case of a laboratory gravity current in a 
rotational system the propagation speed is given 
by Stern etal. (t982): 

ho0 
C F : 0.5"12oo -~ g ' . _ _  

blo0 

u~o and ho0 are the cross-frontal wind component 
and the cold air thickness far behind the front, g' 
is the reduced acceleration of gravity g' = g A O/ 
O, where A O is the difference of potential tem- 
perature between the two fluids. Hence, the greater 
A O the faster the system moves. 

Davies (1984) used an analytical two-layer 
model of neutrally stratified air masses to dem- 
onstrate that the greater the thermal contrast the 
more a cold front would be retarded by a mountain 
range. An extended numerical inspection of oro- 
graphic impacts on idealized fronts was published 
by Schumann (1987). He defined a set of dimen- 
sionless parameters which describe whether fronts 
are blocked at mountains or not. Egger and Ha- 
derlein (1986) expect from model calculations that 
a cold front which is hindered to cross a mountain 
range forms an "orographic jet", i.e. an acceler- 
ated flow parallel to the mountain range. The 
front-like nose of this jet behaves like a trapped 
gravity current. Thus, its speed depends on the 
magnitude of the density jump or temperature 
contrast. Such orographic jets are sometimes ob- 
served. Heimann and Volkert (1988), for instance, 
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analyzed a remarkable event near the Alps. Nu- 
merical studies of this case have been presented 
by Heimann (1988) and Volkert etal. (1990). 

Bannon (1984) studied the appearance of model 
fronts with respect to their ambient air stratifi- 
cation. He found that fronts are weaker, have less 
steep frontal surfaces, and move more slowly in 
an environment of strong static stability. In con- 
trary, Bischoff-Gauss and Gross (1989) found a 
faster propagation of a numerically simulated 
gravity current moving in stably stratified warm 
air compared to that moving in neutral environ- 
ment. The authors partly explained this behaviour 
by an enlarged temperature deficit of the cold air, 
which they let originate in a neutrally stratified 
reservoir in either case. 

However, both, stratification and cross-frontal 
thermal contrast, will be modified by latent heat 
effects. As a consequence, one can expect evident 
impacts on cold fronts concerning their propa- 
gation speed as well as their behaviour near moun- 
tains. 

If the warm air is moist enough, condensation 
will take place due to lifting near the front. This 
leads to a release of latent heat and to a warming 
of the warm air above the condensation level. Con- 
sequently, the thermal contrast between the warm 
and the cold air increases. This effect is even am- 
plified if precipitation falls through the frontal 
surface into the cold air beneath. Here it evapo- 
rates to some extent and cools the cold air as long 
as the cold air is undersaturated. Depending on 
the initial vertical profiles of temperature and rel- 
ative humidity the release of latent heat may sta- 
bilize the air below the cloud level, but may de- 
stabilize it above. In case of conditional instability 
even static instability may occur after air is lifted 
and condensation takes place. Evaporative cool- 
ing, instead, stabilizes the air above the evapo- 
ration layer, but destabilizes it below. 

The situation becomes more complicated if also 
freezing and melting are considered. Although the 
diabatic heat exchange belonging to these pro- 
cesses is less effective compared to that connected 
with condensation and evaporation, additional 
modifications of stratification and cross-frontal 
temperature contrast are the consequence. Closely 
beneath the freezing level air might be cooled by 
melting snow. Its impact on the stratification de- 
pends much on the respective height of this level 
and its relative position to the frontal surface. 

3.2 Two-Dimensional Simulations 

The variety of possible effects ofdiabatic processes 
on cold fronts exceeds the practicability of a nu- 
merical study. Hence, one has to renounce with a 
complete survey of conceivable combinations of 
warm air and cold air stratifications, humidity 
profiles, cross-frontal temperature differences, 
and other aspects. 

This study is limited to a distinct selection of 
parameters describing the environment of a mov- 
ing cold front. These parameters have been 
choosen not only to represent a possible realistic 
situation, but also to achieve clear effects due to 
orography and latent heat processes. Therefore, 
they fulfill the following conditions: 

�9 The stratification of both, cold and warm 
air is moderately stable. 

�9 The warm air is moist enough to allow the 
development of clouds and precipitation. 

�9 The cold air is dry enough to enable the 
precipitation to evaporate partly. 

�9 The cross-frontal temperature contrast is 
large enough to make the front clearly identifiable. 

�9 Both, cross-frontal temperature contrast 
and cross-frontal component of the initial get- 
strophic wind, allow an evident influence of the 
orography on the movement of the front. 

The initial conditions are common to all model 
simulations throughout this study. Figure 1 dis- 
plays the vertical initial profiles of potential tern- 
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Fig. l. Vertical profiles of potential temperature (O), equi- 
valent-potential temperature (Oe), and relative humidity (U) 
characterizing the initial and boundary state of the cold (index 
c) and warm (index w) air mass separated by the front 
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Fig. 2. Vertical cross-sections of the results of two-dimensional runs 2 D-1 (left-hand plates a, b, c) and 2 D-2 (right-hand 
plates d, e, f) after 5 hours of simulation. Plates a and d show the potential temperature (O, isoline lables in ~ contour 
interval 1 K), cloud particle content (qc + qi>~ 0.05 g/kg stippled) and precipitation content (qR + qs  >~ 0.01 g/kg vertically 
hatched). The dashed line indicates the freezing level. Plates b and e illustrate the relative velocity component  of the wind 
(u - CF) towards (stippled) or away from the front and the wind vectors (u, w). Plates c and f show the vertical velocity 
component  (w). Upward motions w ~> 4 cm/s are stippled, downward motions w ~< - 4 cm/s are vertically hatched. Positions 
marked by F 11 etc. are explained in text 
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perature and relative humidity for both, cold and 
warm air mass. Notice the neutral stratification 
below z = 1000m MSL. It was introduced to re- 
duce the time needed to achieve a quasi-stationary 
boundary layer. To avoid conditional instability 
the relative humidity was reduced in this layer such 
as to guarantee a positive vertical gradient of the 
equivalent-potential tempertures, i.e. c30e, warm/ 

C~Z >/ 0 and ~?Oe. c o j ~ Z  >10. 

The initial geostrophic wind in the warm air 
has a speed of 20 m/s and an angle of 60 ~ to the 
x-axis, i.e. ug = 10.0m/s, Vg = 17.3m/s. 

Two two-dimensional ( x - z -  plane) runs 
have been carried out to demonstrate basic effects 
of moisture processes on a cold front moving over 
flat terrain. The numerical grid provides a hori- 
zontal resolution of A x = 8 km and uses 20 levels 
up to a height of 9 km with a vertical spacing 
varying from A z* = 0.005 (A z g 50 m) near the 
ground to A z* = 0.1 (A z ~ 1000 m) near the top. 
The runs only differ from each other by whether 
cloud-physical processes are turned off (run 2 D- 
1) or on (run 2 D-2), cf. Table 1. 

The results are presented after five hours of 
simulation when precipitation has already devel- 
oped in 2 D-2. The position of the surface front 
is marked by two arrows (F 11, F 12 for 2 D-1 and 
F21, F22  for 2D-2) in Fig. 2. The first arrow 
(F 11 or F 21) indicates the position of the onset 
of cold air advection, the second one (F 12 or F 22) 
points to the position of maximum surface wind 
speed. Both front criteria are separated by 20 km 
in the dry case und 32 km in the wet case. F rom 
the positions F 11 and F 21 at t = 3 h and t = 6 h 
frontal speeds are deduced. They amount  to 
c e =  12.9m/s for 2D-1 and CF = 14.2m/s for 
2D-2. Hence, the front was accelerated by 10% 
due to moisture processes. 

A brief discussion of selected fields of model 
parameters will elucidate relevant dynamic proc- 
esses which have led to this result. Figure 3 offers 
a clear view of the effects. It shows the potential 
temperature difference and the difference vectors 
(u- and w-component) between both runs (2 D-2 

- 2 D-l)  after 5 hours of simulation respectively. 
Evidently, the moisture processes heated the 
model atmosphere by up to 1.5 K between alti- 
tudes of 1500 to 4000 m near and behind the sur- 
face front position. On the other hand they cooled 
it by up to 2.5 K in lower levels. The location of 
warmed and cooled portions can be explained by 

Fig. 3. The vertical cross-section (same as in Fig. 2) shows 
potential temperature difference and difference vectors (u, w) 
of runs 2 D-2- 2 D- 1 after 5 hours of simulations. The stip- 
pled area indicates warming (more than 0.5 K) due to the 
release of latent heat. The horizontally hatched area marks 
cooling (more than 0.5 K) due to melting and evaporation. 
The positions F 11 etc. correspond to those in Fig. 2 

the positions of frontal clouds, precipitation and 
freezing level as shown in Fig. 2 d. Notice that the 
temperature difference is not  an indicator of the 
momentary gain or loss of latent heat. It is rather 
a result of past latent-heat exchanges and advec- 
tion. Hence, the imbalance of warming and cool- 
ing is partly due to the faster advance of the front 
and the cold air in 2 D-2. The intensity of precip- 
itation is rather weak. It amounts to 1.2mm/h 
near the cloud base but reduces to 0 .4mm/h at 
the ground as the falling rain partly evaporates in 
the undersaturated air. 

The areas of cooling and warming are closely 
related to a speed up of the air flow compared to 
the dry situation. The moisture processes produce 
a strong upward acceleration in the area of greatest 
warming. Near the ground a strong foreward ac- 
celeration is generated at the leading edge of the 
air cooled by evaporating precipitation. The con- 
sequent divergence at its rear side leads to a narrow 
column of descending air just behind the updraft  
region (see Fig. 2 f). 

In the upwind direction of the surface front the 
warming of the warm air aloft and the cooling of 
the cold air beneath increase the thermal contrast 
across the inclined frontal surface. This leads to 
an acceleration of the cold air. The relative cross- 
frontal flow u - c~ is displayed in Figs. 2 b and 
2 e for both runs. The maximum values of u - CF 
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do not differ much. Hence, the increase of u co- 
incides with an increase of CF by almost the same 
amount.  

Another  major difference between the two runs 
appear in the fields of  vertical velocity (Figs. 2 e 
and 2 f). While in the dry case the axes of upward 
motions are evidently tilted in downwind direc- 
tion, they are almost upright in the wet case. A 
cellular structure of upward motion developed in 
the warm air behind the front. Its wave length 
does not depend on the grid spacing as test runs 
have shown. The wave length is not influenced 
much by the moisture processes, but the wave 
amplitudes are significantly enhenced by a factor 
of about 1.5. 

4. Numerical Simulations of Cold Fronts over 
Realistic Orography 

4.1 Diagnostic Tools for Evaluating the Model 
Output 

The tremendous amount  of  data which are ob- 
tained from numerical simulations demands a 
careful selection of relevant parameters on certain 
spatial slices at distinct times. Moreover, it is nec- 
essary to derive secondary parameters, which 
show atmospheric situations and developments 
more clearly and more precisely than primary 
quantities like u, v, w, O, p, etc. Specifically, one 
must extract appropriate tokens from the original 
model output  in order to trace non-material prop- 
erties or phenomena like fronts. 

An important  physical parameter for the iden- 
tification of air masses is the equivalent-potential 
temperature Oe. Since it is conserved during con- 
densation and evaporation, it is a better marker 
of an air mass than the potential temperature, 
which is invariant only in a dry atmosphere. The 
equivalent-potential temperature is calculated by 

0 = l . ( T + ~ c q ~ = O +  ~cqv 
Cpd J ~ epd 

A useful tool for an objective analysis of front 
lines in numerical models is the so-called "thermal 
front parameter",  which was introduced by 
Renard and Clarke (1965) and used, for instance, 
by Huber-Pock and Kress (1989). In this study we 
distinguish the thermal front parameter TFP, de- 
duced from the potential temperature field, and 

the equivalent thermal front parameter (EFP), de- 
duced from the equivalent-potential temperature 
field. The TFP is given by 

VO 
TFP = - V lV O ] . - -  

tvoj 

with V as the two-dimensional nabla operator in 
a terrain following plane. The EFP is defined anal- 
ogously with Oe replacing O. According to this 
definition, the maximum lines of TFP or EFP 
identify fronts at the warm-air boundary of high- 
gradient zones of O or Oe. Maximum lines of TFP 
and EFP do not match necessarily. In such a case 
the TFP represents a "dynamic" front line, since 
the potential temperature is closer related to the 
pressure field than the equivalent-potential tem- 
perature. The EFP is rather an identifier of air 
mass boundaries. TFP and EFP are necessary cri- 
teria of  a front on a horizontal plane. Besides them 
other criteria like wind shifts, confluences, vortic- 
ity maxima, pressure troughs, etc. identify a front. 

The model output  was organized as follows: 
Horizontal and vertical cross-sections as well 

as terrain following arrays of various primary and 
secondary parameters have been stored every 90 
minutes. The available material allows the con- 
struction of isochrones and difference fields or 
difference vectors in order to visualize temporal 
evolutions and spatial variations of  different 
runs. 

Additionally, vertical profiles of model param- 
eters have been preserved at selected locations at 
each time step, so that time-height diagrams can 
be constructed. Although the model atmosphere 
extends to 9 km MSL, vertical cross-sections and 
time-height diagrams are restricted to altitudes be- 
low 5 km MSL, i.e. to altitudes clearly below the 
damping layer (see Section 2.3). 

4.2 Definition of a Modbl Domain Covering the 
Alpine Region 

The grid domain is defined on a geographic net 
with constant mesh widths A 2 and A (0. For this 
study the size of the model domain was c]hosen to 
include the entire Alps together with a marginal 
strip of about 200 km width to each side of the 
mountains. The grid domain is resolved by 
40 x 40 meshes with a spacing of  A 2 = 6.5mrad 
and A ~ = 3.3 mrad. This corresponds to a metric 
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Fig. 4. Map of the model domain showing an area of ap- 
proximately 1100 x 750km 2 covered by 38 x 38meshs. The 
dashed isolines represent the orography (terrain elevation 
above MSL, contour interval 400m) as used in the simula- 
tions, "A" and "B" mark the initial front orientations and 
the initial large-scale wind direction for cases A and B. Two- 
letter abbreviations stand for places: Nancy (NA), Stuttgart 
(ST), Mfinchen (MU), Wien (WI), Zfirich (ZH), Innsbruck 
(IN), Lyon (LY), Milano (MI), Udine (UD), Zagreb (ZG), 
Marseille (MA), Genova (GE), and Firenze (FI). The line 
"cross-section" refers to Fig. 7 and 9 

grid distance of A x = 2 6 . 8 , . . . , 3 0 . 8 k m  and 
Ay -- 20.8 km. The grid values of the terrain el- 
evation represent the Alpine mountain range fairly 
well, but they are too coarse as to allow the res- 
olution of Alpine valleys. The orographic data are 
taken from a digital geographic data base as mean 
values of the grid meshes. A map of the model 
domain is presented in Fig. 4. The vertical dis- 
cretization into 20 levels is identical to that de- 
scribed in Section 3.2. 

4.3 Aims and Strategy of Real-Orography 
Simulations 

Despite of the great variety of frontal events near 
the Alps this study is restricted to two main types 
of cold fronts, distinguished by their synoptic- 
scale environment. Using the terminology of 
Hoinka (1985) we concentrate on the "south- 
westerly type" and the "westerly type", depending 
on the direction of the upper tropospheric syn- 
optic-scale air flow. In the numerical simulations 
the southwesterly and the westerly type are rep- 
resented by initial geostrophic wind directions in 
the warm air of 210 ~ and 270 ~ , respectively. In 
both cases the according front lines form an angle 

of 60 ~ to the air flow direction, i.e. the front ori- 
entations are 270 ~ for the southwesterly type and 
330 ~ for the westerly type. By the term "front 
orientation" the direction of the front-normal vec- 
tor is meant. The initial geostrophic wind speed 
in the warm air was set to 20 m/s. Hence, the cross- 
frontal geostrophic wind component amounts to 
10 m/s in either case. 

The inital position of the surface front lines and 
the initial direction of the geostrophic wind in the 
pre-frontal warm air are plotted in Fig. 4. From 
now on the two configurations are addressed as 
"A" and "B", 

Due to the WSW-ENE-orientation of the Al- 
pine ridge the southwesterly type is connected with 
pre-frontal foehn north of the Alps. As Hoinka 
(1985) pointed out the pre-frontal foehn air mass 
is very dry within the lowest 4 km of the tropo- 
sphere and consequently does not support the for- 
mation of clouds and precipitation in the pre-fron- 
tal area. At the rear side of the front the wind 
shifts to westerly directions and the cold air mass 
is blocked by the orography. The southwesterly 
front type has no or little precipitation in the pre- 
frontal area but an intensified one in the post- 
frontal area. The westerly type is not associated 
with foehn north of the Alpine ridge. There is, in 
contrary, a slight tendency of blocking of the pre- 
frontal warm air. Behind the front the wind usually 
turns to northwest and the blocking is even en- 
hanced. Consequently pre-frontal precipitation is 
likely to occur and the total amount of precipi- 
tation north of the Alps is usually higher than for 
the southwesterly type. 

The aim of the three-dimensional numerical 
simulations is a detailed inspection of both types 
of fronts, allowing answers to the following ques- 
tions: 

�9 How differently do the fronts appear when 
they approach the Alps from different directions? 

�9 How differently do clouds and precipitation 
develop near the Alps? 

�9 What consequences has the respective dis- 
tribution of clouds and precipitation to the be- 
haviour of the fronts as they approach the Alps? 

All together six three-dimensional model sim- 
ulations have been carried out to give the desired 
answers. They have the following systematic (Ta- 
ble 1): 

Two basic runs simulate the development of 
both front types A and B, namely the southwest- 
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erly type (3 D-A 0) and the westerly type (3 D-B 0), 
taking into account the Alpine orography and la- 
tent heat effects. These runs enable comparisons 
between the two fronts. 

Two further runs (3 D-A 1 and 3 D-B t) simu- 
late the same situations but with a "cut-off"  orog- 
raphy where the maximal terrain elevation is lim- 
ited to 500m MSL. The Alps then reduce to a 
plateau which joins the northern Alpine foreland 
without a step. A comparison of 3 D-A 1 with 3 D- 
A 0 and of  3 D-B 1 with 3 D-B 0 clarifies the role 
of  orography on the frontal propagation and on 
the development of  clouds and precipitation. 

The last two runs, 3 D-A 2 and 3 D-B 2, simu- 
late the fronts with full orography, but without 
any latent heat exchange. These runs, when com- 
pared with 3 D-A 0 and 3 D-B 0, serve to explore 
the role of  latent heat effects with respect to the 
movement  of  fronts and their retardation or ac- 
celeration by the Alps. In order to guarantee com- 
parability all model parameters are equal in both 
cases besides the direction of  the initial geostrophic 
flow and the front orientation. The initial vertical 
temperature and humidity profiles are illustrated 
in Fig. 1. 

All 3 D-simulations extend over a period of  18 
hours. During this time the simulated fronts com- 
pletely cross the northern Alpine foreland in all 
six runs. 

4.4 General Description o f  the Results 

In order to give an overview, the temporal devel- 
opment  of  the two fronts as simulated in runs 3 D- 
A 0 and 3 D-B 0 is presented by three-hourly syn- 
optic surface weather charts showing surface front 
lines, sea level pressure, surface winds, and pre- 

cipitation areas. To define the surface front po- 
sitions the conventional synoptic method of  sur- 
face front analysis was used. The surface front 
lines are connected with wind shifts, horizontal 
temperature gradients, changes in humidity, and 
they lie in a pressure through. 

Later on, in Section 4.5, a more detailed de- 
scription will be given. Additional parameters,  as 
well as vertical cross-sections are used to take ad- 
vantage of  the three-dimensional simulations, and 
to explain principal effects rather than to just de- 
scribe the results. 

4.4.1 Case A: A Cold Front  with Pre-Frontal  
Foehn 

The "synthetic" weather maps (Fig. 5) visualize 
the numerical realization of the frontal develop- 
ment  under the prescribed assumptions. They 
show a couple of  characteristic features which are 
known from the variety of  "natura l"  develop- 
ments with large-scale wind directions and front 
orientations similar to those of  case A: 

�9 Pre-frontal foehn generates a low pressure 
t rough north  of  the Alps. 

�9 A convergence line forms in the area of  low- 
est pressure in the northern Alpine foreland. It 
separates easterly to southerly flow in the east 
from southwesterly flow in the west. 

�9 The surface front line accelerates north of  
the Alps until it has caught up to preceding con- 
vergence line by t = + 15 h. Afterwards it slows 
down remarkably. 

�9 A tongue of  high pressure expands behind 
the front along the northern edge of  the Alps. 

�9 The easterly flow over the Po River plain is 
replaced by westerly winds as soon as the front 
line passes. 

Table 1 

Run number Orography Latent heat effects Initial front orientation Initial large-scale wind direction 

2 D-1 flat no 270 ~ 210 ~ 
2 D-2 flat yes 270 ~ 210 ~ 

3 D-A 0 full yes 270 ~ 210 ~ 
3 D-A 1 cut-off yes 270 ~ 210~ 
3 D-A 2 full no 270 ~ 210 ~ 
3 D-B 0 full yes 330 ~ 270 ~ 
3 D-B 1 cut-off yes 330 ~ 270 ~ 
3 D-B 2 full no 330 ~ 270 ~ 
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Fig. 5. Synthetic three-hourly surface weather maps illustrating the results of 3 D-A 0. The maps show isobares (hPa) of 
pressure reduced to MSL, positions of fronts and convergence lines, wind directions, and precipitation intensity (threshold 
values are 0.5 and 5 mm/h). The dotted lines represent terrain elevations of 800 and 1600 m MSL, respectively 

�9 Enhanced precipitation forms in the dam- 
ming areas at the western Alps and along the 
southern Alpine rim. 

�9 Light precipitation forms along the northern 
part  o f  the front. It is left behind the front at 
t = + 9 h and disappears as dry foehn air is en- 
countered. 

�9 Precipitation starts again when cold air is 
forced to rise along the northern Alpine rim after 
t = + 12 h, but  a foehn gap without precipitation 
remains north of  the Alpine main ridge between 
t =  + 1 2 h a n d t =  + 18h. 

Two critical aspects have to be mentioned: 
Firstly, due to the near inflow boundary  unreal- 
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Fig. 6. Synthetic three-hourly surface weather maps as shown in Fig. 5 but illustrating the results of 3 D-B 0 

istic high wind speeds (up to 25 m/s) are generated 
in the lee of the Central Massif (France) which 
push the cold air against the western Alps. A 
strong pressure rise is caused there and the cold 
air is lifted across the Alps, Thus, it enters the Po 
River plain sooner as one usually observes. 

Secondly, the precipitation rate amounts up to 
I0 mm/h at distinct locations at the southern A1- 

pine rim. Due to its long duration the precipitation 
accumulates to 50mm, partly even to 80ram 
within 18 hours. Although such high values are 
observed in northern Italy in extreme cases, they 
are not characteristic for weather situations which 
are similar to the synthetic case. One reason might 
be the prescribed high humidity in the warm air 
mass. 
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4.4.2 Case B: A Cold Front  with Slight Orographic 
Blocking 

In case B typical features developed which are 
frequently observed when cold fronts approach 
the Alps from northwest. They are illustrated in 
Fig. 6 and are listed below: 

�9 The front propagates within a sharp pressure 
trough and is connected with a distinct wind shift 
from southwest to northwest over the northern 
Alpine foreland. 

�9 Pressure minima form in the lee of the Alps 
over the Po River plain. A recirculation is gen- 
erated over the western part  of the Po River plain. 

�9 A precipitation area forms along the front 
and in the blocking area along the mountains. 
High precipitation rates ( > 2.5 mm/h) concentrate 
close to the front line. 

�9 The front is retarded at the Alps and there- 
fore evidently distorted. 

�9 The surface front crosses the Alps by 
t = + 15 h and is dissolved over the Po River plain 
till t = + 18h. 

�9 The front accelerates east of the Alps and 
quickly turns southward to Yugoslavia. 

�9 The tongue of high pressure expanding east- 
ward behind the front extends farther into the 
northern Alpine foreland than in case A. 

The precipitation north of the Alps ceases 
shortly after the front penetrates into the moun- 
tains. This is caused by the prescribed dryness of 
the cold air mass (U ~< 60%) and by the almost 
mountain  parallel air flow that re-establishes at 
the rear side of the front. 

4.5 Detailed Inspection of the Simulated Fronts 

The model simulations offer a variety of specific 
information that is not available from observa- 
tions. Some of it is used here to investigate the 
impact of orography and latent heat effects on the 
fronts in the vicinity of  the Alps and to enable a 
deeper insight into the meteorological structures 
connected with the frontal passage. The following 
discussion is restricted to phenomena occurring 
over the northen part of the Alps and the adjacent 
foreland, i.e. within the inner experimental area 
of GFE 87. 

4.5.1 Influence of Orography and Latent Heat 
Effects 

The role of the Alpine orography and latent heat 
effects will be explained in detail for case A where 

the effects seem to be more pronounced than in 
case B. The influence of the Alps was excluded in 
3 D-A 1 where the terrain elevation was limited to 
500 m MSL. The subtraction of parameter fields 
resulting from this run from the corresponding 
fields resulting from the complete run 3 D-A0 
yields difference fields which are used to elucidate 
the mountain  effects. Figure 7 a shows a west-east 
cross-section along a line indicated in Fig. 4 at 
t = + 9 h. At this time the front has apparently 
encountered an influence of the Alpine orography. 
The most prominent feature is the positive differ- 
ence of potential temperature in the pre-frontal 
air. The descending motion of the northern Alpine 
foehn warms the lower troposphere by up to 5 K 
compared to 3 D-A 1 where the absence of the Alps 
prevents a foehn flow. The warming has two con- 
sequences: It increases the temperature contrast 
between the pre-frontal warm air and the post- 
frontal cold air, and it reduces the pressure over 
the northern Alpine foehn area. Both effects ac- 

West Easq 
5km 

West East 
5km 

Fig. 7. Vertical west-east cross-section along the line shown 
in Fig. 4 (labeled "cross-section") displaying the differences 
of potential temperature (O, isoline labels in K) and west- 
east wind component (u, stippled, threshold values 2 and 4 m/ 
s) resulting from runs with full and with flat orography (Plate 
a: 3 D-A 0 -  3 D-A 1) and from runs with and without latent 
heat effects (Plate b: 3 D - A 0 - 3 D - A 2 ) .  Surface front po- 
sitions of the respective runs as deduced from TFP are in- 
dicated by "A 0", "A l", and "A 2" 
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celerate the post-frontal westerly flow by up to 
8 m/s. As a consequence the cold front moves fas- 
ter towards the east. This is in accordance with 
results of numerical studies by Egger (1989) who 
used a three-layer model of  a cold front with pre- 
frontal flow across an idealized mountain barrier. 
On the contrary to the present investigation, he 
did not  remove the orography but reduced the 
static stability in order to prevent foehn. The front 
moved always faster in cases of pre-frontal foehn. 

The effect of latent heat exchange is illustrated 
in Fig. 7b by the fields of O and u of 3 D - A 2  
subtracted from the corresponding fields of the 
complete run 3 D-A 0. The vertical west-east cross- 
section corresponds with that shown in Fig. 7 a. 

Similar to the difference field in Fig. 3 a cooling 
is caused by the evaporation of rain and the melt- 
ing of snow in the lower 2 km of the atmosphere. 
In the cloud layer between 3 and 5 km MSL a 
warming appears which is somewhat weaker than 
the cooling below. Notice that cooled and warmed 
areas do not mark locations of actual evaporation/ 
melting or condensation/freezing. They are rather 
the product  of latent heat exchange and advection 
since the time of initialization. Nevertheless, the 
result is similar to the orographic effect: The latent 
heat processes increase the temperature contrast 
between the two air masses and accelerate the u- 
component  of  the wind. 

In summary, both influences, the presence of 
mountains and the thermodynamic action of water 
phase conversions, lead to an acceleration of the 
eastward propagation of the cold front north of 
the Alps. In combination, the temperature con- 
trast increases by almost 10K or 160% (at 
1000m MSL) due to both influences. 

The horizontal map at t = + 9 h (Fig. 8) illus- 
trates the complex structure of the fields of po- 
tential and equivalent-potential temperature north 
of the Alps.  Figure 8 a exhibits a tongue of po- 
tentially warm foehnic air which extends from the 
Alps to the north. At its western side it is bounded 
by a zone of strong horizontal gradient connected 
with the front. The position of  the maximum line 
of the thermal front parameter TFP (cf. Section 
4.1) is indiated by cold front symbols. A further 
line of  this kind extends from northern Yugoslavia 
across the Adriatic Sea to northern Italy. It is not  
connected with an actual front but represents the 
leading edge of air which was remarkably cooled 
by evaporating rain over the Po River plain south 

of the Alps. This line slowly moves southeastward 
against the air flow as can be deduced from maps 
at later times not  shown here. 

One obtaines quite another impression from the 
distribution of  the equivalent-potential tempera- 
ture in Fig. 8 b. This quantity is not  affected by 
latent heat exchanges and therefore is an appro- 
priate air mass qualifier. The EFP maximum line 
lags behind the TFP maximum line by about 
120 km north of the Alps. Active weather (clouds 
and precipitation) is related more to the EFP max- 
imum (marked by "F 1") than to the TFP maxi- 
mum ("F 2"). However, the dynamic fields (pres- 
sure, wind) show the strongest gradients near 
"F 2". This can be seen from the vertical cross- 
sections o fu  and v in Figs. 9 b and 9 c. In summary, 
the influences of orography and latent heat ex- 
change complicate the structure of the cold front 
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Fig. 8. Distribution (isoline labels in ~ of the potential 
temperature (Plate a: O) and the equivalent-potential tem- 
perature (Plate b: Oe) at 50m GND resulting from 3 D-A0 
after 9 hours of simulation. The positions of the correspond- 
ing thermal front parameters (TFP and EFP) are presented 
by front symbols. The dashed lines serve to compare the 
positions of TFP and EFP 
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West East 
5km 

Fig. 9. Vertical west-east cross-section along the line shown 
in Fig. 8 presenting results of 3 D-A 0 at t = + 9 h. Plate a 
contains isolines (labels in ~ contour interval 2 K) of po- 
tential temperature (O, full lines) and equivalent-potential 
temperature (Oe, dashed lines). Isolines (labels in m/s) of the 
west-east component (u) and of the south-north component 
of wind (v) are presented in plates b and c. The positions 
marked by "F  1" and "F  2" identify the EFP and TFP max- 
imum near the surface, respectively 

as it approaches the Alps. The model results sug- 
gest a splitting of the front into a dynamically 
active front line, represented by the TFP, and an 
air mass boundary represented by the EFP. 

The propagation speeds of the surface front 
lines are analyzed using three-hourly isochrones. 
Their positions are defined by the maximum lines 
of TFP as defined in Section 4.1. The results of 
3 D-A 0 and 3 D-A 2 (front from West) are plotted 

in Fig. 10a, those of 3D-B0 (front from north- 
west) in Fig. 10 b. 

Figure 10a shows isochrones of the surface 
front line (maximum lines of TFP) of both sim- 
ulations, the "dry" one (3 D-A 2) and the "moist" 
one (3 D-A 0). The front propagates evidently fas- 
ter if water phase changes are turned on. By 
t = + 6 h prefrontal precipitation has cooled the 
warm air mass at lower layers leading to a sec- 
ondary maximum line of TFP at the eastern 
boundary of the precipitation area. The front line 
of 3 D-A 0 is well defined at t = + 9 h by its TFP 
maximum and has speeded up from 12m/s to 
27 m/s if one measures the progress of the respec- 
tive main TFP maximum line. The cold air mass, 
however, does not follow with the same speed as 
the propagation of the EFP maximum line indi- 
cates (cf. Fig. 8 b and 9 a). The greatest advance 
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Fig. 10. Three-hourly isochrones of the surface fronts (max- 
imum lines of TFP) of case A (plate a) and case B (plate b). 
The front positions of runs regarding latent heat conversions 
(3 D-A 0) are presented by full lines, those of runs neglecting 
latent heat conversions (3 D-A 2 and 3 D-B 2) are exhibited 
by longly dashed lines. Uncertain or ambiguous positions are 
plotted with shortly dashed or dotte d lines, respectively 
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is simulated between t = + 6h  and t = + 9h. 
During this time interval the orographic influence, 
i.e. the foehn effect, and the latent heat effect 
superimpose. 

The results of 3 D-A 2 (no latent heat exchange) 
are somewhat obscure respecting the TFP at 
t = + 9 h. The tongue of foehnic warm air pro- 
duces a separate TFP maximum line at its western 
boundary extending from Lake of Constance to- 
wards the northeast. During the next three hours 
this line becomes the main TFP maximum line 
while the original line, positioned shortly east of 
Stuttgart at t = + 9 h, disappears. At t = + 12 h 
the maximum line of  TFP are well defined again 
for both runs, 3 D-A 0 and 3 D-A 2. It travels with 
12.2 m/s (run 3 D-A 0 with latent heat exchange) 
and 10.4m/s (run 3 D-A2 without latent heat ex- 
change), respectively. As the front approaches the 
eastern end of  the Alps it slows down in either 
run, presumably because of the ceasing foehn ef- 
fect. 

The effect of latent heat exchange depends 
much on the location of  precipitation relative to 
the surface front line. Only if rain falls into un- 
saturated air at the rear side of the front the ac- 
celerating effect is most pronounced as it is the 

case for front A. On the contrary, precipitation 
already forms ahead of front B. This is mainly 
due to an orographically forced lifting of the pre- 
frontal air as the front gets closer to the Alps. In 
this case the cross-frontal temperature contrast is 
slightly decreased which leads to a deceleration of 
the front as it becomes evident after t = + 9 h in 
Fig. 10b. 

4.5.2 Appearance of the Frontal Passages as 
Simulated over Mfinchen 

The different appearance of the frontal passages 
for cases 3 D-A 0, 3 D-A 2, 3 D-B 0, and 3 D-B 2 
is visualized by time-height cross-sections of se- 
lected quantities over Mfinchen. This location was 
choosen because of two reasons. Firstly, it is sit- 
uated close enough to the mountains (approxi- 
mately 60 km north of the Alpine baseline) to be 
within the range of the orographic influence. Sec- 
ondly, M/inchen is a radiosonde station from 
which temporally condensed ascents during the 
GFE 8Ts special observation periods were used 
to construct time-height cross-sections. They are 
published by Hoinka et al. (1988). 
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Fig. 11. Time-height diagrams overhead the location of Mfinchen of 3 D-A 2 (plate a), 3 D-A 0 (plate b), 3 D-B 2 (plate c), 
and 3 D-B 0 (plate d), showing the isolines (labels in ~ contour interval 1 K) of potential temperature (O) 
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Fig. 12. Time-height diagrams overhead the location of Miinchen of 3 D-A 0 (left-hand plates a, b, c) and of 3 D-B 0 (right- 
hand plates d, e, f) showing the equivalent-potential temperature (Plates a and d: O,, labels in ~ contour interval 1 K), the 
cross-frontal wind speed relative to the frontal movement (plates b and e: U v -  CF, contour interval 2m/s, values/> + 2m/s 
are stippled), and the front-parallel wind component (plates c and f: VF, contour interval 2m/s) 

Figure 11 compares potential temperature time- 
height cross-sections from simulations with dif- 
ferent front orientation (3 D - A  0 and 3 D - A  2 vs. 
3 D-B 0 and 3 D-B 2) and from "dry" and "moist" 
simulations (3 D - A  0 and 3 D-B 0 vs. 3 D - A  2 and 
3 D-B 2). The "dry" case with a westerly approach 
of  the front and an initial f low from 210 ~ in the 
warm air mass (Fig. 11 a) clearly exhibits a foehnic 
warming as the isentropes sag before the surface 
front passes at t = + 10.5h. This is not the case 
if the front approaches from N N W  with a westerly 
flow ahead (Fig. 11 c). The foehn also increases 

the static stability within the boundary layer (be- 
low 1000m MSL), but decreases it aloft. As the 
pre-frontal conditions appear to be different so 
do the fronts themself. Front B causes a faster 
temperature drop near the surface compared to 
Front A. At higher altitudes only a weak decrease 
of  potential temperature is observed ahead of  the 
surface front in 3 D-B 2 whereas the termination 
of  the foehn is accompanied with a more pro- 
nounced temperature decrease in 3 D - A 2 .  The 
post-frontal temperature decrease expands to 
higher altitudes much faster for 3 D-B 2 (Fig. 11 c) 
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than it does for 3 D-A 2 where the cooling is re- 
stricted to a shallow layer below 3000 m MSL. 

The situation is different if latent heat effects 
are permitted. At the surface, temperature de- 
crease starts almost two hours earlier and the cool- 
ing rate is increases for Front A (Fig. 11 b). This 
is due to evaporation of post-frontal precipitation 
within the cold air mass. The time of the foehn 
termination, however, is not much influenced by 
the latent heat effects. 

Front B is differently modified by diabatic heat 
exchanges as a comparison of Fig. 11 c and 11 d 
shows. The partial evaporation of pre-frontal pre- 
cipitation stabilizes and cools the warm air mass 
within the boundary layer. The main temperature 
drop, however, remains nearly unchanged at 
around t = + 8 h. The release and toss of latent 
heat strengthens the temperature contrast and 
consequently increases the static stability within 
the inclined frontal layer. 

Figure 12 shows the temporal development of 
further parameters resulting from 3 D-A0 and 
3 D-B 0, namely the equivalent-potential temper- 
ature (Oe), the cross-frontal wind compotent in a 
frame of reference moving with the fi'ont (UF-- @), 
and the front-parallel wind component (vF). The 
values of cF were deduced from isochrones. They 
amount to l l .7m/s  for case A and l l . l m / s  for 
case B. The diagrams of O e (Fig. 12a and 12d) 
elucidate the air mass change over Mfinchen. The 
cold air mass intrudes more abruptly and attains 
height faster in case B (3 D-B 0) than in case A 
(3 D-A 0). Also the dynamic fields look differently. 
Connected with Front A a strong post-frontal 
feeder flow is simulated within the entire depth of 
the cold air layer (Fig. 12 b). On the contrary, 
Front B shows only a slight inflow from behind 
which concentrates closely beneath the inclined 
air mass boundary. The front-parallel wind com- 
ponent (VF) has a jet-like maximum below 1000 m 
MSL in either case. However, the speed of the 
low-level jet ahead of Front B exceeds that ahead 
of Front A by 80%. An obvious explanation of 
these differences is the direction of the air flow 
relative to the orientation of the Alpine mountain 
range. In case A the front-normal component is 
directed parallel to the mountains and therefore 
enhanced. The same is true for the front-parallel 
component in case B, which is, indeed, more pro- 
nounced than in case A. 

5. Conclusion 

The results show that processes which increase the 
temperature contrast across a front tend to ac- 
celerate the propagation of a cold front. Two such 
processes could be identified in this study. These 
are the foehn and latent heat conversions. 

Foehn, generated by sufficiently stable strati- 
fied pre-frontal air crossing the Alps, warms the 
lower moiety of the troposphere by downward 
motion leeside the mountains within the pre-fron- 
tal warm air mass. Provided that the pre-frontal 
warm air is moist enough to allow condensation 
this air mass is warmed at altitudes where clouds 
appear. If precipitation forms behind the surface 
front-line and falls into the post-frontal cold air 
which is, moreover, dry enough to enable the pre- 
cipitation partly to evaporate the sub-cloud layer 
of the cold air is additionally cooled. Hence, the 
temperature difference between both air masses 
increases under these presuppositions. 

Such a configuration was simulated for case A 
with a south-north orientated front and pre-fron- 
tal foehn-flow. In this case the front was accel- 
erated north of the Alps by both foehn and latent 
heat conversions. Different model runs where ei- 
ther latent heat effects or foehn (as the conse- 
quence of the Alpine orography) were eliminated 
show that foehn contributes more to the accel- 
eration than latent heat effects. The results of case 
B, however, show that latent exchanges have not 
always an accelerating effect. Here, the cold front 
moves from the northwest and the pre-frontal air 
flows almost parallel to the mountain range with 
a weak component towards the Alps. Precipitation 
already forms ahead of the surface front line as 
the warm air is partly forced to rise at the northern 
Alpine rim. Since foehn is not present due to the 
direction of the synoptic-scale airflow the front 
does not speed up as it approaches the Alps. In 
contrary, it is even slightly decelerated by latent 
heat exchange due to pre-frontal precipitation that 
decreases the cross-frontal temperature contrast. 

The full variety of possible configurations of 
frontal orientation, supra-scale airflow direction 
and speed, and vertical temperature and humidity 
profiles within the air masses separated by the 
front could, of course, not be covered by the lim- 
ited number of numerical simulations. Neverthe- 
less, the few cases shown in this study already 
exhibit a couple of phenomena which are fre- 
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quently observed in connection with cold fronts 
near the Alps. Synthetic assumptions, such as the 
elimination of the Alps or the exclusion of  latent 
heat exchanges are valuable for elucidating prin- 
cipal mechanisms that influence the frontal be- 
haviour in the area of interest. 

Further numerical investigation are going on 
in order to clarify the interaction of foehn and 
cold fronts north of the Alps. Especially, the static 
stability of  the air and the angle between the large- 
scale flow and the main axis of  the Alpine moun- 
tain range will be varied to generate different foehn 
scenarios. Another aspect of  interest are inversions 
within the warm air mass. They produce a stable 
environment ahead of the front and sometimes 
hinder the foehn to penetrate through the surface 
layer. Such situations are critical with respect to 
air pollutions which are trapped beneath the in- 
version, but which will be removed by a cold front 
(cf. Hoinka and R6131er, 1987). 
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