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Abstract

In this paper we propose a new numerically reliable
computational approach to determine the J-inner-
outer factorization of a rational matrix G. The
proposed approach is completely general being ap-
plicable whenever G is proper or not, or of full
column/row rank or not. In contrast to existing
“one-shot” methods which require the solution of
Riccati or generalized Riccati equations, the new
approach is recursive and avoids such computatio-
nally involved steps by using instead a recursive
state-space approach. The resulting factors have
always minimal order descriptor representations.

1. Introduction

Let G(X) be a given p x m stable rational transfer-
function matriz (TFM) of a linear time-invariant
continuous-time or discrete-time descriptor system
and let G = (E,A,B,C,D) denote an equiva-
lent nth order reqular (det(AE — A) # 0) irredu-
cible descriptor representation satisfying G(\) =
C(AE — A)~'B + D, where ) is either s or z, de-
pending on the type of the system. We assume
that G has no zeros on the imaginary axis for a
continuous-time system or on the unit circle circle
for a discrete-time system. In this paper we ad-
dress the problem to compute a J-inner-outer fac-
torization of G, namely G = G;G,, where G; is
a square J-inner factor and G, is an outer fac-
tor. Recall that for a given inertia matrix J, G;
is J-inner means G; is stable and G;JG; = J,
where G#(s) = G (—s) in continuous-time and
Gi(z) = GF(1/2) in discrete-time. In this paper,
G, is outer means that it has only stable poles and
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zeros. This definition of outer matrices extends,
by a slight abuse of language, the standard defini-
tion [1] (applicable to full row rank matrices), to
rational matrices of arbitrary rank.

In this paper we propose a new numerically reliable
computational approach to compute the J-inner-
outer factorization of G. In contrast to several
“one-shot” methods [2], [3], [4], which require the
solution of Riccati or generalized Riccati equations,
our approach is recursive and avoids such computa-
tionally involved steps by using instead a recursive
state-space approach. Generalized Lyapunov equa-
tions of order at most two are solved repeatedly to
compute suitable elementary J-inner factors to re-
flect the unstable zeros into the stable region of the
complex plane. The proposed approach is comple-
tely general being applicable whenever G is proper
or not, or of full column/row rank or not. The
resulting J-inner and outer factors have always mi-
nimal order descriptor representations.

The procedure to compute J-inner-outer factoriza-
tions is conceptually similar to that of [5] to com-
pute inner-outer factorizations and has the follo-
wing main steps:

1. Compute a generalized inverse GT of G such that
the unstable poles of GT are exactly the unstable
zeros of G.

2. Compute a right coprime factorization with J-
inner denominator (RCFJID) of Gt as Gt =
NG; ', where N and G; are stable TFMs with
G, J-inner and of least order.

3. Compute G, = G; 'G.

If the generalized inverse Gt computed at step 1 is
an (1,2)-generalized inverse satisfying GGTG = G



and GTGGT = G7 [6], then it is easy to see that
the computed G, is outer. This follows by obser-
ving that N is a stable (1,2)-generalized inverse
of G,, satisfying G,NG, = G, and NG,N = N.
The requirements at step 1 that G has the only
unstable poles, the unstable zeros of G, and at step
2 that G; has least order ensure that the order of
the resulting J-inner factor G; equals the number of
unstable zeros of G. The requirement for the least
order of GG; is a necessary condition to compute
the corresponding G, because the need for unsta-
ble poles-zeros cancellation in computing Gi_lG at
step 3. The existence of the J-inner-outer facto-
rization is implicitly verified by the procedure to
compute G;.

In the rest of the paper we discuss in detail the
main computational problems appearing in the
proposed computational approach.

2. Computation of generalized inverses

In this section we discuss a numerically reliable ap-
proach to compute a descriptor representation of
a particular (1,2)-generalized inverse GT fulfilling
the requirement to have as unstable poles the un-
stable zeros of G. It is known that for a non-square
full rank TFM G the zeros of G (finite and infinite)
are always poles of any left or right inverse G
[7, page 467]. However besides these fixed poles
GT generally possesses also spurious poles resul-
ting from the particular way the inverse was deter-
mined. In order to simplify the procedure at step
2, it is convenient to devise an inversion procedure
by which these spurious poles result always stable.
This allows an easy computation of a least order
inner denominator (if exists) at step 2.

Consider system matriz pencil
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associated to the descriptor representation G =
(E,A,B,C,D). The computation of an (1,2)-
generalized inverse of G relies on the following
straightforward formula [8]
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where S(A)T is an (1,2)-generalized inverse of S()\).
It can be readily verified that if S(\)* is an (1,2)-
generalized inverse then the corresponding G*(\)
in (2) is also an (1,2)-generalized inverse [8].

With the help of two orthogonal matrices @ and Z
it is possible to reduce the system pencil (1) to the
following Kronecker-like form which exhibits the
complete Kronecker structure of S(\):

Si(\) = QS(\)Z =

B.|A, — \E, * *

0 0 Apeg—AEreg % 3)
0 0 0 A= AE |’

0] o 0 C

where: 1) the pencil [ B, A, — A\E,. | with E; non-
singular contains the right Kronecker structure of
S(A) and the pair (B,, A, — AE,) is controllable;
2) the regular pencil Ayey — AE,¢, has the form

Aco — A\Eoo *

Aveg = ABreg = 0 Ay =By | (4)

where the pencil Ao, — AF, with A, non-singular
and E., nilpotent contains the infinity Kronecker
structure of S(A), while the pencil Ay — \Ef
with Ey non-singular contains the finite Kronecker
structure of S(A); the generalized eigenvalues of the
pair (Ay, Ef) are the finite zeros of the G; 4) the

. A — AE;
pencil [ o
the left Kronecker structure of S(\) and the pair
(C1, A, — \E)) is observable.

] with F; non-singular contains

By using additional left and right transformation
matrices U and V of the special forms

I 000 I FOO
0700 07 00
U=loorkx|"V=looro| ©
000 I 0001
we obtain
S = | S S | gy =
0 [Sn(\) |
BT Ar + BT‘F - /\Er * *
0 0 Areg — AEreg *
0 0 0 A+ KCp — \E;
0] 0 0 C

(6)
Because the pair (B, A, — AE,.) is controllable and
the pair (C;, A;—\E}) is observable, we can arbitra-
rily assign stable spectrums for the matrix pairs
(A,+B,F,E,) and (A, + KC}, E;) by choosing sui-
table state-feedback and output-injection matrices
F and K, respectively.

With the partitioning of S(\) as in (6) it follows
that for almost all \, rank S()\) = rank S;2()\), and



thus a generalized (1,2)-inverse of S(A) can be com-
puted as [6]

SNt =2V [ 512&)71 8 ] UvQ. (7

To compute a descriptor representation of the ge-
neralized inverse G(\)T it is not necessary to ex-
plicitly evaluate Sjo(\) 7. If we denote

- - 0 B
A12—)\E12=512()‘)7 B=UQ { I ]: { gl ]
P 2

C=[01,]12V=[C Cy],

where B and C are partitioned analogously with
the column and row partition of S(\) in (6), re-
spectively, then the corresponding G(A)* is given
by

G()\)+ = —CQ()\Elg — 1412)_1B17 (8)

and thus (E12,2{12,§1, —62,0) is a descriptor re-
presentation of G(A\)™T.

From the above construction it is clear that the
poles of GT include always the zeros of G (the
generalized eigenvalues of the regular part (4) )
as the fixed poles of GT. The spurious poles are
the union of generalized eigenvalues of the pairs
(A, + B,F,E,) and (A, + KC}, E;) and as mentio-
ned before, can be arbitrarily assigned. If G has
only stable zeros, then this approach can be used
to compute stable generalized inverses of G by ap-
propriately determining stabilizing matrices F' and
K. Generally with F' and K stabilizing, the only
unstable poles of the generalized inverse (8) are the
unstable zeros of G. Thus G(\)T satisfies the con-
dition imposed at step 1 of the procedure proposed
in the previous section having the only unstable
poles the unstable zeros of G.

To compute at step 3 the outer factor G, only
the J-inner denominator G; in the RCFJID G+ =
NG;1 is necessary. As it will be apparent in the
next section, in this case the output matrix —52
of Gt plays no role in the computations. In fact,
to compute G; it is sufficient to have A — AE, the
lower right corner of A12 — AF15 defined as

N = Af - )\Ef %

A-\E = 0 A +KC - g O
and B , the corresponding rows of the input matrix
B;. Thus the computation of the right transforma-
tion matrices Z and V is not necessary. Moreover,
instead of the more complex Kronecker-like form

(3), the following simpler Kronecker-like form can
be used

S2(A) :=QS\N)Z =

A, — \E, *

0 A;—\E; =

0 0 A= AE |’

0 0 C
where this time the pencil A, — AE, contains the
right and the infinity Kronecker structures of the
system pencil.

(10)

The reduction techniques to compute (3) or (10) is
based on structure preserving algorithms similar to
those described in [9] to compute the system zeros.
A complete algorithm to compute (3) is described
in detail in [10] together with the corresponding
computational programs. The simpler form (10) is
an intermediary step in computing (3). The sta-
bilizing matrix K in (9) can be efficiently compu-
ted by using either direct stabilization methods or
pole assignment techniques for descriptor systems
as those proposed in [11]. The computational com-
plexity of computing a generalized inverse of G is
0(n3) and all computations can be done with nu-
merically stable or numerically reliable algorithms.

3. Computation of the J-inner factor

Let G = (E, A, B,C, D) be a stabilizable descriptor
representation of a rational TFM G and let J =
diag (I,n,, —Im,) be a given inertia matrix such
that my + mo = m, where m is the number of co-
lumns of G. In this section we present an algorithm
to compute a least order J-inner denominator G; of
a RCFJID of G, G = NG;'. This algorithm can
be used at step 2 of the proposed approach to de-
termine the least order J-inner denominator factor
of the RCFJID of GT. The algorithm to compute
G, is similar to that proposed in [12] to compute
right coprime factorizations with inner denomina-
tors and relies on several simple facts.

Fact 1. [13] For any F of appropriate dimensions
and for any invertible W, the descriptor represen-
tations

N = (E, A+ BF, BW, C + DF, DW)
M = (E, A+ BF, BW, F,W)

give a fractional representation of G as G =
NM~t. If F is chosen such that the pair (E, A +
BF) is stable, then the fractional representation is
a right coprime factorization.

It is apparent that in computing the denominator
factor M the output matrix C' plays no role. This



fact leads to a sensible simplification of the proce-
dure presented in section 1.

The algorithm to compute J-inner denominators
uses recursively the following explicit updating
technique of fractional representations.

Fact 2. If G = N M;"' and N, = NoM;*'
are fractional representations with J-inner deno-
minators, then G has the fractional representation
G = NM~', where N = Ny and M = MM, is
J-inner.

This simple fact allows us to obtain explicit formu-
las to update partial factorizations by using simple
state space formulas. Let N, and M, be the factors
computed as

N, = (E, A+ BF, BW,, C+ DF,, DW,)
Ml = (E7A+BF17BW17F17W1)

and let Ny and M> be the factors of N7 computed
as

N, = (E, A+ BF, BW, C + DF, DW)
M2 = (E7A+BF7BW7F27W2)
where
F = F+WEk (11)
W = W)W,

It easy to verify that the product M; M, is given
by

MM, = (E, A+ BF, BW, F, W) (12)

and thus the equations (11) and (12) serve as expli-
cit updating formulas of fractional representations.

Elementary first or second order J-inner factors can
be used to reflect the unstable poles of G to sym-
metric positions with respect to the imaginary axis
in case of continuous-time systems or with respect
of the unit circle in case of discrete-time systems.
This pole dislocation technique is used in our algo-
rithm and is conceptually similar to the conjuga-
tion technique proposed in [2]. Formulas to com-
pute elementary J-inner denominators are establis-
hed below.

Fact. 3 Let G = (E, A, B,*,%) a controllable
descriptor representation with E non-singular and
A(E,A) € CT (the appropriate unstable region of
the complex plane C). Then the denominator fac-
tor G; = (E,A+ BF, BW, F, W) is J-inner by
choosing F' and W as:

AYET + EYAT —BJBT =0
F=—JBT"(YET)™', W=I,

for a continuous-time system, and

AYAT - BJBT = EYET
F=—-JBT(EYET + BJBT)"'A
WT(J+ BY(EYET)"'B)W = ],

for a discrete-time system, where Y must be inver-
tible.

The invertibility of ¥ guarantees the existence of
a least order J-inner denominator. (Notice that a
RCFEJID of non-least order always exists.) If sup-
plementary Y > 0, then the J-inner factor is also
lossless [4]. In computing the elementary J-inner
factors the invertibility (or positive definiteness) of
Y must be checked. If this check fails, then the
given TFM has no RCFJID with the J-inner deno-
minator of least order.

In the discrete-time case, W can be computed
easily by observing that the symmetric matrices
Z = J+ BY(EYE")"!B and J must have the
same inertia. Thus if Z = UGUT is the orthogo-
nal symmetric decomposition of Z with G diagonal
and G.J > 0, then W is simply W = U(G.J) /2,

RCFJID Algorithm.

1. Find orthogonal matrices () and Z to reduce the
pair (E, A) to the ordered generalized real Schur
form (GRSF) (QAZ,QEZ) such that

_ | Eun B2 A1 Ar _ | B1
opz= |1y i) eaz =[5 ] em =[]

where Eyy, Ags € R, A(A1,Ep) N CH = ¢
and A(Agy, Eop) C €.

Set, (A\,./E\',E,ﬁ,w) = (A227E227B2707[)7 L=

2.1f ¢ =0, go to 6.

3.Let (6, a) be the last diagonal blocks of (E,A)
of order k and let 3 be the k x m matrix for-
med from the last k& rows of B. For the system
(6, ar, B, %, %) compute ¢, V and Y (the solution
of the corresponding Lyapunov equation) such
that (6, + By, BV,p, V) is J-inner. If Y is not
invertible (or not positive definite), then error
and exit; else, set K =[0¢].

4.ComputeA<—A+BK F<—F+WK
W« WV.

5. Compute the orthogonal Q and Z to move the
last blocks of (E, A) to positions (i + 1,7 + 1) by
interchanging the diagonal blocks of the GRSF.
Compute E « QEZ A« QAZ B « QB
F« FZ. Put ¢ < q¢—Fk, i < i+ k and go to 2.

AN A~ A~

6.Set G; = (E, A, BW,F,W).



If the RCFJID Algorithm is applied to the TFM
GT computed in the previous section, then the or-
der of the J-inner factor is precisely the number of
unstable zeros of G. The resulting pair (E, A) is
in a generalized real Schur form having as stable
eigenvalues the reflected unstable zeros of G.

The RCFJID algorithm relies on reliable numerical
techniques. It can be viewed as a pole assignment
algorithm (similar to that of [11]) which assigns
the unstable poles in symmetrical positions with
respect to the imaginary axis in the continuous-
time case or the unit circle in the discrete-time
case. Because practically there is no freedom in
assigning the poles, it is to be expected that the al-
gorithm perform in a numerically stable way only
if the norms of the elementary feedback matrices
K computed at step 3 are not too high.

4. Computation of outer factor

The outer factor G, can be computed by removing
the uncontrollable unstable eigenvalues from the
descriptor representation of G e
E0] [A-BFBC] [BD] | c-15 - t-1

(el [ i)
These eigenvalues can be removed in a numerically
sound way by using the following approach. First
reduce the pair

({X—Bﬁ EC} {E 0})
0 A |’ 0 E

by using an orthogonal similarity transformation,
to an ordered GRSF where the unstable diagonal
blocks are situated in the bottom right corner of the
resulting pair. Because the unstable eigenvalues
are uncontrollable, the corresponding rows in the
transformed input matrix should be zero. Thus, af-
ter applying the transformations to the input and
output matrices of G;lG , the nth order outer fac-
tor results by simply retaining the subsystem cor-
responding to the first n stable eigenvalues.

5. Conclusions

A completely general implementable procedure to
compute J-inner-outer factorizations of rational
matrices has been proposed. All computational
steps of this procedure can be performed by using
exclusively numerically reliable algorithms. The
procedure is well suited for robust and modular
software implementation. With J = I, it can be

used to compute inner-outer factorizations too. It
is worth to mention that the proposed procedure
is applicable even when the given rational matrix
has zeros on the imaginary axis for a continuous-
time system or on the unit circle for a discrete-time
system.
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