elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Kontakt | English
Schriftgröße: [-] Text [+]

In-situ observations of high cycle fatigue mechanisms in cast AM60B magnesium in vacuum and water vapor environments

Gall, Ken und Biallas, Gerhard und Maier, Hans Jürgen und Gullett, Phil und Horstemeyer, Mark F. und McDowell, David L. und Fan, Jinghong (2004) In-situ observations of high cycle fatigue mechanisms in cast AM60B magnesium in vacuum and water vapor environments. International Journal of Fatigue, 26 (1), Seiten 59-70.

Dieses Archiv kann nicht den gesamten Text zur Verfügung stellen.

Kurzfassung

We present in situ scanning electron microscopy (SEM) observations regarding the formation and propagation of small fatigue cracks in cast AM60B magnesium. Using an environmental SEM, observations were made in vacuum and in the presence of water vapor at 20 Torr. In the vacuum environment, fatigue cracks in the magnesium formed preferentially at pores, sometimes precluded by observable cyclic slip accumulation. At higher cycle numbers in the vacuum environment, additional cracks were discovered to initiate at persistent slip bands within relatively large magnesium dendrite cells. The propagation behavior of small fatigue cracks (a ‹ 6–10 dendrite cells) was found to depend strongly on both environment and microstructure. Small fatigue cracks in the magnesium cycled under vacuum were discovered to propagate along interdendritic regions, along crystallographic planes, and through the dendrite cells. The preference to choose a given path is driven by the presence of microporosity, persistent slip bands, and slip incompatibilities between adjacent dendrite cells. Fatigue cracks formed more rapidly at certain locations in the water vapor environment compared to the vacuum environment, leading to a smaller total number of cracks in the water vapor environment. The majority of small cracks in magnesium cycled in the water vapor environment propagated straight through the dendrite cells, at a faster rate than the cracks in the vacuum. In the water vapor environment, cracks were observed to grow less frequently through interdendritic regions, even in the presence of microporosity, and cracks did not grow via persistent slip bands. The propagation behavior of slightly larger fatigue cracks (a › 6–10 dendrite cells) was found to be Mode I-dominated in both environments.

Dokumentart:Zeitschriftenbeitrag
Titel:In-situ observations of high cycle fatigue mechanisms in cast AM60B magnesium in vacuum and water vapor environments
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID
Gall, KenUniversity of ColoradoNICHT SPEZIFIZIERT
Biallas, GerhardNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Maier, Hans JürgenUniversität PaderbornNICHT SPEZIFIZIERT
Gullett, PhilSandia National LaboratoriesNICHT SPEZIFIZIERT
Horstemeyer, Mark F.Sandia National LaboratoriesNICHT SPEZIFIZIERT
McDowell, David L.Georgia Institute of TechnologyNICHT SPEZIFIZIERT
Fan, JinghongAlfred UniversityNICHT SPEZIFIZIERT
Datum:2004
Erschienen in:International Journal of Fatigue
Referierte Publikation:Ja
In Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Ja
Band:26
Seitenbereich:Seiten 59-70
Status:veröffentlicht
Stichwörter:cast magnesium, in-situ fatigue, small cracks, environmental degradation, surface layer, hydrogen embrittlement, damage mechanisms
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Luftfahrt
HGF - Programmthema:Starrflügler (alt)
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Starrflüglerforschung
DLR - Teilgebiet (Projekt, Vorhaben):L - Strukturen & Werkstoffe (alt)
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Werkstoff-Forschung > Werkstoffmechanische Prüfung
Hinterlegt von: Biallas, Dr.-Ing. Gerhard
Hinterlegt am:27 Jan 2006
Letzte Änderung:27 Apr 2009 04:55

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Copyright © 2008-2013 Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.