DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Kontakt | English
Schriftgröße: [-] Text [+]

Validation of precipitable water from ECMWF model analyses with GPS and radiosonde data during the MAP SOP

Bock, Olivier und Keil, Christian und Richard, Evelyne und Flamant, Cyrille und Bouin, M.N. (2005) Validation of precipitable water from ECMWF model analyses with GPS and radiosonde data during the MAP SOP. Quarterly Journal of the Royal Meteorological Society, 131, Seiten 3013-3036. DOI: 10.1256/qj.05.27

[img] PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader


Precipitable water vapour contents (PWCs) from European Centre for Medium-Range Weather Forecasts (ECMWF) analyses have been compared with observations from 21 ground-based Global Positioning System receiving stations (GPS) and 14 radiosonde stations (RS), covering central Europe, for the period of the Mesoscale Alpine Programme experiment special observing period (MAP SOP). Two model analyses are considered: one using only conventional data, serving as a control assimilation experiment, and one including additionally most of the non-operational MAP data. Overall, a dry bias of about −1 kg m−2 (−5.5% of total PWC), with a standard deviation of ∼2.6 kg m−2 (13% of total PWC), is diagnosed in both model analyses with respect to GPS. The bias at individual sites is quite variable: from −4 to ∼0 kg m−2. The largest differences are observed at stations located in mountainous areas and/or near the sea, which reveal differences in representativeness. Differences between the two model analyses, and between these analyses and GPS, are investigated in terms of usage and quality of RS data. Biases in RS data are found from comparisons with both model and GPS PWCs. They are confirmed from analysis feedback statistics available at ECMWF. An overall dry bias in RS PWC of 4.5% is found, compared to GPS. The detection of RS biases from comparisons both with the model and GPS indicates that data screening during assimilation was generally effective. However, some RS bias went into the model analyses. Inspection of the time evolution of PWC from the model analyses and GPS occasionally showed differences of up to 5–10 kg m−2. These were associated with severe weather events, with variations in the amount of RS data being assimilated, and with time lags in the PWCs from the two model analyses. Such large differences contribute strongly to the overall observed standard deviations. Good confidence in GPS PWC estimates is gained through this work, even during periods of heavy rain. These results support the future assimilation of GPS data, both for operational weather prediction and for mesoscale simulation studies.

Titel:Validation of precipitable water from ECMWF model analyses with GPS and radiosonde data during the MAP SOP
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iD
Bock, OlivierUniv. Paris, Paris, FNICHT SPEZIFIZIERT
Richard, EvelyneUniversit´e Paul Sabatier, Toulouse, FNICHT SPEZIFIZIERT
Flamant, CyrilleUniv. Paris, Paris, FNICHT SPEZIFIZIERT
Erschienen in:Quarterly Journal of the Royal Meteorological Society
Referierte Publikation:Ja
In Open Access:Nein
In ISI Web of Science:Ja
DOI :10.1256/qj.05.27
Seitenbereich:Seiten 3013-3036
Stichwörter:Mesoscale Alpine Programme, data assimilation, precipitable water, GPS, ECMWF
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:L VU - Luftverkehr und Umwelt (alt)
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L VU - Luftverkehr und Umwelt
DLR - Teilgebiet (Projekt, Vorhaben):L - Luftverkehr und Wetter (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre > Wolkenphysik und Verkehrsmeteorologie
Hinterlegt von: Keil, Dr.rer.nat. Christian
Hinterlegt am:17 Mär 2008
Letzte Änderung:11 Nov 2014 21:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Hilfe & Kontakt
electronic library verwendet EPrints 3.3.12
Copyright © 2008-2017 Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.