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Abstract

Autonomous machines require increasingly more robustness and reliability to meet the
demands of modern tasks. These requirements specially apply to cameras onboard
such machines, as they are the predominant sensors acquiring information about the
environment to support decision making and actuation. Hence, the cameras must
maintain their own functionality. This poses a significant challenge, primarily driven
by the variety of existing cameras, the vast amount of potential application scenarios,
and the limited machine resources, all while demanding real-time performance. Existing
solutions are typically tailored to specific problems or detached from the downstream
computer vision tasks of the machines, which, however, determine the requirements on
the quality of the produced camera images.

This thesis presents a camera self-health-maintenance framework to bridge this gap. The
approach combines a generalized condition monitoring and a task-oriented decision &
control unit. The monitoring is based on novel learning-based blur and noise estimators
that incorporate physical knowledge about the camera to increase consistency and
robustness. Especially the incorporation of camera metadata enables the system to
disambiguate the contributions of different noise processes within a camera. In this
manner alone, the decision & control unit can initiate appropriate countermeasures, if
necessary. To this end, camera parameters are readjusted based on an empirical image
task analysis to optimize performance under any situation.

The framework is evaluated on synthetic and real datasets from transportation and
robotic scenarios in terms of accuracy, robustness and real-time capability. Firstly, the
blur and noise estimators are examined and two extensions are analyzed, which recover
the estimation of combined blur/noise corruptions and reduce estimation uncertainties,
respectively. Secondly, the effect of an acquired image and the camera’s metadata on
noise source estimation is investigated. This method is further demonstrated on the
detection of mismatches between both inputs (image and camera metadata) to quantify
unexpected noise as from camera defects. Lastly, the framework is implemented and
verified on a real robot system.

The real demonstration on a robot shows promising results to employ the framework
for arbitrary mobile machines in unknown environments. In particular, the proposed
framework outperforms standard camera parameter controllers. Yet, the results also
highlight current limitations that require framework extensions in future studies, such
as the application to complex non-linear motion blur and scenes with high dynamic
light intensity ranges.





Zusammenfassung

Autonome Maschinen benötigen zunehmend mehr Robustheit und Zuverlässigkeit, um den
Anforderungen moderner Aufgaben standzuhalten. Diese Anforderungen gelten insbesondere
für Kameras an Bord solcher Maschinen, da sie die vorherrschenden Sensoren sind, die
Informationen über die Umgebung erfassen und somit die Entscheidungsfindung und Steue-
rungsprozesse unterstützen. Aus diesem Grund müssen die Kameras ihre eigene Funktionalität
aufrechterhalten. Dies stellt eine große Herausforderung dar, die in erster Linie durch die
Vielfalt der vorhandenen Kameras, die große Anzahl potenzieller Anwendungsszenarien und
die begrenzten Maschinenressourcen bedingt ist, während gleichzeitig Echtzeit-Performance
benötigt wird. Derzeitige Lösungsansätze sind in der Regel auf spezifische Problemstellungen
zugeschnitten oder losgelöst von den nachgelagerten Bildverarbeitungsaufgaben der Maschinen,
die jedoch die Anforderungen an die Qualität der erzeugten Kamerabilder bestimmen.

In dieser Arbeit wird ein Framework zur Selbstinstandhaltung von Kameras vorgestellt,
um diese Lücke zu schließen. Das Framework kombiniert eine Zustandsüberwachung mit
einer Entscheidungs- & Steuerungseinheit. Die Zustandsüberwachung basiert auf neuartigen
lernbasierten Unschärfe- und Rauschschätzern, die physikalisches Wissen über die Kamera
einbeziehen, um die Konsistenz und Robustheit zu erhöhen. Insbesondere Kamera-Metadaten
ermöglichen es, die Beiträge verschiedener Rauschprozesse innerhalb einer Kamera voneinander
abzugrenzen. Nur so kann die Steuereinheit bei Bedarf geeignete Gegenmaßnahmen einleiten.
Zu diesem Zweck werden die Kameraparameter auf Grundlage einer empirischen Analyse der
Bildverarbeitungsaufgaben nachjustiert, um die Performance je nach Situation zu optimieren.

Das Framework wird anhand von synthetischen und realen Datensätzen aus Transport- und
Roboterszenarien in Hinblick auf Genauigkeit, Robustheit und Echtzeitfähigkeit evaluiert.
Zunächst werden die Unschärfe- und Rauschschätzer analysiert und zwei Erweiterungen unter-
sucht, die die Schätzung von kombinierten Unschärfe-/Rauschverfälschungen wiederherstellen
beziehungsweise die Schätzungsunsicherheiten verringern. Zweitens werden die Auswirkungen
eines aufgenommenen Bildes und der Metadaten der Kamera auf die Schätzung der Rauschquelle
untersucht. Diese Methode wird außerdem bei der Erkennung von Abweichungen zwischen
beiden Eingaben (Bild und Kamerametadaten) demonstriert, um unerwartetes Rauschen zu
quantifizieren, das zum Beispiel auf Kameradefekte zurückzuführen ist. Abschließend wird das
Konzept auf einem realen Robotersystem implementiert und verifiziert.

Die Demonstration am realen Roboter liefert vielversprechende Ergebnisse für den Einsatz des
Frameworks bei beliebigen mobilen Maschinen in unbekannten Umgebungen. Insbesondere
übertrifft das vorgeschlagene Framework die Standard-Kameraparametersteuerung. Die
Ergebnisse weisen jedoch auch auf aktuelle Einschränkungen hin, die in zukünftigen Studien
Erweiterungen des Frameworks erfordern, wie zum Beispiel die Anwendung auf komplexe nicht-
lineare Bewegungsunschärfe und Szenen mit hohem Dynamikumfang der Lichtverhältnisse.
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ξM/I Residual noise level
t Image time stamp
An Aggregation window size
C Image contrast
C0 Maximum possible image contrast modulation
∆σa→b

Change of a std. dev. σ between aggregation windows sizes a and b



Symbol Description

Images and Image Processing (cont.)
IMin/Imax Minimum and maximum image intensities
I(x, y) Intensity of an image I at coordinates (x, y)
I⋆(x, y) Intensity of an image I at coordinates (x, y) corrupted by blur
Ĩ(x, y) Intensity of an image I at coordinates (x, y) corrupted by noise
MBL Motion blur length
N Number of image frames

Object Detection
p Object detection confidence score
tFW Execution time of the proposed framework (FW)
BD Object detection
BGT Ground truth object detection

Machine Learning and Statistics
xmax Coordinate of the maximum of a statistical distribution
G, R Prior knowledge terms
L Total loss function
LNN Loss function of a neural network
Lphys Physical regularization term of a loss function
N (µ, σ2)(x) Gaussian distribution N with mean µ, variance σ2, and input x

P(λ)(x) Poisson distribution P with expected value λ and input x

Notations
λ, α, β Positive scalars
ϵ Small positive scalar (small error)
f(·), g(·) Unspecified (mock) functions
θ, Φ Angles
(t)p For a first-order logic formula t, the variable p is assumed to be fixed.
[a, b] Interval between real numbers a and b (including border values)
[·]jk Matrix element at coordinate (j, k)
[·](1), . . . , [·](n) Consecutive frames 1, ..., n

{·}N
i=0 Set of N quantities

∪jk{[·]jk}N
i=0 Union over sets of matrix elements at coordinate (j, k)

[·]⋆ Optimized variable
[·]norm Normalized quantity
[·]̄ Estimated average quantity
[·]̂ Estimated quantity
[·]̃ Estimated median quantity
F↦→ Fourier transformation





Acronyms

Acronym Description

AI Artificial Intelligence
AMAE Average Mean Absolute Error
AP Average Precision
AWGN Additive White Gaussian Noise
B+F Blurring and Filtering (noise estimation)
BM3D Block-Matching and 3D Filtering (denoiser)
CCD Charge-Coupled Device
CDS Correlated Double Sampling
CIS CMOS Imaging Sensor
CMOS Complementary Metal-Oxide-Semiconductor
CNN Convolutional Neural Network
CoC Circle of Confusion
CPU Central Processing Unit
CTF Contrast Transfer Function
DC Dark Current
DCSN Dark Current Shot Noise
DEFCARS DEFocused CARS (dataset)
DN Digital Number
DNN Deep Neural Network
DoF Depth of Field
DRNE Deep Residual Noise Estimator
ESF Edge Spread Function
FBI Fast Blind Image (denoiser)
FCB Fully Connected Branch
FLOP FLoating point OPerations
FLOP/s FLoating point OPerations per second
FW FrameWork
GAN Generative Adversarial Network
GBB Graph-Based Blur Estimation
GPT Generative Pre-trained Transformer



Acronym Description

GPU Graphics Processing Unit
GT Ground Truth
IOPC Input-Output Performance Curves
IOU Intersection Over Union
IQA Image Quality Assessment
IQR InterQuartile Range
IR InfraRed
LinMB Linear Motion Blur
LSF Line Spread Function
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAP Maximum-A-Posteriori
MB Motion Blur
ML Machine Learning
MOTCARS MOTion blurred CARS (dataset)
MTF Modulation Transfer Function
NLF Noise Level Function
NLM Non-Local Means (denoiser)
NN Neural Network
OTF Optical Transfer Function
PCA Principal Component Analysis (noise estimation)
PDE Partial Differential Equation
PGE-Net Poisson-Gaussian Estimation Net
PhTF Phase Transfer Function
Physics-ML Physics-informed Machine Learning
PMP Patch-wise Minimal Pixels (blur estimation)
PN Photon shot Noise
PrRe Precision-Recall-curve
PSF Point Spread Function
PSNR Peak Signal-to-Noise Ratio
R-CNN Region-based Convolutional Neural Network
RN Readout Noise
Sensor AI Sensor Artificial Intelligence
SGEMM Single-precision GEneral Matrix Multiply
SHAP SHapley Additive exPlanations
SLAM Simultaneous Localization And Mapping
SLE SLanted Edge



Acronym Description

SN Sense Node
SSIM Structural Similarity Index Measure
TP True Positive
UV UltraViolet
VO Visual Odometry
YOLO You Only Look Once





CHAPTER 1

Introduction

Machines are indispensable to facilitate and automate tedious, time-consuming or
dangerous tasks. Today, we are on the verge of the 5th industrial revolution, which is
characterized by an increasing use of machines that evolve away from manual control
towards autonomy and can act independently of time and place. This evolution is
equally increasing the complexity of the machines and with it the need for reliability
and robustness to ensure the safety of people and the machines themselves. These
requirements run like a red thread through all system components, starting with the
sensors that perceive the environment. Special attention is paid to trustworthy perception,
as all subsequent actions depend on it. Cameras are nowadays the predominant sensors
to perceive the environment, and are therefore the subject of this thesis. To guarantee a
camera’s intended functionality, autonomy also demands for self-health-maintenance,
meaning the task of continuously monitoring the behavior of the system and executing
automatic countermeasures in case of a detected misbehavior [Wis+23b].

For this purpose, various automatic image quality maintenance techniques have been
developed and are now part of a standard camera’s imaging pipeline (auto-focus, auto-
exposure, auto-calibration, etc.). However, such techniques tend to be decoupled from
the envisaged high-level image application and may therefore not achieve optimal whole-
system performance. This applies especially where image quality may be traded off
against other high-level application benefits. Moreover, every high-level application has
its own criteria for what is considered an optimal image quality.

The requirements for reliability and robustness likewise apply to the camera self-health-
maintenance and substantially depend on the choice of methodology. Modern artificial
intelligence (AI) algorithms feature high generalizability and flexibility, which makes
them the first choice for complex tasks and unknown environments. Yet they are still
considered to be incomprehensible in their decision-making processes, unpredictable in
their behavior, data-dependent, and vulnerable to attack. On the other hand, hand-
crafted traditional methods offer a comprehensive understanding of the problem being
solved but lack generalizability and flexibility.
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In this thesis, a general self-health-maintenance framework is proposed that strives
for optimal application performance and reliable/robust operation. To this end, novel
AI-based camera condition monitoring approaches are developed that incorporate the
physical knowledge of the camera sensor system (Sensor AI), and a decision & control
policy that readjusts the camera configuration based on the camera’s current state and
its targeted high-level task. All of the framework’s components are presented on a
theoretical basis, evaluated in extensive experiments, and implemented in two real-world
camera systems in order to provide new insights to the research area and a platform for
its application on modern machines.

1.1 Research Focus

This section describes the objectives of this thesis, its scope, and derived research
questions.

Objectives
The aim of this study is to design and evaluate a (i) practical (ii) self-health-maintenance
framework for camera systems in autonomous machines by means of (iii) Sensor AI.

(i) The target framework is considered practical if it is generalizable to different
camera systems, can be executed on mobile hardware in real-time, and operates
reliably.

(ii) Self-health-maintenance implies the tasks of continuously monitoring the behavior
of the system and executing automatic countermeasures in case of a detected
misbehavior. In order to evaluate the behavior and thus distinguish a good
condition from a bad one, this thesis builds upon previous work by linking the
systems’ condition to the quality of the data it produces. However, the assessment
of image quality depends on its “intended marketplace or application” [BPA02] –
hence, this thesis investigates the task of monitoring image quality with respect to
an envisaged high-level application. Moreover, automatic countermeasures have
to be chosen to alter image quality in a way that optimizes the performance of
the target application. For the sake of finding appropriate countermeasures, the
proposed framework is also intended to identify the root causes for undesirable
image conditions.

(iii) The last focus lies on investigating combinations of data-driven and physics-based
approaches that unite their best properties to robustly and reliably perform
the sub-tasks of image quality assessment and determine root causes for image
degradations. However, in line with Sensor AI, we adopt a “holistic approach
which considers entire signal chains from the origin to a data product” [Bör+20].
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Scope
Due to the vast fields of the included topics, the scope of this work is limited to

• Field of Application: Autonomous mobile machines in transportation and
robotics scenarios on ground. The focus is on object detection as an exemplary
high-level image application with great importance in these fields.

• Camera System: Panchromatic digital camera systems that operate in the
visible electromagnetic spectrum (around 380–700 nm wavelength). For the sake of
simplicity, the camera system is assumed to produce images with 8-bit radiometric
resolution, i.e., intensity values in [0,255] digital numbers (DN).

• Image Quality: Blur and noise as two important and well-researched image
quality attributes.

• Root Causes: Time-varying root causes of blur and noise (since any time-invariant
effects are usually mitigated in an offline camera calibration), and region-wise
effects (allowing to consider spatially-varying problems). This work considers
only blur and noise root causes that originate in a camera system and not due to
post-processing, data transmission, etc.

• Countermeasures: Automatic countermeasures tackling motion blur in the
presence of noise, since object detectors are substantially more sensitive to blur
than to noise [HD19] and motion blur is challenging to control as it also depends
on moving objects in the environment.

Research Questions
Given the objectives and the scope, this thesis aims to answer one superordinate and
four derived research questions:

• How can a camera system autonomously optimize the performance of a target
application (object detection) that operates on the data it produces, with a focus
on self-induced image blur and noise?

(a) How can the sources of camera noise be identified and quantified based on
knowledge of the camera system’s physical working principle and its produced
image-/meta-data?

(b) How accurate and robust does the self-health-maintenance framework of the
camera system perform in the context of automotive and robotic scenarios?

(c) How can the self-health-maintenance framework be optimized to make it run
in real-time on a mobile machine with limited computational resources?

(d) What are the limits of the self-health-maintenance framework with respect
to the machine’s digital camera system and the image target application?



4 Chapter 1. Introduction

1.2 Contributions

The two main and two minor contributions are summarized as follows:

The first main contribution is the design and implementation of a framework to automat-
ically maintain the intended functionality of a camera system. The framework consists
of two parts: state monitoring of a camera system and automatic countermeasures in
case of a detected misbehavior. The estimation part is based on objective image quality
assessment (blur and noise). The countermeasure part relies on extensive sensitivity
analyses of a target image application (object detection) and the implementation of a
camera control routine (ISO gain and exposure time trade-off). The key advantage of the
framework is its coupling to an envisaged high-level application that allows to optimize
whole-system performance, while maintaining a modular design. In addition, improved
machine-learning–based (ML-based) methods are proposed that incorporate physical
knowledge of the camera system for blur/ noise estimation. Extensive experiments
demonstrate their superior accuracy compared to traditional approaches, real-time
capability, memory-efficiency, and practical recommendations for the robustness of
camera monitoring applications. All framework components are further independently
evaluated in experiments on a real-world ground vehicle. The source code is provided in
https://github.com/MaikWischow/Camera-Condition-Monitoring.

The second main contribution is a ML–based noise source estimator that not only
estimates the total amount of noise in an image, but also evaluates camera metadata
to identify and quantify major noise root causes. Moreover, the noise source estimator
includes a verification mechanism that quantifies noise mismatches between the metadata
and the image noise, which serves for self-control and detection of unexpected events
(e.g., camera damages). To the best of the authors’ knowledge, this is the first
estimator (traditional or learning-based) to explicitly quantify four individual noise
source contributions. Extensive experiments investigate synthetic noise, real-world noise
extracted from camera systems, qualitative field campaigns on a ground vehicle, the
influence of each individual camera metadata, and also create unexpected noise events
in images or metadata. Lastly, an improved performance on total noise estimation is
demonstrated on the well-known downstream task of image denoising. The corresponding
source code is provided in https://github.com/MaikWischow/Noise-Source-Estimation.

Minor contributions include (i) the evaluation of the estimation of combined blur and
noise that interfere with each other, and (ii) an improved blur estimation routine in the
presence of high noise.

https://github.com/MaikWischow/Camera-Condition-Monitoring
https://github.com/MaikWischow/Noise-Source-Estimation
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Parts of this thesis have been published in following peer-reviewed publications:

• Wischow, Maik et al. (2022). “Calibration and Validation of a Stereo Camera
System Augmented with a Long-Wave Infrared Module to Monitor Ultrasonic
Welding of Thermoplastics”. In: ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, pp. 179–186.
Chapter: 3.

• Wischow, Maik et al. (2023). “Monitoring and Adapting the Physical State
of a Camera for Autonomous Vehicles”. IEEE Transactions on Intelligent
Transportation Systems, doi: 10.1109/TITS.2023.3328811.
Chapters: 1, 2, 3, 4, 5, 7.

• Wischow, Maik et al. (2023). “Estimating the Noise Sources of a Camera System
from an Image and Metadata”. Under review.
Chapters: 2, 4, 6.

Additional non-peer-reviewed contributions:

• Wischow, Maik et al. (2020). “Camera Condition Monitoring and Readjustment
by means of Noise and Blur”. Talk. 1st Sensor AI Workshop. Berlin. Germany.

• Wischow, Maik et al. (2021). “How to combine Physics and Machine Learning”.
Talk. 2nd Sensor AI Workshop. Berlin. Germany.

• Wischow, Maik (2021). “AI-based Condition Monitoring for Cameras”. Talk.
Photonics Days Berlin Brandenburg 2021. Berlin. Germany.

• Wischow, Maik (2022). “Camera self-health-maintenance framework implementa-
tion for the Integrated Positioning System (C++, Python)”. Software. German
Aerospace Center. Berlin. Germany.

• Wischow, Maik et al. (2022). “A camera self-health-maintenance system based
on Sensor Artificial Intelligence”. Poster. Adlershofer Forschungsforum. Berlin.
Germany.

1.3 Outline

This thesis is organized as depicted in Fig. 1.1. Chapter 1 motivates on the background
that machines are becoming more and more autonomous and the camera system is an
important part of a machine that needs to be maintained by itself in order to successfully
accomplish a targeted task. Research objectives are stated, the scope of this thesis is
defined, and contributions are summarized.

Chapter 2 reviews state-of-the-art approaches from the related fields of adaptive camera
regulation (online estimation of the current vision state and automatic executions of an
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1. Introduction

2. Related Work

3. Theoretical
Foundations

4. Camera
Self-Health-Maint.

Framework
(App: A.1)

5. Evaluation:
Blur and Noise

Estimation
(App: A.2, B.1)

6. Evaluation:
Noise Source
Estimation

(App: A.2, A.3, B.2)

7. Evaluation:
Framework

8. Conclusion

Figure 1.1: Structure of the thesis, according to chapters and corresponding appendices.

action to improve a target criterion, focused on tackling motion blur), image quality
assessment (focused on the objective quantification of blur and noise), and physics-
informed machine learning (combination of machine learning and physics, with focus
on Sensor AI). On this basis, advantages and drawbacks of existing approaches are
discussed and further design decisions for the proposed framework are identified.

Chapter 3 introduces the fundamental concepts related to a digital camera system, its
produced data, and the assessment of image quality on which this thesis builds upon.
First, the basic structure of a digital camera system is presented and theoretical models
are proposed to describe its two main components: the sensor system and the lens
system. Both components determine the quality of the produced data, which is the
subject of the second part, where models for the concepts of blur and noise as two major
image quality attributes are presented. Third, classic standard approaches to assess
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blur and noise are introduced. Lastly, shortcomings of the used models, extended sensor
systems, and more extensive models are discussed.

Chapter 4 describes the camera self-health-maintenance framework that is developed in
this thesis. After a general overview, the condition estimation and decision & control
modules are detailed, including the improvements made to existing ML-based blur and
noise estimators, the working principle of traditional estimators, the introduction of
noise source estimation, and the automatic camera parameter readjustment on the
basis of learned input-output performance curves for blur, noise, and object detection.
Alternative designs as well as future extensions are discussed for each component
separately. Finally, limitations of the framework’s applicability are addressed.

Chapter 5 covers the evaluation of the proposed blur and noise estimators. For
this, employed datasets with synthetic and real-world corruptions are presented first.
Subsequently, the blur and noise estimators are evaluated on respective isolated and
simultaneously occurring corruptions. On this basis, two improvements are introduced:
blur estimation in the presence of high noise and noise estimation with reduced
uncertainty. Finally, limitations and further potential improvements are discussed.

The next Chapter 6 is dedicated to the evaluation of the proposed noise source estimation.
First, the synthetic and real-world datasets used and the image noise applied are
specified. The following sections contain the evaluations on quantitative and qualitative
experiments. Furthermore, it is demonstrated how noise source estimation is applied in
real field campaigns to detect mismatches between image and metadata noise, and to
denoise real-world images. The chapter is wrapped up with a discussion on shortcomings
and potential extensions.

Chapter 7 demonstrates the combination of online blur/ noise estimators and offline
empirical input-output performance curves for practical application to control image
quality and hence optimize the system’s performance. Therefore, exemplary performance
curves that relate object detection performance to different blur and noise levels are first
determined. Thereafter, synthetic and real-world scenarios are proposed on which the
application of the framework is then demonstrated. Finally, the framework’s required
computational costs on stationary and mobile hardware are examined, and further
details and methological drawbacks are discussed.

The final Chapter 8 summarizes the answers to the research questions, gained insights,
and the proposed starting points for future studies.





CHAPTER 2

Related Work

The core of this thesis is closely related to active vision [AWB88], adaptive camera
regulation [MFR96], and camera attribute control [Han+23] in that there are two
connected tasks: online estimation of the current vision state and automatic execution
of an action to improve some target criterion. In the estimation task, we estimate major
properties of the camera system state by assessing the quality of the image data it
produces in terms of blur and noise. Subsequently, we define actions that can be carried
out to control the camera, therefore influence image properties (we demonstrate this
for motion blur and noise) and hence optimize the system’s performance for a target
application (object detection in this work). This pipeline shall be underpinned by Sensor
AI techniques to take advantage of both data-based and physics-based concepts.

We first review general adaptive camera regulation approaches and ones that address
motion blur in particular (Sec. 2.1). Following this, we survey approaches for automatic
blur and noise assessment (Sec. 2.2). Next, we outline approaches from the field of
physics-informed ML with a focus on its subtopic Sensor AI (Sec. 2.3). Finally, we
discuss and summarize this chapter (Secs. 2.4 and 2.5).

2.1 Adaptive Camera Regulation

Section 2.1.1 provides an overview to the field of adaptive camera regulation and
subsequently Sec. 2.1.2 focuses on studies that target motion blur. Table 2.1 summarizes
the main works that are closest to this thesis.

2.1.1 Overview

Several works study automatic camera parameter readjustments in order to improve
the performance of various high-level image tasks of mobile machines, such as object
detection [Shi+19; Mud+19; SM19; LMM21; Muk+21; OMH21; SWM21], object
tracking [SMM18; Mud+19], action detection [Mud+19; LMM21], visual odometry (VO)
[Shi+18; Tom+21; Han+23], simultaneous localization and mapping (SLAM) [Kim+17;
Shi+18; Tom+21], feature detection and mapping [Kim+17; Shi+18; Shi+19; Tom+21],
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Study Approach Image
Task

Image
Features

Camera
Parameters

Motion
Blur

Saha et al.
[SMM18] DNN Obj. Det. Learned Spat. Res. No

Saha et al.
[SM19] Reinf. Learn. Obj. Det. Learned Spat. Res. No

Mudassar et al.
[Mud+19] DNN Obj. Det.,

Act. Det. Learned Spat. Res.,
Temp. Res. No

Lee et al.
[LMM21] DNN

Img. Class.,
Obj. Det.,
Act. Det.

Learned Spat. Res.,
Voltage No

Tomasi et al.
[Tom+21] DNN (SLAM/VO) Feature

Points
Exp. Time,

Gain No

Onzon et al.
[OMH21] DNN Obj. Det. Learned Exp. Time No

Torres and
Menéndez

[TM15]
Traditional Surveillance Intensity Exp. Time,

Gain No

Kim et al.
[Kim+17] Traditional Self. Localiz. Intensity Exp. Time No

Shim et al.
[Shi+18] Traditional Obt. Det.,

VO Gradients Exp. Time,
Gain No

Shin et al.
[Shi+19] Traditional

Obt. Det.,
Feat. Match.,

Pose Est.

Greadients,
Entropy,

Noise

Exp. Time,
Gain No

Westerhoff et al.
[WMK15] Traditional - Intensity,

Entropy Generic No

Oktay et al.
[OCT18] Traditional - - - Yes

Wang et al.
[WLR23] Traditional Obj. Det. - (Robot Control) Yes

Kim et al.
[KCK18] Traditional SLAM

Gradients,
Illumination,

Noise

Exp. Time,
Gain Yes

Han et al.
[Han+23] Traditional -

Gradients,
Entropy,

Opt. Flow

Exp. Time,
Gain Yes

Table 2.1: Summary of main related adaptive camera regulation studies. The table
characterizes each study in terms of its type of approach (traditional or learning-based),
image analysis task, image features used, camera parameters aimed for optimization, and
specific consideration of motion blur.

surveillance [TM15], and the task of reducing energy consumption of a machine [SMM18;
Muk+21; SWM21].

To this end, related approaches optimize against traditional hand-crafted and auto-
matically learned image features as metrics. Traditional image features include feature
points [Kim+17; SWM21], gradients [Shi+18; Shi+19; Han+23], intensity entropy
[WMK15; Shi+19; Han+23], intensity histogram [TM15], noise [Shi+19], and over- or
underexposure [WMK15]. In contrast, the studies [SMM18; Mud+19; SM19; LMM21;
Muk+21; OMH21; Tom+21] rely on learned features.
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Readjusted camera parameters contain exposure time [TM15; WMK15; Kim+17; Shi+18;
Shi+19; OMH21; Tom+21; Han+23], camera gain [TM15; Shi+19; Tom+21; Han+23],
pixel voltage [LMM21], adaptive regions of interest [SMM18], spatial resolution [Mud+19;
LMM21; SWM21], spectral modality [Mud+19; SM19], and temporal resolution
[Mud+19].

Let us summarize the key aspects of the studies that are closest to this thesis. Saha
et al. propose a supervised deep neural network (DNN) [SMM18] and a reinforcement
learning approach [SM19] to control the spatial modality of a visual and an infrared
(IR) sensor on the basis of online feedback of an object detector in order to reduce
redundant task-critical information of both sensors. As a result, they demonstrate
increased object tracking accuracy and reduced energy consumption in an edge device.
Analogously, Mudassar et al. [Mud+19] achieve similar improvements with a DNN for
spatio-temporal resolution control of a visual/ IR sensor system using the output of
object detection and action detection tasks. From the same working group, Lee et al.
[LMM21] use a DNN to determine task failures due to perturbated sensor data, and
control the spatial resolution and the voltage of their visual camera accordingly. Similar
to the previous works, object detection performance, action detection performance, and
the sensor’s energy consumption could be improved. Torres and Menéndez [TM15]
control exposure time and gain of a surveillance camera to optimize its dynamic range
in the entire image. Kim et al. [Kim+17] quantify the effect of changing illumination
in the context of self-navigation of a flying robot, and accordingly select appropriate
environment maps and exposure times at runtime. An top of illumination-robustness,
Shim et al. [Shi+18] further investigate brightness consistency between multiple cameras
of a robot for stereo matching and demonstrates the effect on object detection and
VO, among others. Shin et al. [Shi+19] also focus on illumination control based on
exposure time and gain readjustments, which improves performances of object detection,
feature matching, and pose estimation in their experiments. Tomasi et al. [Tom+21]
research automatic exposure time and gain control by means of a DNN that maximizes
the number of image features for VO or SLAM tasks, and show the effectiveness in
a transportation scenario. Similarly, Onzon et al. [OMH21] employ a DNN to learn
exposure times on the basis of object detection performance. Westerhoff et al. [WMK15]
approach a generic automatic camera parameter control from an abstract point of view
and propose a process that consists of an online stage (image acquisition with different
parameter sets) and an offline stage (parameter optimization with regard to some image
quality criterion for a particular image application). They examine their pipeline on the
example of image entropy maximization in a transportation scene and compare against
images acquired with default camera parameters from the manufacturer.
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Figure 2.1: Overview of blur and noise estimators in the literature (limited to the two
most important estimators per corruption type and year to keep it clear).

2.1.2 Motion Blur

Motion blur can be directly approached at a hardware level by involving, e.g., an
accelerometer [CIS18], an inertial measurement unit [Jos+10], a self-designed sensor
[HA01], lens stabilizing elements [MMV11; NS], a programmable aperture [SNT14], by
shutter manipulation [RAT06], by means of multiple cameras with different configurations
[BN03; LYC08; Tai+08], or by event cameras [FKS20].

Software-based motion blur regulation approaches are sparse. Oktay et al. [OCT18] and
Wang et al. [WLR23] propose motion control routines for a helicopter and a quadcopter,
respectively, in order to mitigate motion blur during camera exposure. Kim et al.
[KCK18] demonstrate the advantage of simultaneous exposure time and gain control
over a separated control to prevent motion blur and over-exposure in low-light SLAM
scenarios. Specifically, isolated exposure control led to either under-exposed scenes or
motion blur. Han et al. [Han+23] readjust exposure time and gain on the basis of image
gradients and entropy as image quality proxies. Moreover, they incorporate the speed of
the camera system (using optical flow estimations) to determine associated maximum
possible exposure times that does not cause motion blur. The routine was validated in
outdoor scenes, such as a garage, with a moving camera mounted on a rail to ensure a
constant speed. It is worth noting, in conclusion, that “Unfortunately, motion blur is
not well considered by previous work” [Han+23].

2.2 Image Quality Assessment

This section outlines automatic image quality assessment methods for blur and noise
estimation (Secs. 2.2.1 and 2.2.2). Figure 2.1 provides an overview to the main studies.
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2.2.1 Blur Estimation

We focus on methods able to work on a single frame, and are thus not restricted to the
availability of multiple frames. They may be further classified into blind and non-blind,
depending on whether the blur kernel is known. In practice the kernel is unknown.
Existing blind single-frame estimation frameworks can be categorized into traditional or
learning-based ones.

Traditional Approaches
The estimation of a blur kernel from only a blurred image is considered an inverse
problem, which typically yields non-unique and unstable solutions [Tar05, p. xi]. Several
works approach this problem by introducing prior knowledge for the underlying blur
kernel or the clean image to constrain the solution space. Hence, the problem is generally
addressed together with the task of image deblurring.

Prior knowledge can include assumptions about image intensities [Pan+17a; Pan+17b;
Yan+17; Wen+20], gradients [SJA08; CL09; Cho+11; Sun+13; Ren+16; Bai+18;
Che+19], smoothness [CW98; JSK08; SJA08; KTF11; Lev+11; XZJ13], spectral
properties [LCM14; Pan+19], the image formation model [Gup+10], or be learned in a
data-based manner [ZW11b; Zuo+16; Li+18; Xu+17; Ren+20; Lia+21a]. Milestones
are, for instance, the studies of Pan et al. [Pan+17a; Pan+17a] (dark channel prior
that assumes dark intensities in clean images but not in blurred ones), Shan et al.
[SJA08] (reweighting method to avoid delta motion blur kernel solutions), Cho and Lee
[CL09] (fast deconvolution using computationally efficient image filters in a multi-scale
approach), Chan and Wong [CW98] (total variation prior to recover image edges),
Krishnan et al. [KTF11] (fast and robust scale-invariant prior), Xu et al. [XZJ13] (L0

prior that favors image saliency and enables fast convergence), and Zoran and Yair
[ZW11b] (relies on patch models for whole-image restoration and a learned Gaussian
Mixture prior).

Another categorization axis is the underlying deblurring framework. All the aforemen-
tioned works approach the problem by iteratively estimating the blur kernel and the
clean image in a maximum-a-posteriori (MAP) framework. Others apply the variational
Bayesian inference framework [Fer+06; TLG09; Cha+09], the split Bregman method
[Cai+11; ZZG14] or other approaches [EZ98; Yit+98; XJ10; HXZ11; Why+12] to solve
the optimization problem (e.g., maximum likelihood estimation with marginalization
[HXZ11] or MAP combined with Richardson-Lucy deblurring [Why+12; Ric72; Luc74]).

Note that most works focus on motion-like blur kernels [SJA08; CL09; Ren+16; Sun+13;
Bai+18; Lev+11; XZJ13; Pan+17a; Pan+17b; Yan+17; Wen+20; Zuo+16; Li+18;
Xu+17; Ren+20; LCM14; Pan+19; TLG09; Cai+11].
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Learning-Based Approaches
Learning-based methods estimate blur kernels explicitly, or implicitly within an end-to-
end deblurring pipeline.

Explicit estimators base on convolutional neural networks (CNNs) [Sch+15; Cha16;
Bau+18], deep auto-encoders [ASA20; KF20; Car+21], or general regression NNs [YS16;
Spe+91]. Chakrabarti uses a CNN to learn Fourier representations of blur kernels
[Cha16]. Schuler et al. propose a CNN with a joint kernel and clean image estimation
[Sch+15]. Bauer et al. train a CNN to estimate anisotropic modulation transfer functions
of a blurred image [Bau+18]. Asim et al. use generative network models with an auto-
encoder architecture [ASA20]. The approach of Kaufman and Raanan relies on a U-Net
[RFB15] augmented with custom dense layer operations in all convolution layers [KF20].
Carbajal et al. use an encoder and two decoders [Car+21]; similar to [Sun+15], their
composite neural network (NN) estimates a set of basis kernels, but also pixel-wise
coefficients to weight the influences of the blur kernels. Yan and Shao combine a DNN
(to classify the blur type of an image) with a general regression NN (to subsequently
regress the blur parameters) [YS16].

Implicit end-to-end pipelines leverage a wider range of models, such as conventional CNNs
[Hra+15; Sun+15; APS19], multi-scale CNNs [NHM17; NCF17], deep auto-encoder-like
architectures [Gon+17; NKR17; Tao+18; ZZZ19; Jia+20; PR20; SPR20], generative
adversarial networks (GANs) [Kup+18; Kup+19; LCC19; Zha+20], a recurrent NN
[Zha+18], and multi-scale long short-term memory (LSTM) NNs [Tao+18; Gao+19].
The most influencing works include the ones of Nah et al. [NHM17] (coarse-to-fine
approach with no underlying blur kernel model assumed), Tao et al. [Tao+18] (multi-
scale NN combining auto-encoder structure with residual (LSTM) blocks), and Kupyn
et al. [Kup+18; Kup+19] (GANs for fast and accurate deblurring).

Most learning-based approaches are dedicated to motion blur as well [Sun+15; Cha16;
ASA20; KF20; Car+21; APS19; NHM17; NCF17; Gon+17; NKR17; Tao+18; Jia+20;
PR20; SPR20; Kup+18; Kup+19; LCC19; Zha+18].

2.2.2 Noise Estimation

We first survey noise level estimators (Sec. 2.2.2.1) and subsequently address noise
models used in related studies (Sec. 2.2.2.2).

2.2.2.1 Noise Estimators

Analogous to blur estimation, we consider methods that assume unknown noise levels
and no prior knowledge (i.e., blind estimation) using single images. These may be
further divided into traditional and learning-based approaches.
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Traditional Approaches
Traditional approaches estimate noise in the spacial domain or by means of domain
transformations.

Spacial-based methods rely on assumptions about different image features. A common
assumption is the existence of homogeneous image parts from which noise levels can
be directly estimated (e.g., using robustified statistics [AD05; Shi+05; Abr+08; GA10]
or image histograms [RLU99]). Such estimators can be supported by high-pass filters,
since noise is high-frequency image content [CNR03; Shi+05]. Moreover, Kamble et
al. [KPB19], and Amer and Dubois [AD05] propose to exclude image patches with
edges. Another improvement is introduced by Uss et al. who explicitly distinguish
undesired texture content from noise [Uss+11; Uss+13]. Ghazal and Amer further
investigate a particle filter to reduce the search time for homogeneous areas [GA10].
Although homogeneous areas allow fast and computational efficient noise estimations,
they are not suitable for high-textured images and therefore lack flexibility. Furthermore,
inhomogeneous image content can be identified as noise, which is why so much effort is
put into filtering it.

Transform-based approaches represent an image in a different space and assume a
noise-only subspace. Widespread transformation techniques rely on principal component
analysis [PHZ12; LTO13; CZH15; Khm+18], discrete cosine transformation [ZW09;
ZW11a; MRR19] or discrete wavelet transformation [DWC04; Yan+09; Pim+21]. All
have their own benefits with over-/ underestimation in low/ high noise and textured
areas.

Learning-Based Approaches
Learning-based methods either determine the noise level explicitly, or implicitly as part
of an end-to-end denoising pipeline.

Explicit representatives are the studies of Zhang et al. [Zha+17] (DNN learns a residual
image that corresponds to pixel-wise noise estimations), Tan et al. [Tan+19] (similar
DNN trained for signal-dependent noise), Guo et al. (plain CNN with a customized loss
that includes under-estimation penalization and a total variation regularizer [Guo+19;
ROF92]; and a CNN with dilated convolutions and pyramid feature fusion estimates
noise level map [Guo+20]), and Byun et al. [BCM21] (U-Net estimates pixel-wise
Poisson-Gaussian noise model parameters).

Implicit approaches either focus only on the denoising task [JS08; YS17; Leh+18;
LGP20] or on general image restoration [MSY16; Tai+17; Liu+18b; Che+21; Lia+21b;
Zam+21; Wan+22b; Zam+22]. Let us first consider the dedicated denoisers. Jain
and Seung provide a basis and demonstrate image denoising with a plain DNN [JS08].
Yang and Sun unroll the well-known block-matching and 3D filtering (BM3D) denoising
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algorithm [Dab+07] into a CNN and explicitly transfer BM3D operations into CNN
layers. Lehtinen et al. demonstrate a simple DNN denoiser without the need for clean
images during training [Leh+18]. Lyu et al. propose a generative adversarial network
for the denoising task [LGP20]. General image restoration networks base on CNNs
with encoder-decoder architectures [MSY16; Zam+21], long short-term memory-blocks
[Tai+17], wavelets as input [Liu+18b], and different transformer-block approaches
[Che+21; Lia+21b; Wan+22b; Zam+22].

2.2.2.2 Noise Models

Driven by Space camera systems, extensive noise models on a subatomic level have been
developed in recent decades [HK94; Jan01; KW14]. However, applications on Earth
tend to employ simpler models, as follows.

The majority of research presumes an additive white Gaussian noise (AWGN) source
[Shi+05; Uss+11; CNR03; DWC04; PHZ12; CZH15; Zha+17; JS08]. Given the influence
of light on camera noise [Bla+97], signal-dependent noise models have been developed
considering (i) photon shot noise and (ii) noise due to camera electronics (e.g., the
Poissonian-Gaussian noise model) [Foi+08; Tan+19; BCM21]. A special case is the
noise level function (NLF) that characterizes the dependence of noise levels on image
intensity [Liu+07; SDA15; Yan+15]. To account for non-linear camera processes that
affect noise statistics [ML07], some works employ the camera response function for NLF
estimation; they describe a camera’s physical processing as a black-box in a function
[Yao16; Yao+21].

A few noise studies break down the noise caused by camera electronics and therefore
consider more than two noise sources [Wan+19; Wei+20; Zha+21; OMH21], but generally
“[...] noise sources caused by digital camera electronics are still largely overlooked, despite
their significant effect on raw measurement” [Wei+20]. The works [Wei+20; OMH21]
propose “simpler” extensive noise models that account, e.g., for the camera system
gain, read noise, or quantization noise, which are partially analyzed in more detail.
More sophisticated noise models from [Wan+19] and [Zha+21] also address camera
specifics like the shutter mechanism, individual color channel biases or differentiate
between analog/digital gain. There have also been attempts to approximate noise models
by DNNs [Che+18; ABB19; Cha+20] for synthesis, but [Zha+21] shows that “The
DNN-based [noise generators] still cannot outperform physics-based statistical methods”.

2.3 Physics-Informed Machine Learning

The research field of blending data-based methods with traditional scientific models is
referred to as theory-guided data science [Kar+17b] and, since a vast amount of data-
based models rely on machine learning nowadays, also as scientific machine learning
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Figure 2.2: Overview of physics-informed machine learning approaches in the literature.
Studies are classified based on their largest overlap with a category of [Wil+22].

[Cuo+22] or physics-informed machine learning (Physics-ML) [Kar+21]. This section is
dedicated to Physics-ML only. A related field that deals specifically with the physics of
sensor systems is called sensor artificial intelligence (Sensor AI) [Bör+20].

We first provide an overview to Physics-ML (Sec. 2.3.1) and subsequently address Sensor
AI approaches with focus on optical sensor systems (Sec.2.3.2). Figure 2.2 provides
an overview of Physics-ML and Sensor AI literature following to the classification of
Willard et al. [Wil+22].

2.3.1 Overview

The rapidly growing field of Physics-ML is subject of multiple recent surveys [Kar+17b;
Alb+19; Arr+19; RS20; Yua+20; Kas+21; Kar+21; Cuo+22; Wil+22]. The authors
categorize studies according to various aspects, such as the way physics and ML are
combined, the underlying scientific task, or the application domain. Our main structure
follows the first approach with the same categories as Willard et al. [Wil+22]: physics-
guided loss function, physics-guided initialization, physics-guided design and architecture,
and hybrid modeling.

Physics-Guided Loss Function
In this strategy prior knowledge is added to the ML training process in the form of
a physics loss term Lphys to penalize predictions that do not satisfy desired physical
properties:

L = LNN(target, pred) + λLphys(pred), (2.1)

with L being the new physics-reinforced training loss, the initial NN training loss LNN,
and a positive weight factor λ. In the context of Bayes’ theorem, the data-fidelity term
LNN can be considered as the likelihood and Lphys(pred) as the prior. In the context of
Bayesian [Dev11, p. 79] Note that the dependency of Lphys to predictions only does not
limit this strategy to supervised scenarios. This flexibility enables the usage of general
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domain-specific relationships. On the other hand, Lphys does not enforce consistency to
the physics and is hence considered a soft constraint.

Pioneering work for modern approaches was done by Raissi et al. who established a
framework to solve and discover general nonlinear partial differential equations (PDEs)
with DNNs [RPK17b; RPK17a; RPK19]. Specifically, they propose a general physical
loss term template applicable to several PDE problems. Sirignano and Spiliopoulos
further enable solving high-dimensional PDEs with mesh-free data sampling [SS18].
However, the idea to solve PDEs with (shallow) NNs is not new and can be traced back
to the studies [LLF98; LK90; LLP00]. Recent studies also address specific PDEs such as
turbulence modeling of fluid dynamics related to the Navier-Stokes equations [LKT16;
Tom+17] or investigate particular DNN models like auto-regressive networks [GZ20],
auto-encoders [EMM19], echo state networks [DPM19], and transformer models [GZ22].

Physical loss constraints are demonstrated for non-PDE problems, such as lake
temperature modeling [Kar+17a; Rea+19] (which employ water depth-temperature
relationships) and robot dynamics modeling [PHP21] (which encodes concepts like object
rigidity and inelastic collision).

From a conceptual point of view, physical loss is further used in reinforcement learning
[Sch+14; AHD15], generative modeling [Wu+20; YZK18; YZK20], inverse modeling
[Rai+19; Kah+20], and uncertainty quantification [YP19; Zhu+19; YMK21].

Physics-Guided Initialization
This strategy is based on the motivation that NN weights are often randomly initialized
and a poor set of initial weights can lead the training procedure to local minima.
A customized initialization can not only improve the result, but also accelerates the
training by reducing the number of training samples required to learn a desired (physical)
relationship hidden in the data. One way to incorporate such prior knowledge into the
NN is to pre-train the model on a related task and fine-tune it for the desired task.
Analogously, the model can be pre-trained on cheap simulated data or unsupervised to
learn a domain-specific data distribution, and fine-tuned on expensive real-world data.
Other ways to integrate physical knowledge are to create the NN’s training data using a
physics-based model or by a domain expert.

A recent prominent example is the generative pre-trained transformer (GPT) and
its application for language modeling (ChatGPT) [Rad+18; Rad+19; Bro+20]. The
underlying idea is to train a generative and task-agnostic NN on general text data and
to fine-tune the model on a discriminative task (not limited to physical knowledge).
Further well-known approaches that do not specifically involve physical knowledge, but
are worth to mention in this context, are various image task NNs that base on large-scale
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image data pre-training [Taj+16] (e.g., Faster R-CNN [Ren+15], YOLO [Red+16], and
ResNeXt [Xie+17]).

Similar applications can be found in the fields of lake temperature modeling [Jia+21]
(hidden variables in a graph NN are pre-trained), in object localization for robot grasping
[Tob+17] (investigates the performance for simulated (pre-)training data only), and the
pre-training of autonomous vehicles on simulated environments [Sha+18].

Physics-Guided Design and Architecture
ML algorithms still have black-box character, that is, their learned input-output relations
are not interpretable by humans (or only with great effort). Physically meaningful ML
learning outcomes can be ensured by adapting ML model components to the problem
domain, which is like setting a hard constraint.

One way to implement this is to use physically plausible operations within the NNs.
Widely used approaches in this class include CNNs [LeC+98] (which process images
using the convolution operation motivated by signal processing of the human eye) and
LSTM-NNs [HS97] (which enable temporal data sequences by introducing memory cells).

Other options are to: fix single NN weights or feature maps to predetermined physical
variables (e.g., to water density in lake temperature modeling [Daw+20], or to pressure
fields and velocity fields for fluid dynamics simulation [Mur+20]), explicitly encode
physical invariances (e.g., from Hamiltonian mechanics [GDY19] or rotational invariance
for turbulence modeling [LKT16]), integrate other domain-specific constraints (such
as temporal coherence in fluid flow simulations [Xie+18]), and to include correlated
auxiliary tasks in the learning procedure (e.g., to boost landmark detection of face
images by learning additional face attributes [Zha+14] or to ensure particle properties
in particle physics [OPN17]).

Hybrid Modeling
Hybrid approaches contain combinations of physics-based and ML models that are both
executed simultaneously or in sequence.

The most common method is residual learning, where physics-based models provide an
initial (erroneous) value and ML learns to estimate errors in form of a bias to adjust
the result. This approach can be easily applied to arbitrary physical problems, but
it has the disadvantage of dealing only with symptoms and therefore not targeting
physically consistency. Exemplary studies apply this strategy to extreme event prediction
[Wan+18], fluid dynamics modeling [SM18], and heat transfer analysis [Bla+22].

In addition to ML refinement, the results of the physical models can also serve as input
to subsequent ML calculations, such as for bearing fault diagnosis [Jia+16; SYW17]
(signals are compressed first and then analyzed in an auto-encoder) and remaining useful
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life prediction [Hon+19] (time-frequency features are extracted from data and inputted
to an ensemble of recurrent NNs).

ML can further augment physical models for ill-posed inverse problems whose solution
requires a large computational effort, for instance, in sparse-view reconstruction of
computer tomography images [Jin+17; Bub+19] or magnetic resonance imaging [Sen+19]
(U-Nets reconstruct full-view images).

Going one step further, ML can also replace missing or erroneous terms in physical
models as demonstrated in turbulent flow modeling [PD16] (radial basis functions
approximate covariances) and in real-time power system monitoring [ZWG19] (recurrent
NN improves computational expensive power system state estimation).

2.3.2 Sensor Artificial Intelligence

The field of sensor artificial intelligence (Sensor AI) encompasses techniques that leverage
physical principles of sensor systems to improve sensor-related AI tasks, and that advance
sensor systems with AI [Bör+20]. Sensor AI is similar to Physics-ML, but is tailored to
sensor systems and not limited to ML (although most approaches are based on ML). In
the following, we focus on optical sensor system and consider three Sensor AI categories:
AI to improve sensor systems, sensor systems to improve AI and mutual improvement
of AI and sensor systems.

AI to improve Sensor Systems
Recent studies demonstrate the ability of AI to improve the design of optical and
biological sensor systems with and without specific target tasks in mind. The interested
reader is referred to the surveys [Bal+21; Wet+20; Men+22] for further reading.

In the case of optical sensor systems, several components from lenses [CLT19a; CLT19b]
and lens systems [CLT21] (including Cooke-Triplets or double Gauss lenses) via aperture
masks for compressive sensing [San+16; ISK20] through to nano-antenna for optical
communication and sensing [FSH15] have been automatically designed using AI. A
special class of optical sensors for which AI-improvements are also investigated are
nano-photonic-sensors [KAP15], where both Liu et al. and Unni et al. demonstrate
optimization of sensor material layer thicknesses using a DNN [Liu+18a] and a mixture
density network [UYZ20], respectively.

In the field of bio sensor design optimization, Joung et al. increase the cost-effectiveness
of bioassays by determining an optimal subset of biotargets [Jou+19] and Valeri et al.
automatically design toehold switches (programmable nucleic acid sensors) for precise
diagnostics [Val+20].

Besides optical and bio sensors, Lan et al. develop dynamic meta-surface antennas for
the radio frequency spectrum [Lan+21].
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Sensor Systems to improve AI
Optical sensor systems have matured in the last decades and provide extensive auxiliary
data that several high-level (AI) tasks can benefit from. Deardorff et al. make use of
date-time, sensor pose, and temperature data from unmanned aerial systems in order to
provide contextual information for hazard detection using imagery [Dea+21]. Specifically,
they employ an ensemble of NNs to process image data and use the metadata to decide
on an ensemble aggregation function. Extrinsic camera parameters along with intrinsics
are also utilized by Wang et al. in generating training data to train an LSTM-based
DNN to distinguish independent moving objects from an observed optical flow using a
moving camera [Wan+21]. Bertoni et al. employ intrinsic parameters like focal length
and sensor pixel size to normalize the depth of image keypoints to 3D-localize humans in
single images [BKA19]. Another example to use camera intrinsics (focal length, sensor
size, principal point, and pixel size) for a custom image normalization is demonstrated
by Facil et al. in the context of single-view depth estimation [Fac+19]. Finally, Moseley
et al. use sensor parameters as input to a CNN to estimate dark current shot noise for
denoising images from low-light lunar environments [Mos+21].

Mutual Improvement of AI and Sensor Systems
Most hybrid approaches focus on improving the shape of aperture masks or diffractive
optical elements in end-to-end learning frameworks that couple respective (virtual or
physical) sensor components to a task-specific NN. Bacca et al. [BGA21] and Arguello
et al. [Arg+23] provide an overview of different mutually improved systems.

Aperture (phase) masks has been automatically designed to extend the depth of field
of conventional cameras [EGM18; ASG19], to improve single-image depth estimation
[Hai+18] or color differentiation between species in microscopy [Her+19], to enable a
light field acquisition from few images [Ina+18], and to compute super-resolved images
from raw measurements [Sun+20a].

The study of diffractive optical element design is motivated by tasks like single-shot
monocular hyperspectral depth imaging [Bae+21] and single-shot high dynamic range
imaging [Sun+20b]. Free-form lens designs have been examined to improve single-shot
depth estimation using coded defocus blur as an additional depth cue [CW19] and image
restoration with diffractive achromatic lenses [Dun+20].

2.4 Discussion

Here we discuss advantages and disadvantages of addressed related works and derive
design decisions for our self-health-maintenance framework.
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Adaptive Camera Regulation
Most related studies optimize against image features, such as the number of gradients or
feature points (e.g., corners), both of which serve as proxies for image quality attributes.
Alternatively, one can directly optimize image quality attributes or task performance in
a tailored end-to-end approach. The first option would increase interpretability (e.g.,
the concept of image sharpness is more intuitive compared to the number of gradients)
and is task-independent, hence more general. End-to-end optimization relies on learned
features that the data-driven approach considers best for task optimization and thus can
lead to better task accuracy. However, learned features would be tailored to the trained
task(s) only and less interpretable. Our framework aims at general and interpretable
approaches, which benefits image quality over task optimization.

In terms of general adaptive camera regulation, this thesis comes closest to the work of
[WMK15] in that an image database with metadata is built and analyzed for camera
parameters that lead to optimal target application performance. The authors use a
multi-objective optimization procedure in which the individual objectives are solved
independently in a priority order (e.g., first maximize entropy and subsequently minimize
amount of saturated pixels). However, this approach does not generalize because image
features (more precisely, image quality attributes) can influence each other and hence
should be investigated in combination (e.g., blur and noise [TL12]). Furthermore,
Westerhoff et al. perform the parameter optimization offline and therefore do not
consider dynamic scenes and changing camera states at runtime.

With focus on the high-level task of object detection, our work overlaps most with
[OMH21]. The authors learn optimal exposure times in an end-to-end pipeline and
use object detection performance from a traffic scenario as feedback. Although they
incorporate an extensive image noise model, they do not account for motion blur,
which is common in scenes with moving object and can be more severe than noise in
object recognition tasks [DK16; HD19]. As mentioned above, such a tailored end-to-end
approach is also less interpretable and flexible.

Regarding adaptive camera regulation that targets motion blur in particular, we note
most similarities with [Han+23]. Han et al. readjust exposure time and gain in
combination with respect to the optimization of image feature metrics at runtime.
However, they neither account for the performance of the intended high-level task within
the optimization, nor consider tasks that do not benefit from minimal motion blur (cf.
Sec. 3.2). Both limit the generality of their framework.

Image Formation Pipeline
The majority of researchers assume simplified additive zero-mean Gaussian noise [Shi+05;
Uss+11; CNR03; DWC04; PHZ12; CZH15; Zha+17; JS08], while fewer studies rely on
extensive noise models close to camera physics [Wan+19; Wei+20; OMH21; Zha+21]
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(which is experimentally supported as being more realistic [Xu+18; AB18]). Moreover,
most works on mobile machines do not consider simultaneous blur and noise, although
motion blur is to be expected especially in moving scenes; and if they do, both effects
are studied in isolation.

Also note that all presented studies calibrate their noise-related parameters (temperature,
exposure time, ISO gain, ...) offline and only implicitly account for changing camera
parameters during training data generation, but they do not consider camera parameters
at inference time. However, when it comes to noise source identification, noise parameters
must be known at inference time because the problem is ambiguous when only image
data is available1.

We consider two aspects to account for these limitations. First, we use a more extensive
and realistic image formation pipeline by including motion and defocus blur as well as
simultaneously occurring blur and noise corruptions that influence each other. Second,
we consider changing noise parameters at inference time.

Blur and Noise Estimation
We chose explicit and learning-based blur and noise estimators for five reasons related
to a condition monitoring scenario. (i) A task-independent and interpretable framework
requires explicit estimations. (ii) Traditional blur estimators perform kernel estimation
and image deblurring in combination. The computing time needed for this joint task is
not reasonable for a real time application. Moreover, in general, learning-based blur
estimation methods achieve the best performance [Rim+20]. (iii) Traditional noise
estimators rely on insufficient noise models that have been shown to be less realistic.
Although the real-image denoising performance benchmark of Plotz and Roth [PR17]
indicate that traditional methods perform slightly better than learning-based methods,
this analysis does not cover learning-based state-of-the-art methods published after 2017.
(iv) All traditional blur/ noise estimators base on prior assumptions that limit general
application (e.g., the well-known dark channel prior only applies to scenes with dark
spots and the homogeneity assumption to images without texture). On the other hand,
it is worth to mention that the accuracy and robustness of learning-based estimators
depend on a carefully selected training dataset to cover the target domain. Also note
that NNs are still considered black-boxes and require means to assess their reliability
[Bör+20]. (v) Learning-based models have been better studied as a basis for Physics-ML
and Sensor AI, so we can draw on more matured approaches.

As learning-based blur estimator, we select the one of [Bau+18], since it is able to
directly estimate a directional modulation transfer function (MTF) of an input image in

1The main time-varying noise sources of a camera system follow similar statistical distributions,
which makes them inseparable when working with an image only. More details to the assumed noise
models in Sec. 3.2.2.
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order to objectively quantify image sharpness (details to MTFs in Sec. 3.3.1). Since the
source code is not available, this approach must first be implemented. For comparison,
we use [Bai+18] and [Wen+20] as two traditional state-of-the-art blur estimators that
base on different prior assumptions (about image intensity and gradients, respectively)
and whose source code is open available.

For learning-based noise estimation, we chose the one of [Tan+19], which provides fast
pixel-wise estimations and the source code as well. We compare this estimator against
the traditional state-of-the-art estimators [Shi+05] and [CZA15] as representatives of
the two classes of spacial-based and transform-based noise estimators. The source code
of [Shi+05] is not available as well and thus needs to be implemented.

Physics-ML/ Sensor AI
This thesis focuses on using physical knowledge about the sensor system to improve
data-based parts of our proposed framework and not to improve the sensor system itself.
Prior studies demonstrate several possibilities to combine both via (i) the loss function
or initialization (“soft constraints”), (ii) altering the network design (“hard constraints”),
or via (iii) hybrid methods. Each approach has advantages and drawbacks with respect
to our camera self-health-maintenance scenario.

(i) Soft constraints are straightforward to implement, but naturally less effective than
hard constraints. On the downside, the usage of a custom loss function or initialization
only affects the training time, while an altered network design influences inference time.
In our use case, an increase in training time is not considered significant and preferred
over a longer inference time. We employ physical-models in order to generate the
necessary amount of accurate ground truth data to train the data-based models. Thus,
we inherently employ a form of physics-guided initialization in each model training.

When it comes to noise source estimation, we further investigate the most promising
(ii) network design adaptation. More specifically, we input camera metadata along with
a noisy image and let the network automatically learn how to fuse these heterogeneous
data to solve the tasks of noise source identification and quantification. We do not
expect longer inference times compared to classic noise estimation, since the respective
calculations of the noise components can be represented with a few calculations in the
network and the fusion of the sensor data on the decision-level is one possibility to be
realized with low computation overhead.

In (iii) hybrid methods, both the physics-based and ML models are executed. Depending
on physics-based model, calculations may not be performed in real time. This applies
to extensive models in particular.
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2.5 Summary

In this chapter, we provided an overview of studies that overlap with the different parts
of our proposed framework.

Section 2.1 started with works on adaptive camera regulation, the task that combines
online estimation of a camera’s vision state and automatic execution of actions to
improve some target criterion. This paradigm has been demonstrated for numerous
applications of mobile machines and various readjusted camera parameters. Most of
the works deal with object detection scenarios, camera exposure time and gain control,
and learned image features. Only few works explicitly account for motion blur on a
software basis, as it tends to be addressed with additional hardware elements (e.g., lens
stabilizers).

In Sec. 2.2, we focused on blind blur and noise estimators to assess the quality of
single images in order to determine a camera’s vision state. The majority of traditional
and learning-based blur estimators simultaneously estimate the kernel and the clean
image on the basis of prior knowledge about image content (with focus on motion
blur). Traditional noise estimators rely on assumptions in the spatial or frequency
domain. Most noise estimators heavily rely on simplistic additive white Gaussian noise
models and “noise sources caused by digital camera electronics are still largely overlooked”
[Wei+20]. All learning-based approaches represent the blur/ noise estimation either
explicitly, or, more frequently, implicitly within an end-to-end DNN. Recent studies
tend to employ learning-based approaches over traditional ones.

In Sec. 2.3, we introduced the field of blending data-based methods with traditional
scientific models as Physics-ML. If the focus lies on physics of a sensor system, the
field is referred to as Sensor AI. Several authors investigated how a sensor system and
AI approaches can benefit from each other. In the case of optical sensor systems, this
can be done by learning sensor system component designs to optimize a particular
task (e.g., free-form lens elements). On the other hand, AI can profit from contextual
auxiliary data of a sensor system. Prior works further researched on how this sensor
knowledge can be integrated into the AI and proposed physics-guided (i) loss functions
(NN training loss extended by physics constraints), (ii) design and architecture (NN
components tailored for a specific physics task), and (iii) hybrid modeling (parts of NN
or physics are extended or replaced by each other).

In the end, we identified further goals for our self-health-maintenance framework from
the advantages and disadvantages of related studies (Sec. 2.4). Specifically, these goals
are:

(1) to optimize high-level image task performance against image quality for generality
and interpretability,
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(2) to consider motion blur as it occurs frequently with mobile machines and
significantly affects subsequent high-level image processing,

(3) to examine image quality attributes in combination as they can influence each
other,

(4) to determine and optimize camera parameters at runtime to account for dynamic
scenes and camera systems,

(5) to utilize an extensive noise model for more realism in comparison to more frequent
simple models,

(6) to use explicit and learning-based blur/ noise estimators as they favor independency
from scenes and high-level tasks, interpretability, and real-time capability,

(7) and to employ physics-based ML initialization on physically generated data and
a physical-guided ML design as it probably comes with low implementation
complexity and computation time overhead.



CHAPTER 3

Theoretical Foundations

This theory chapter introduces the key concepts for understanding the complex processes
within a camera to represent a scene in form of an image, how the targeted effects of
blur and noise are caused, and how these effects are determined in a standardized way.

We first focus on the assumed camera systems and model their components: the sensor
system and the lens system (Sec. 3.1). Subsequently, we introduce the notion of image
quality to approach a camera’s condition (Sec. 3.2) and present established methods to
objectively assess image quality considering blur/noise (Sec. 3.3). Finally, we discuss on
the model selections we made and corresponding limitations (Sec. 3.4), and summarize
the key takeaway points (Sec. 3.5).

3.1 Camera System

A (digital) camera system denotes a device that captures a three-dimensional scene as a
digital image. The development of the first digital camera dates back to 1978 [LS78]
and decades of development have sophisticated even its basic structure (left of Fig. 3.1).
Its components can be classified into three groups: (i) a lens system to direct and
manipulate incoming light, (ii) a digital sensor system to sense and digitize the light,
and (iii) auxiliary components. The (i) lens system can contain diverse lens types, one or
many apertures, and light filters (e.g., ultraviolet (UV) filter and anti-reflection coatings);
the (ii) sensor system a digital image sensor and processing electronics (e.g., for image
post-processing), and the (iii) auxiliary components, for instance, an auto-focus unit
and a temperature sensor.

To further reduce complexity, a camera system is simplified as depicted on the right of
Fig. 3.1 to: a sensor system with the sensor and associated post-processing electronics
(Sec. 3.1.1), and a lens system with a single lens and a single aperture (Sec. 3.1.2).
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Figure 3.1: Structure of a camera system. Left: A typical camera system with an excerpt
of its sophisticated setup: (1) various lenses, (2) multiple apertures, (3) diverse light
filters, (4) a digital image sensor, (5) electronics for post-processing and (6) an auto-focus
component. Right: Simplified camera system setup assumed in this work. Raw images
based on [Dpr09; Kir09].

3.1.1 Sensor System

A (digital) sensor system can be defined as an electrical device that detects photons and
converts them into digital signals. It typically consists of a two-dimensional array of
photodiodes as photon detectors and electrical circuity to process the detector signals.

Camera sensors follow the same basic (idealized) principle of operation [KW14] (Fig. 3.2):
first, a photodiode converts incoming photons into electrons during a configured time
period (exposure time, texp [s]) and holds these electrons in a well, resulting in an
electrical charge. A sense node transfers this electrical charge into measurable voltage

V = VSN.Ref − (ASN ·Ne−), (3.1)

with a reference voltage VSN.Ref [V], a gain ASN [V/e−], and the number of electrons Ne− .
This voltage V is then increased by a (source-follower) amplifier to

V ′ = ASF · V, (3.2)

with a gain ASF [V/V], to make it processable for an analog-to-digital converter, which
quantizes this voltage into a digital number (DN) according to

DN = AADC · (VADC.Ref − V ′), (3.3)

using a gain AADC [DN/V] and a reference voltage VADC.Ref [V]. Doing this conversion
for each photodiode, the resulting array of DNs forms the digital image, whereas a DN
value is referred to as a picture element (pixel) intensity. In this work, it is assumed
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Figure 3.2: Basic camera sensor processing pipeline. A photodiode converts incoming
photons (p) into electric charge (electrons, e-) and a following sense node transforms
this charge into voltage (V). The voltage gets amplified to V′ first before it passes an
analog-to-digital converter that quantizes the voltage into digital numbers (DN). Typically,
these DNs are post-processed on and/or off the sensor.

CCD CIS

Photodiode

Horizontal Shift Register

Column/Row Circuity

Readout Circuity 

Figure 3.3: Basic design of CIS and CCD sensors. CCDs shift charge from each
photodiode first vertically and then horizontally toward a single read out unit. In CISs,
the charge is read out directly at the photodiode, addressed by column and row circuity,
and further processed per row/column.

that the formed image is in a raw data format at this time1. This image is typically
further post-processed by on- or off-chip located circuity [Wal13]. In the following, the
composite of the sense node, the amplifier, and the analog-to-digital converter circuity
is referred to as readout circuity [DH04, p. 197].

Nowadays, two types of camera sensors prevail the market: the charge-
coupled device (CCD) and the active pixel sensor, known as a complementary
metal–oxide–semiconductor (CMOS) imaging sensor (CIS). The CCD was invented in
1969 [CL69, p. 3] and the CIS around 1993 [Fos93]. Both sensor types differ in where
the readout circuity is located (Fig. 3.3). A standard CCD comprises a single readout
circuity unit at a corner of the sensor. As a consequence, each charge packet has to be
moved toward this location. The arrows in Fig. 3.3 illustrate the trail of charge packet
movements from a single column These “coupled” simultaneous shifts of charge packets
yield the CCD its name. In contrast, a CIS comprises readout circuity per column, row,
and photodiode for faster processing (however, the trend goes towards pixel circuity –
see Sec. 3.4.1).

These different sensor architectures imply consequences related to transportation/ robotic
applications and the camera condition monitoring of this work.

1Note that the raw data format is not standardized and that each camera manufacturer may already
have applied a different processing.
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The CCD’s serial readout procedure introduces undesired correlations between pixels
in form of artifacts like blooming, smear, and pixel defects that affect the readout of
subsequent pixels in the serial readout [Jan01, p. 275, p. 406, ch. 5.4]. This serial
readout is also the main reason for a higher power consumption of a CCD compared
to a CIS, which makes it less practical for mobile devices [Wal13]. On the other hand,
the CIS technology heavily benefits from advances of general CMOS manufacturing
in several ways. Standardized manufacturing steps and the constantly reduced size
of circuity reduces the fabrication cost and enable on-chip (and in-pixel) processing
that encourage sensor AI [GC16]. Nowadays, standard on-chip processing may include
global shutter, noise suppression, pixelwise analog-to-digital conversion [HL11, ch. 4.3].
However, additional electronic components come at the expense of a reduced photodiode
size (limiting the light sensitive area and the well capacity to hold electrons and thus
the dynamic range, i.e., the imageable amount of different light intensities) [Wal13]. To
this end, microlenses can focus incoming light to the remaining light sensitive area. A
more advanced technique is the fabrication of backside-illuminated CISs that have their
photodiodes on the backside and the readout electronics on the front [Jan01, sec. 3.4].
However, this is still considered cost-intensive compared to frontside-illuminated sensors
[Vic+20]. In the end, “there is no such thing as a free lunch” [Fri75], so the sensor setup
should be chosen with the requirements of the intended target application in mind.

The predominant fields of application base on the strengths of the respective sensor type.
Currently, CCDs are preferred in medial and scientific applications that demand high
dynamic ranges and low noise over other factors (e.g., in digital radiography) [Wal13;
Que+20]. When it comes to high frame rates, low power consumption, compact sizes, a
limited budget, or on-chip processing, usually the CIS is the first choice [GC16]. From a
historical point of view, engineers consider the CIS as the successor of the CCD since
the CIS surpasses the CCD in an increasing number of industrial and scientific use cases
with respect to their specific demands [GC16; Fos20].

3.1.2 Lens System

In this work, a lens system is simplified to a combination of a lens and an aperture.
The lens serves to project the three-dimensional environment onto the two-dimensional
sensor plane, while the aperture controls the amount of passing light.

The first usage of a lens within a camera can be dated back to the mid of the 16th century
[Ila07, p. 219] and resulted from the limitations of a lensless camera, which can be
modeled by the well known pinhole camera model (named after its tiny aperture) [Kin92,
pp. 63–64]. In this model, the aperture not only controls the incident amount of light,
but also the sharpness of a projected object point from the environment. Increasing the
aperture diameter (DA [mm]) would likewise increase the projected point size (DI [mm]),
as the aperture simply creates a cone of incoming light rays from an object point (cf.
left half of Fig. 3.4).
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On the other hand, decreasing DA would lead to darker images and DI is lower-bounded
by diffraction. Darker images are typically tackled by longer texp resulting in motion
blur from moving objects (see Sec. 3.2.1.2).

In contrast to the pinhole model, the use of a lens removes this dependency from DI

to DA, since the lens is able to focus the incident cone of light rays onto a point (in
the ideal case, see right half of Fig. 3.4). As a consequence, a lensed camera system
can produce brighter images using a DA larger than pinhole-size without increasing DI .
The higher light exposure leads to a shorter texp required that also reduces the potential
motion blur. But these advantages come at the expense of two new limitations: (i)
for DA larger than pinhole-size, DI now depends on the distances from the lens to the
object point (dO [mm]) and to the sensor plane (dI [mm]) (details in Sec. 3.2.1.1), and
(ii) the lens introduces projection artifacts known as lens aberrations [Kin92, pp. 37–48].
Lens aberrations are typically mitigated to a negligible level for many applications by
incorporating additional lenses, lens coatings, additional apertures placed before or after
lenses, and an offline camera calibration before the field usage. Hence, the effect of lens
aberrations is neglected in the following.

This work follows the thin lens model [Hec17, pp. 165–168] with a single perfect thin
and convex lens, a single round aperture, and light modeled as rays (Fig. 3.4) – however,
this model is still frequently used in the literature to describe the light geometry of more
complex lens systems [FL19; Seo20]. It models the projection of object points along the
optical axis of the lens onto the sensor plane by the Gaussian Lens Formula

1
f

= 1
dO

+ 1
dI

, (3.4)

that relates the focal length (f) of the lens to its distances to the projected object point
(dO) and to the sensor plane (dI). For further simplification, the aperture is considered
to control the amount of incoming light only, while an electronic global shutter regulates
the time of light exposure texp.

3.2 Image Quality

We utilize the quality of an image that is produced by a camera system as a mean to
infer the camera’s condition, since many observable changes in image quality are direct
effects of camera system processes. There is no unified definition for image quality2, but
multiple definition approaches [JB97; Pet00; BPA02; Kee02; Eng04; WBS09], [PE18,
p. 29].

2In fact, the term image quality is often used undefined in standard work as if it was part of common
knowledge (e.g., in [Jah00; JEV09; Dav12; Kle14]).
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Figure 3.4: Thin lens model. A single perfect, thin and convex lens projects an object
point along the optical axis onto the sensor plane. The projection’s size (DI) is determined
by the focal length (f) of the lens and the lens’ distances to the object point (dO) and to
the sensor plane (dI), respectively. The aperture of size DA controls the amount of light.

We follow the definition from [BPA02],

“[Image quality is] the weighted combination of all of the visually significant at-
tributes of the image, when considered in its intended marketplace or application.”,

as it comprises two key aspects that several definitions address: multiple visual image
attributes contribute to image quality and their respective weighting depends on the
intended application of an image (e.g., object detection, see Sec. 1.1).

Phillips and Eliasson categorize image attributes into global and local ones, whereas
global ones are considered essentially independent to magnification and changing viewing
distances, in comparison to local ones [PE18, p. 35]. Global attributes include, for
instance, exposure, optical distortions, and shading. Local attributes contain blur, color
fringing, noise, and different artifacts. Figure 3.5 depicts exemplary image attributes
that typically originate in a camera system. Note that it depicts only a small part of
the possible attributes and each of them can be further sub-classified according to their
respective root causes. We focus on the local attributes blur and noise, as two of the
most common effects researched in the literature (see Sec. 1.1).

Let us further emphazise the dependence of an image target application on image quality
using image blur as an example (Fig. 3.6). Blur is considered an image degradation
when it comes to human interaction and many Computer Vision applications (e.g.,
edge detection) [NPJ83; NHM17]. However, blur can also be beneficial for modern
learning-based object detection approaches (see Sec. 7.1) and for navigation by means
of star tracking (to locate stars in sub-pixel accuracy) [Lie95]. That is, blur and other
image attributes should only be judged in the context of a desired target application.
To this end, the sensitivity of image attributes for a respective target application must
be investigated in order to assess a camera’s condition.
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(a) Original (b) Distortion (c) Exposure (d) Shading

(e) Artifacts (f) Blur (g) Color Fringing (h) Noise

Figure 3.5: Exemplary image quality attributes. Top row: (a) original image and
global attributes including (b) distortion (e.g., pincushion distortion), (c) exposure (e.g.,
overexposure), and (d) shading (e.g., vignetting). Bottom row: local attributes including
(e) artifacts (e.g., aliasing), (f) blur (e.g., defocus blur), (g) color fringing (e.g., chromatic
aberration), and (f) noise (e.g., readout noise). This work is limited to blur and noise only.

Edge Detection Object Detection Navigation (via Stars)

Blur undesired Blur may be desired Blur desired

Figure 3.6: Dependence of target applications on image quality on the example of blur.
There are applications where blur is undesirable (e.g., edge detection), where blur may be
beneficial (see Sec. 7.1) or where blur is desirable (e.g., star tracking for navigation; image
from [Zaf23]).

The image formation process in terms of blur and noise that we consider in a camera
is illustrated in Fig. 3.7. The following sections present blur and noise in a top-down
approach, from the visible image effect toward the respective root causes linked to the
camera system, and means to model these processes (Secs. 3.2.1 and 3.2.2).

3.2.1 Blur

Image blur denotes the result of processes that reduce image sharpness. The most
prominent of such processes are (i) light refracted by a defocused lens system, (ii)
relative motion between the sensor and the scene, (iii) atmospheric turbulence, and (iv)
diffraction [JEV09, p. 325]. Processes (iii) and (iv) cannot be avoided from a camera’s
point of view, so we focus on the former two sources, whose induced blur types are
called defocus and motion blur, respectively (Fig. 3.8). Many factors contribute to these
processes and make their mathematical description complex.
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Figure 3.7: Image formation process of the considered camera system, including blur
and noise models. A clean image I(x, y) undergoes several physical processes that produce
noise and blur, yielding the corrupted image I ′(x, y) (clean image patch vs. distinct
corruptions in stated order). Noise is either signal-dependent or signal-independent, while
blur is modeled as a convolution with a point spread function (PSF).

Figure 3.8: Blur sources comparison between the original scene (left), simulated defocus
blur (middle), and simulated motion blur (right) with their respective blur kernels h(x, y)
in the top-left corners. Defocus blur is characterized by isotropy, while motion blur kernels
are typically directional.

For the sake of simplicity, they are often modeled as a convolution on the image plane:

I∗(x, y) = I(x, y) ⊛ h(x, y), (3.5)

where I : N2 → [0, 255] is the input intensity at pixel (x, y) before the blur process,
h : N2 → [0, 255] the blur kernel, and I∗ : N2 → [0, 255] the blurred image intensity. The
kernel h is also called point spread function (PSF) [JEV09, p. 328]. Let us now describe
defocus and motion blur kernels h.

3.2.1.1 Defocus Blur

We model a defocus blur kernel h(x, y) to distribute a pixel’s intensity evenly over
an approximate circular area of neighboring pixels (with radius r ∈ R and center
(cx, cy) ∈ R2):

h(x, y) =

s, (x− cx)2 + (y − cy)2 ≤ r2

0, otherwise,
(3.6)
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with the value s ∈ R determined by the normalization constraint
∫︁∫︁

h(x, y) dx dy = 1
[JEV09, p. 325]. This circle corresponds to the object point projected through the lens
onto the sensor plane (known from Fig. 3.4) and refers to the term circle of confusion
(CoC). Building on top of the light geometry of the assumed thin lens model (Sec. 3.1.2),
the CoC’s diameter DI = 2rdp + 1 can be calculated as

DI = DA
f

dO − f

|dB − dO|
dB

with 1
f

= 1
dO

+ 1
dI

, (3.7)

expressed in terms of the focused object distance (dO), the out-of-focus object distance
(dB), the focused image distance (dI), the focal length (f), and the aperture diameter
(DA) [Ray02, p. 216]. Note that the sensor’s pixel pitch dp [mm] transforms the radius r

from the image space to the metric space (assuming contiguous square pixels).

A projected object point is considered defocused if its CoC is larger than dP , i.e.,
DI > dP . In theory, there is a tolerance value range [a, b] for each involved parameter
to ensure focused projections:

∀p, q ∈ {f, DA, dO, dB, dI}, ∃[a, b] ⊂ R, (p ∈ [a, b] ∧DI ≤ dp)p ̸=q, (3.8)

with fixed parameters p ̸= q for simplicity. The possibility to control these parameters
allows us to avoid or counteract defocus. In practice, dO and dB are the least controllable
but most experienced parameters during field operation, so their associated tolerance
range is most regarded in literature, known as depth of field (DoF, Fig. 3.9) [Kin92,
ch. 5]. As a consequence, fixed-focus cameras are typically focused on the so called
hyperfocal distance H [mm] that maximizes the DoF to [H/2,∞] [Kin92, p. 89]:

H = DA
f

dp

+ f. (3.9)

In the following, we assume our camera systems to be focused on H with an operational
distance of [H/2,∞]. We further assume an image-patch-wise constant distance of the
depicted object scene to the camera (as we consider image-patch-wise/ spatially-varying
monitoring, cf. Sec. 1.1). Both assumptions imply a negligible contribution of dO and
dB to potential defocus blur, and thus support the model chosen in (3.6).

3.2.1.2 Motion Blur

Motion blur emerges due to relative motion between the camera and the recorded object
scene during the exposure time texp. Depending on the type of motion, motion blur
can manifest as translation, rotation, scale changes or a combination of all of them.
Hence, a closed-form expression for h(x, y) may be complex to obtain. Jayaraman et al.
[JEV09, pp. 325–326] exemplarly express h(x, y) for a simplified translational motion
with a constant velocity vrel [px/s] under an angle of Φ [rad] to the horizontal axis of the
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Depth of Field

Figure 3.9: Depth of field describes the tolerance range of object distances to the lens
that do not induce a defocus blurred projection on the image (remaining parameters fixed),
i.e., whose circle of confusion diameter (DI) is lower or equal to a pixel’s pitch (dP ).

Figure 3.10: Motion blur results from relative motion between an imaged object point
and the camera during exposure. The length L, the shape, and the pixelwise intensities of
the blur path depend on the relative motion velocity vrel and the relative motion angle Φ
(horizontal to the sensor) at each time instant during the exposure interval [0, texp].

camera sensor as (Fig. 3.10):

h(x, y) =


1
L

,
√

x2 + y2 ≤ L
2 and x

y
= − tan(Φ)

0, otherwise
with L = vrel · texp. (3.10)

In reality, both Φ and vrel may not be constant during the exposure interval, e.g., because
of factors like an uneven driving ground or unpredictable moving scene objects. Hence,
we consider simplified linear as well as complex non-linear movements to model h(x, y).
In general, we constrain a motion blur kernel h(x, y) to contain a coherent path of pixels
with non-zero and potentially inhomogeneous intensities (cf. right kernel of Fig. 3.8).

Analogous to defocus blur, we consider a projected object point to be motion blurred if
L > dp, and can likewise derive tolerance ranges for the involved parameters to avoid
blur:

∀p, q ∈ {texp, vrel, Φ}, ∃[a, b] ⊂ R, (p ∈ [a, b] ∧ L ≤ dp)p ̸=q, (3.11)

with fixed parameters p ̸= q. In transportation and robotic applications, vrel and Φ lie
beyond the operational range of a camera system and are controlled by superordinated
tasks (e.g., save movement through the environment); so only texp remains to control
motion blur.
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Uncorrupted Scene

PN DCSN RN

Figure 3.11: Comparison of noise sources. Left: Uncorrupted scene. Right: Scene
with simulated photon shot noise (PN), dark current shot noise (DCSN), and readout
noise (RN) for different exposure times (texp) and temperatures (T ). PN depends only on
texp. When texp increases, PN becomes less noticeable as the signal grows faster. DCSN
depends on both texp and T , with a greater influence of T . RN depends on T only. For the
simulation, parameters of the Prosilica GC1380H camera system were used (see Tab. A.2).

3.2.2 Noise

Image noise denotes “any undesired information that contaminates an image” [JEV09,
p. 348] and may originate from the environment, the camera system, during transmission,
and from processing steps. Having the online condition monitoring approach in mind,
we limit this study to camera system noise, but still, each involved camera component
can introduce noise due to physical imperfection or inaccuracies [BJ15] – however,
most noise originate within the image sensor [PE18, p. 207]. In addition, we consider
only time-varying sources because time-invariant noise sources (such as photo response
non-uniformity) are often addressed during calibration (before acquisition) and their
residuals are assumed to have a minor influence on image quality. Following this scope
reduction, the remaining major noise sources can be limited to (i) photon shot noise,
(ii) dark current shot noise, and (iii) noise from readout circuity (readout noise) [PE18,
p. 83], [Jan01, pp. 101–102]3. Figure 3.11 visualizes the noise sources (i) – (iii).

Generally, noise can be modeled by:

˜︁I(x, y) = I(x, y) + I(x, y)γ u(x, y), (3.12)

where I : N2 → [0, 255] is the clean intensity (the signal’s intensity), u : N2 → [0, 255]
is a random, stationary and uncorrelated noise process, and ˜︁I : N2 → [0, 255] is the
noisy intensity. A parameter γ ∈ R controls different noise types. The amount of noise
(or noise level) may be quantified using the standard deviation σ of the underlying
statistical distribution of u. The following sections detail the noise sources (i) – (iii).
As a theoretical guide, we follow [KW14].

3Janesick defines readout noise as a collection of “noise sources that are independent of the signal
level” and hence counts dark current shot noise as a part of readout noise [Jan01, p. 101]. We follow
another definition approach to distinguish between these two types of noise (see Section 3.2.2.3).
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3.2.2.1 Photon Shot Noise

Photon shot noise is based on two aspects: the generation of photons from a light
source underlies random fluctuations and, as a consequence, they arrive independently
at the photodiode within the exposure time interval. Although the origin is only loosely
coupled to the camera system, we still consider this one here because of its non-negligible
impact on image quality [Jan01, pp. 101–102].

Photon shot noise follows a Poisson distribution P : (R → R) → R. If the expected
number (λ = σ2) of arriving photons (x) is large enough (i.e., in non-low illumination
conditions), the Poisson distribution may be approximated by a Gaussian distribution
N : (R2 → R)→ R using the Central Limit Theorem [Dev11, p. 225]:

P(λ)(x) = λx

x! e−λ x → ∞≈ 1√
2πλ

e−(x−λ)2/2λ = N (λ, λ)(x). (3.13)

The higher the number of arriving photons, the higher the number of random fluctuations;
hence photon shot noise behaves signal-dependent and can be described by (3.12) when
setting γ = 1 and u ∼ P (λ)(x). Please note that a reduction of the noise level σ can
only be achieved by a lowered signal x.

3.2.2.2 Dark Current Shot Noise

Similar to photon shot noise, dark current shot noise (DCSN) originates from the random
arrival of dark current (DC) electrons and follows the same distribution (3.13). DC
emerges from thermally generated electrons at different sensor material regions [Jan01,
sec. 7.1.1]. Its expected average ˆ︃DC [e−/sec/px] : R→ R can be modeled as

ˆ︃DC(T ) = 2.5× 1015d2
pDFMT 1.5 exp

(︄
−Eg(T )

2kT

)︄
,

Eg(T ) = Eg0 −
αT 2

β + T
,

(3.14)

with the pixel area d2
p [cm2], the dark current figure-of-merit DFM [nA/cm] at 300 K,

the temperature dependent band gap energy of the semiconductor Eg [eV] : R → R,
the temperature T [K], the Bolzmann’s constant k, and the material depending terms
Eg0 [eV], α, and β (ˆ︃DC from [Jan01, p. 622], Eg from [Pan75, p. 27], material specific
terms for silicon in [KW14]). Integrating ˆ︃DC over the exposure time texp leads to
the overall dark signal Sˆ︂DC [e−/px]. The DCSN is then determined by its noise level
σDCSN [rms e−] with

σDCSN =
√︂

Sˆ︂DC =
√︂ˆ︃DC · texp, (3.15)

and follows (3.13) using σ2
DCSN = λ [Jan01, p. 626]. DCSN behaves signal-independent,

hence γ = 0 in (3.12) [Jan01, ch. 7.1.1]. At runtime, DCSN can be controlled via T or
texp.
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3.2.2.3 Readout Noise

Readout noise refers to the imperfections due to the sensor’s electronic circuitry
converting charge into digital values and it is attributed to the on-chip amplification
and conversion processing units [DH04, p. 197]. Although readout noise can be reduced
to a low level in scientific cameras [Jan01, p. 36], its impact may be still significant for
industry-grade sensors that lack noise reduction [Fos20]. We incorporate sense node
reset noise and source-follower (amplifier) noise as the main time-varying components,
whereas source-follower noise can further be sub-divided into Johnson-Nyquist noise,
flicker noise, and random telegraph noise. We refer to the original sources [Jan07, sec. 11]
and [KW14] for details to (3.16) – (3.19) and for default values.

Sense node reset noise (alias kTC noise) results from thermal noise by the channel
resistance of the reset transistor that periodically resets the sense node to a reference
level for charge sensing [Jan01, p. 537–538]. Its noise level σSN [rms e−] follows

σSN =
√

kTC

q
, (3.16)

with the Bolzmann’s constant k, the temperature T [K], the sense node capacitance
C [F], and the electric charge q [C]. A signal processing technique called correlated
double sampling (CDS) typically eliminates sense node reset noise for CCDs, but may
increase thermal noise in CISs due to their pixelwise CDS implementation ([Dep+00]).
Sense node reset noise can be described by (3.12) when setting γ = 0 and u ∼ N (0, σ2

SN),
and can be regulated with T .

Let us focus on the source-follower noise components. Johnson-Nyquist noise originates
from the source-follower’s resistance that induces erratic motion of electrons in the
current (measured as thermal noise, similar to sense node noise). It is also referred to
as white noise, as its magnitude is independent of the frequency in the power spectrum.
In contrast to Johnson-Nyquist noise, flicker noise (also 1/f noise) varies approximately
with the inverse of the frequency and results from imperfect contracts between two
materials and tunneling of electrons into the oxide [Jan01, p. 544]. CISs are affected from
higher 1/f noise than CCDs as they contain circuity in each pixel. Random telegraph
noise arises from random trapping and emission of electrons, and leads to discrete
modulation of the channel current [TE00]. The source-follower noise level σSF [rms e−]
can be approximated as

σSF ≈

√︄
fclock∑︁
f=1

SSF(f)HCDS(f)

ASNASF (1− exp (−ts/τD)) , (3.17)
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Image Quality Assessment
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Figure 3.12: Classification of image quality assessment approaches. This thesis focuses on
methods that are independent of human observers (objective) and that predict individual
image quality attributes (predictive). Inspired by [TR09].

with the readout frequency fclock [Hz], the sense node conversion gain ASN, the source-
follower gain ASF, the CDS sample-to-sample time ts [sec], and the CDS dominant
time constant τD [sec]. The source-follower noise power spectrum SSF : R2 → R may be
modeled by

SSF(f, T ) = W 2(f, T )·
(︄

1 + fc

f

)︄
+SRTN(f) with SRTN(f) = 2∆I2τRTN

4 + (2πfτRTN)2 , (3.18)

the white noise power spectrum W [rms V/Hz] : R2 → R, the flicker noise corner
frequency fc [Hz], and the random telegraph noise power spectrum SRTN : R → R
with its characteristic time constant τRTN [sec] and the induced source-follower current
modulation ∆I [A]. The CDS transfer function HCDS : R→ R follows

HCDS(f) =
(︄

1
1 + (2πfτD)2

)︄
· (2− 2 cos(2πfts)). (3.19)

Source-follower noise can be described by (3.12) when setting γ = 0 and u ∼ N (0, σ2
SF).

In theory, it can be controlled by ASN, ASF, T, fclock, ts, and τD. In practice, only the
gains and the temperature are accessible. CDS may also be employed to tackle the
Johnson-Nyquist and flicker noise contributions [Jan01, p. 556].

3.3 Image Quality Assessment

Image quality can be assessed with subjective or objective methods (Fig. 3.12). Subjective
methods score image quality based on a aggregation of human opinions. Depending on
whether only a test image is given or in combination with a source image, it can be
further classified as single- or double stimulus, respectively [WB22, pp. 1–13].

Objective image quality assessment (IQA) relies on metrics independent of human
perception and can be descriptive (i.e., they describe the quality of a specific image) or
perceptive (i.e., they predict image quality of any image made by a certain camera in
terms of image quality attributes) [PE18, p. 32]. Analogously to subjective methods,
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descriptive approaches can be further separated based on whether a reference to a test
image is given or not (full reference: reference image given; reduced reference: features
of reference image given; no reference: only test image given). This thesis focuses
on methods that are to be evaluated with regard to specific image target application
performances (objective) on the basis of individual image quality attributes to assess
the quality of images from a specific camera (predictive)4.

In the following sections, standard methods to estimate the chosen image quality
attributes blur (Sec. 3.3.1) and noise (Sec. 3.3.2) are presented.

3.3.1 Blur Estimation

The PSF : N2 → R of a blur process h(x, y) (3.5) can be used to objectively quantify
image blur [JEV09, p. 328]. Its Fourier transform is the optical transfer function
(OTF : R→ R) and it describes how spatial frequencies f (i.e., image details, contrast)
are affected by blur:

PSF(x, y) F↦→ OTF(f) ∝ MTF(f) ei PhTF(f). (3.20)

Usually only the magnitude of the OTF, known as the modulation transfer function
(MTF : R → R), is relevant to quantify blur, and so the phase transfer function
(PhTF : R → R) is omitted [Hec17, p. 580]. To interpret MTF values easier, we
use only normalized values MTFnorm : [0, 1] → [0, 1] and fnorm : R → [0, 1] in terms of
pixel units (i.e., in the image space) in this thesis:

MTFnorm(fnorm) .= MTF (fnorm)
C0

, fnorm(f) .= f

fNyquist
, (3.21)

with the Nyquist frequency fNyquist [Jan07, p. 128] and the maximum possible contrast
modulation C0 at f = 0. This normalization can be reversed to compare MTF values
among different camera systems.

In the following, we introduce two standard approaches to determine an MTF that
either characterize one or two image dimensions: the slanted-edge method (Sec. 3.3.1.1)
and the Siemens star method (Sec. 3.3.1.2). For both methods, we use the “resolving
power tool” developed by Meißner [Mei20].

3.3.1.1 Slanted-Edge Method

The slanted-edge (SLE) method [Sta17; Bur+00] was first published in the ISO standard
12233 and can approximate the MTF along one image direction. Let us introduce the

4The author’s use of the term “predictive” is consistent with the intent of what we refer to as
assessment. Strictly speaking, the predictive paradigm is a bottom-up approach and ours a top-down
approach, however, both are comparable.
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Figure 3.13: Slanted-edge method for one-dimensional blur estimation. Exemplary
application on a Siemens star target image. The pixel intensities neighboring the slanted
edge (SLE) of interest with an inclination angle θ are first projected onto a perpendicular
vector to form the edge spread function (ESF). The magnitude of the ESF’s first derivative
(called line spread function, LSF) translated into the Fourier space leads to the modulation
transfer function (MTF). Left illustration inspired by [Van19].

procedure on the example of the horizontal image direction (Fig. 3.13): According to the
standard, the method requires an arbitrary slanted knife-edge with an edge contrast of
C = 4 : 1 and an inclination angle of θ = 5 ◦. First, a region of interest around the edge
is extracted either manually or automatically (middle part of Fig. 3.13). The intensity
values of pixels along the edge and neighboring the edge are then projected onto a
vector perpendicular to the edge. In this step, θ enables to sample the edge intensities
in sub-pixel spatial resolution and C ensures a suitable radiometric resolution (left part
of Fig. 3.13). Fitting these projected intensities forms the edge spread function (ESF),
which describes the camera response to the edge. The first derivative of the ESF then
yields the line spread function (LSF), i.e., the camera response to the line. Lastly, the
absolute value of the Fourier transformed LSF yields the MTF (right part of Fig. 3.13).

3.3.1.2 Siemens Star Method

The Siemens star method [Reu+04; Reu+06; Mei20] approximates the MTF in two
image dimensions. It relies on imaging a Siemens star target [Sta22], which is a circular
pattern that consists of a number of fs alternating black-white segments, whose spatial
alternation frequency f [px−1] increases towards the Siemens star center (Fig. 3.14). The
frequency f is calculated as

f = fs

πr
, (3.22)

with a scan radius r [px] (see exemplary yellow circle in Fig. 3.14). We follow the ISO
standard 15775 [Sta22] to use fs = 32 and an edge contrast of C = 4 : 1. For every
scanned r, one can calculate the discrete contrast transfer function CTFD : [0, 1]→ [0, 1]
as

CTFD(f) .= Imax(f)− Imin(f)
Imax(f) + Imin(f) . (3.23)
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Figure 3.14: Siemens star Method for two-dimensional blur estimation. For each circle
with radius r that corresponds to a black-white pattern frequency f , pixel intensity
contrasts are calculated from Imax and Imin (example top right for yellow radius circle).
Post-processing these contrasts forms a discrete MTFD and fitting a Gaussian function
into the discrete values leads to a continuous MTF.

Its continuous version CTF : [0, 1]→ [0, 1] can be created from by fitting CTFD(f) with
a Gaussian function N (µ⋆, σ⋆) using

µ⋆, σ⋆ .= arg min
µ,σ

∫︂ 1

0
∥N (µ, σ)(f)− CTFD(f) ∥2 df. (3.24)

According to [Col54] and following [Mei20], the CTF forms the camera system response
to a square wave input and the MTF the response to a sine wave input. The conversion
from CTF to MTF is proposed by a normalization with π

4 and a series expansion with
odd multiples of frequencies f :

MTF(f) = π

4

[︄
CTF(f) + CTF(3f)

3 + CTF(5f)
5 + . . .

]︄
. (3.25)

3.3.2 Noise Estimation

An image noise process u (3.12) follows u ∼ P(σ2
PN) in the case of PN and u ∼

N (0, σ2
i∈{DCSN, RN}) in the cases of DCSN or RN (cf. Sec. 3.2.2). That is, u is determined

by the respective standard deviation σ, alias the noise level. Hence, we utilize σ to
quantify image noise objectively. The noise levels of the underlying image noise processes
of the noise sources can be empirically determined in combination. Due to simplicity,
we omit the determination of PN, since the quantum nature of light already decides
σPN given the captured image intensity I (cf. Sec. 3.2.2.1). Thus, we focus on DCSN
and RN only. The empirical estimations of σi∈{DCSN, RN} base on capturing bias frames
and dark frames [Woo15, pp. 163–164]. Let us explain the procedure on Fig. 3.15.
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Figure 3.15: Bias/ dark frame acquisition and post-processing. Bias frames {IRN} and
dark frames {IDark} are both captured with closed camera shutter, where the exposure
time texp controls dark current accumulation. Averaging the bias/ dark frames results in a
so called master bias/ dark frame Īi∈{DCSN, RN}. Bias/ dark frames may be truncated (too
low camera offset) and still contain residual additive noise (e.g., dark current), which would
both affect noise level estimation. In order to obtain corrected images {I⋆

i∈{DCSN, RN}},
we apply a histogram rectification that mirrors values along the distribution maximum
xmax and subtracts the respective master frame.

A bias frame IRN contains signal bias produced from the camera’s readout procedure,
i.e., RN. In order to eliminate other signal influences, a bias frame is captured with
a closed camera shutter (to prevent signal) and with texp ≈ 0 s (to avoid dark current
accumulation). At this point, we identified two common issues that need to be addressed
in post-processing: First, the intensity distribution of IRN may be truncated with all
negative intensity values set to zero, which results from a small camera-offset and affects
the noise level estimation. We tackle this issue by determining the histogram bin xmax

that corresponds to the distribution maximum and mirroring histogram bins x ≥ 2xmax

along the vertical axis at xmax to reconstruct bins x ≤ 0. Second, there may be residual
fixed-pattern noise in IRN that we rectify as

I⋆
RN

.= IRN − ĪRN, (3.26)

with the rectified bias frame I⋆
RN and the mean bias frame ĪRN (alias master bias frame).

Details about the post-processing are specified in Alg. 1 in App. B.2. The underlying
RN noise level can be estimated by the sample standard deviation

σ̂RN =

⌜⃓⃓⎷∑︁n
i=0(xi − µ̂I⋆

RN
)2

n− 1 with µ̂I⋆
RN

=
∑︁n

i=0 xi

n
(3.27)
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from a rectified bias frame I⋆
RN with n pixel intensities xi. Averaging the calculated noise

levels from multiple (N) bias frames {I⋆
RN}N

i=0 increases the robustness of the estimation.

A dark frame IDark contains any signal bias (assuming radiometrically calibrated cameras:
DCSN and RN) and is captured with closed camera shutter and texp > 0 s to achieve dark
current accumulation. The bias post-processing from Alg. 1 in App. B.2 can analogously
be applied to IDark. To obtain the isolated DCSN noise level, we first estimate σ̂Dark

from IDark (cf. (3.27)) and subsequently remove the RN:

σ̂DCSN =
√︂

σ̂2
Dark − σ̂2

RN, (3.28)

following the central limit theorem for the addition of two statistically independent
Gaussian distributed random variables [Dev11, pp. 230–232].

3.4 Discussion

Let us briefly discuss our model selections and corresponding limitations of the camera
system (Sec. 3.4.1), image quality (Sec. 3.4.2), and image quality assessment (Sec. 3.4.3).

3.4.1 Camera System

The Sec. 3.1 provides a brief overview of the camera system assumed in this work and
models to abstract its working principle. Naturally, this section cannot cover the vast
variety of camera systems available and each simplification comes with limitations.

Sensor System
The sensor system is the most complex component in a camera system. In addition to
the sensor improvements we addressed in the main section, other techniques have been
developed to counteract most of the specific drawbacks.

First, the charge transfer of a CCD is not fast enough to avoid electron generation
by continuing illumination in the meantime. For this reason, there are also vertical
interline or full-frame shift registers, and all shift registers are light shielded [Jan01, p. 8].
Second, anti-blooming drains, different clocking strategies, and interpolation techniques
can counteract the addressed blooming, smear, and pixel/row defects [Jan01, ch. 4].
Third, modern large CCDs may have multiple area-wise readout units to speed-up the
charge transfer step [Jan01, p. 32]. Fourth, a CIS can comprise readout components
(e.g., amplifiers) per row/ column, per pixel, or in a hierarchical setup (e.g., row-s/
column-wise amplification and a second single output amplifier with gain control applied
to all pixels) [Wal13]. Lastly, additional circuity for a technique called correlated double
(or multi) sampling can reduce noise from the readout circuity to a sub-electron level
[Jan01, ch. 6.4].
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Please refer to [Jan01] and [HL11] for more information on the mentioned techniques,
and CCD and CIS sensor systems in general.

Lens System
The chosen thin lens model suits the majority of camera systems within this study,
as lenses are their predominant optical components. However, this model rests
upon the geometry of light interpreted as rays and does not take effects from wave-,
electromagnetic-, and quantum-optics into account (e.g., diffraction or dispersion).
Further, the influence of lens thickness and lens aberrations are excluded. Consequently,
many effects known to have a significant impact on the optical processes are neglected
and likewise various advances in camera construction to tackle these effects (e.g., lens
assemblies or multiple apertures). In addition, this section neither considers special-
purpose lens systems (e.g., fisheye-, tele- or zoom-lenses) nor lenses transparent for
wavelengths beyond the visible spectrum (e.g., infrared spectrum). For further literature
to the aforementioned topics, the reader is referred to [Sun16] and [Hec17].

3.4.2 Image Quality

In the following, we briefly discuss the model selection decisions made to describe images
and image quality.

Images
In terms of the sensor processing pipeline from Fig. 3.2, images appear to be a high-level
representation of the data produced by the camera system. Having the paradigm of
Sensor AI in mind, it might seem counter-intuitive to employ processed data and approve
a loss of information content, instead of using the raw voltages directly from the sense
node or the amplifier, respectively. Furthermore, the raw voltages are more sensitive
to smaller influences of the data quality, which makes it easier to identify, e.g., certain
noise sources. This could be important to estimate, for instance, the camera’s dynamic
range that is typically determined on an electron level [Jan01, p. 113]. On the downside,
such low-level data are difficult to interpret and cannot resort to the matured computer
vision methods researched in the past decades.

Note that this approach of monitoring the condition in terms of image quality is not
limited to monocular camera systems only. This approach also enables the monitoring
of multi-view camera systems, whereas the produced image, image quality attributes,
and their relation to the camera system might be different (e.g., consider a depth map
calculated from stereo images whose intensity values depend on the geometric stereo
calibration that is sensitive to concussions).
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Image Quality
A major limitation of this work is the choice of potentially too simplified models. For
instance: most lens systems depend on temperature. Material stress might change the
focal length at runtime and thus change the distortion, which is assumed to be calibrated
offline. Another uncovered corner case could be high dark current that saturates the
pixels and therefore cannot be mitigated by a calibration anymore. Beside the model
choice, there is also a trade-off in the selected metrics to quantify image quality attributes.
High-level metrics that incorporate more than one attribute (e.g., signal-to-noise ratio
or dynamic range) are more represented in the literature and may be better suited for
comparison to other studies. However, with the condition monitoring goal in mind, we
decided to employ single-attribute metrics in order to provide a clear link to a respective
root cause. The interested reader is referred to [PE18, ch. 2, ch. 3] for further readings
about image quality.

Blur
The defocus blur kernel from (3.7) assumes a locally negligible influence of scene depth
(as we aim for an image-patch-wise image quality estimation) and hence a uniform
distributed circular blur kernel. In the case of arbitrary environments, this simplification
turns out to be suitable if the related parameters of (3.6) minimize the scene depth
influence (i.e., by focusing the hyperfocal distance), or if a fixed image-patch-size
approaches the coverage of a small part of the scene with low depth diversity (i.e., by a
larger focal length). In case of a significant scene depth influence, a Gaussian-shaped
defocus blur kernel is typically used for approximation. However, all defocus blur models
working on the image plane have known limitations in comparison to a superior 3D scene
description [Dem04]. Other defocus and motion blur influences outside of our scope are,
for instance, a low mechanical shutter speed, a rolling shutter, or pixel crosstalk [PE18,
p. 17, pp. 42–43, p. 88].

Noise
The proposed noise types are known to have the greatest impact in most applications,
but represent only a small fraction of the various possible types. Please consider [Jan01,
ch. 7, ch. 8] and [HL11, ch. 6] for details.

3.4.3 Image Quality Assessment

When using the proposed noise and blur estimation methods, it is necessary to pay
attention to the following details that limit their application.

Blur Estimation
The results of both the slanted-edge method and the Siemens star method depend on
not yet standardized aspects including: size of the employed image edge(s), the edge’s
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position on the image plane, rotation of the target edge outside of the image plane,
and image quality effects that influence image intensities (noise, color fringing, etc.).
These varying conditions limit the comparability among different blur estimation studies.
Meißner recently researched such standardization issues and proposed approaches that
will be included in the upcoming German standard DIN 18740-8 [Mei20; BR17]. However,
both methods propose the usage of standardized target patterns (e.g., the Siemens star
pattern) in order to fulfill the requirements on a target edge to analyze, which is not
practical in field operations.

Noise Estimation
A proper noise estimation requires a radiometrically calibrated camera system, since
uncalibrated residual effects can limit the estimation result. Please consider that the
usage of master bias/ dark frames to tackle residual effects can only counteract additive
residuals (e.g., dark current) but not multiplicative ones (e.g., pixel non-uniformities)
[Woo15, pp. 205]. To this end, on-board calibration equipment have been proposed
for automatic radiometric calibration during field operation [CS96]. An alternative
approach to estimate RN/ DCSN is to read-out overscan pixels (sensor pixels that
are not illuminated)[Jan07, pp. 50–51], however, most camera systems do not provide
access.

3.5 Summary

In this chapter, we introduced physical models and standard blur/ noise estimation
approaches that we employ within this thesis.

In Sec. 3.1, we assumed a simple camera model that consists of two main components:
a sensor system and a lens system. For the sensor system, we outlined its general
functionality to sense and digitize incident light, and subsequently provided a brief
overview of the two predominant sensor types (CCD and CIS), including respective
advantages and resulting fields of application. Analogously, we introduced the working
principle of a lens system to focus incident light onto the sensor on the example of the
assumed thin lens model.

In Sec. 3.2, we addressed image quality as a mean to approach a camera’s condition
on the basis of its produced image data. From the variety of existing image quality
attributes, we put focus on blur and noise as two of the most common ones researched
in the literature. Thereupon, we detailed their root causes on a physical basis and
respective parameters to control the effects. Specifically, we emphasized defocus blur
and motion blur, and photon shot noise, dark current shot noise and readout noise as
the most important root causes relevant to autonomous machines.
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Section 3.3 introduced the concept of predictive image quality assessment to quantify
individual image quality attributes (blur and noise) in order to estimate image quality.
To this end, we presented two objective assessment metrics: the modulation transfer
function (MTF) for blur and the noise level (σ) for noise. Moreover, we demonstrated the
slanted-edge method and the Siemens star method as two standard means to estimate
an MTF, and a noise estimation procedure that relies on rectified bias and dark frames.

Finally, we end this chapter with a brief discussion to point out respective shortcomings
of the chosen models and estimation methods, and to provide outlooks beyond our thesis
scope with further literature (Sec. 3.4).





CHAPTER 4

Camera Self-Health-Maintenance
Framework

This chapter introduces our framework to self-maintain the intended functionality of a
camera system. We first briefly recapitulate the objectives and the intended scope for
the framework (Sec. 4.1). Subsequently, we summarize the framework on a high level
of abstraction (Sec. 4.2) and detail its two main components: a condition estimation
(Sec. 4.3) and a decision & control unit (Sec. 4.4). For the condition estimation, we first
present employed methods to quantify total image blur and noise for the case of total
blur/ noise assessments. On this basis, we propose a novel approach to identify and
quantify the contributions of multiple noise sources. For the decision & control unit, we
suggest means to decide on countermeasures, which we can achieve by controlling camera
parameters. Lastly, we discuss on the proposed framework (Sec. 4.5) and summarize
this chapter (Sec. 4.6). This chapter is partially published in [Wis+23b] and [Wis+23a].

4.1 Requirements

Let us first repeat the objectives and the scope for the framework design (cf. Sec. 1.1):

• Autonomous Mobile Machines operate in different environments with limited
computational resources. Thus, they require a general and reliable framework that
can run on mobile hardware in real-time. Our focus lies on panchromatic cameras
that operate in the visible range.

• Self-Health-Maintenance implies the automatic estimation of the current
condition and, in case of a detected misbehavior, the automatic initiation of
countermeasures.

– Condition Estimation can be approached by assessing the quality of
produced image data as a proxy. Image quality is determined by multiple
image attributes (blur and noise), the weighting of which depends on the
envisaged high-level image application (object detection). Optimizing high-
level application performance requires objective image quality measures.
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Figure 4.1: Camera self-health-maintenance framework: overview. The camera is
constantly monitored by analyzing image corruptions (e.g., blur and noise). According
to the estimated severity and the underlying root causes of corruptions, camera control
parameters (e.g., exposure time texp and ISO gain) are recalculated to maximize application
performance using the (offline determined) input/output (I/O) performance curves.

In order to initiate suitable countermeasures for a detected misbehavior,
problem root causes need to be identified. We focus on time-varying and
region-wise root causes that originate during image digitization inside the
camera system.

– Countermeasures aim to optimize target application performance. To
this end, the framework needs knowledge about the relation between image
attributes and target application performance, and access to the camera to
control image attributes (blur and noise). This knowledge must be available
at runtime, so we obtain it offline. We focus on motion blur in the presence
of noise.

• Sensor AI “incorporate(s) sensor knowledge which is gained by modelling,
characterization and application into data analysis” in form of a ”holistic approach
which considers entire signal chains from the origin to a data product” [Bör+20].

4.2 Overview

We propose a camera self-health-maintenance system that consists of online testing
(Fig. 4.1) and offline training parts (Fig. 4.2).

Let us introduce the offline training procedure first. We start with image datasets
from a target application domain as input (e.g., object detection) and corrupt them
according to an image formation pipeline (Fig. 3.7 on p. 34). The pipeline contains the
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Figure 4.2: Camera self-health-maintenance framework: training. An offline sensitivity
analysis determines the impact of physical image corruptions (e.g., blur and noise) on
the performance of a target application (e.g., object detection), and stores the results in
input/output (I/O) performance curves. As input, image data close to the application
domain are used.

most common (physics-based) sources of blur and noise affecting the camera condition,
with realistic severity levels (see Sec. 5.1.1). We quantify these levels using noise level
σ and modulation transfer function (MTF) values, respectively. Afterwards, we let
our system’s target application (object detection) evaluate these corrupted images.
We likewise quantify this performance in terms of the well known objective average
precision score [Eve+09] (AP, Sec. A.1). Knowing each applied image corruption and the
corresponding calculated application performance, the respective tuples are aggregated
into input/output performance curves (IOPC), which is the final product of this training
procedure.

The testing part (Fig. 4.1) has access to these IOPCs and analyzes each captured (yet
unprocessed) camera image online. We distinguish between the cases of isolated and
multiple blur/ noise sources. For the first case, we adapt existing machine-learning–based,
real-time capable noise level and MTF estimators (Secs. 4.3.1 and 4.3.2), and evaluate
their estimation and runtime performances compared to traditional state-of-the-art
estimators for combined and individual corruption cases (Secs. 5.2 – 5.4). Thereupon,
we introduce a simple approach to repair blur estimation in case of interfering high
noise levels (Sec. 5.5). For the second case, we propose a novel approach to identify
and quantify multiple noise sources on the basis of an image and corresponding camera
metadata (Sec. 4.3.3). If the estimated image quality does not meet the requirements
for optimal application performance recorded in an IOPC, a control policy decides how
to adjust camera parameters as countermeasure. We propose two exemplary control
policies using exposure time and ISO gain to trade off blur and noise. They exploit the
fact that object detectors are typically more sensitive to blur than to noise (Sec. 7.1).
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Figure 4.3: Total blur and noise estimators. Traditional (top branches) and learning-
based (bottom branches, ML) total blur/ noise estimation approaches. Blur estimation:
All methods take one or more image patches as input and output estimated MTF samples
for pre-defined image frequencies (f) in the horizontal (H) and vertical (V) directions.
Traditional methods first estimate a blur kernel, transform it into Fourier space F and
sample MTF values. The learning-based method consists of a pre-processing stage followed
by a multi-layer CNN. Noise Estimation: Both approaches estimate a total noise level
σ̂Total for each input image patch. The learning-based method employs a CNN whose
output is the median over pixel-wise estimations to obtain a single noise estimate.

4.3 Condition Estimation

We start with a presentation of employed blur and noise estimators to quantify the
respective image attributes objectively without root cause identification (Secs. 4.3.1 and
4.3.2, Fig. 4.3). We summarize both traditional and learning-based (ML) approaches
first and then detail our improvements. Subsequently, we propose a novel approach to
identify and quantify the contributions of individual noise sources (Sec. 4.3.3). For the
sake of completeness, we address the problem of blur source estimation in a discussion
at the end (Sec. 4.5.1).

4.3.1 Blur Estimation

The goal of our image blur estimators is to predict the total MTF given a possibly
blurred input image patch I∗, which is assumed to be monochrome (i.e., grayscale)
and of size 192 × 192 pixels (following the ML approach). The left part of Fig. 4.3
summarizes the steps of the two main paradigms.

Traditional methods (non-learning–based)
We use two baseline methods: “graph-based” [Bai+18] (GBB) and “simple local minimal
intensity prior” [Wen+20] (PMP) as traditional blur kernel estimators (top left branch
in Fig. 4.3). Both estimators follow a maximum-a-posteriori framework

min
I,h
L(I ⊛ h, I∗) + αG(I) + βR(h) (4.1)
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to iteratively refine a clean latent image I and the blur kernel h (3.5). The objective
function (4.1) is the negative logarithm of the posterior distribution (thus maximization
turns into minimization). It consists of a data fidelity term (L : R2 × R2 → R) that
penalizes the deviations with respect to the observed image I∗, and two regularizers
G : R2 → R and R : R2 → R (prior knowledge) on the unknowns (with positive weights
α, β). The GBB method [Bai+18] represents images as graphs and employs a skeleton
image with only strong gradients as a proxy for I. It uses a re-weighted graph total
variation prior G(I) to favor bi-modal image histograms. The PMP method [Wen+20]
builds on top of the dark-channel prior, proposing a simplified patch-wise minimal
pixel prior G(I) that aims for sparse minimal pixel intensities with small computation
complexity. The resulting h from each method is Fourier-transformed into the MTF
and sampled at the same spatial frequencies as the learning-based approach, for better
comparison. We use the source code from [BYc18; FWe19], setting the kernel size
parameter to 31× 31 pixels in order to estimate large blur kernel.

Learning-based Method
We upgrade a learning-based approach [Bau+18] to directly estimate MTF values of
camera lenses from natural images (without estimating the kernel h first). It consists of
a pre-processing stage followed by a CNN.

The pre-processing stage includes four steps: (i) Intensities are first scaled to [0, 1] and
mean-normalized. (ii) A rotation is applied for estimations of the MTF in radial and
tangential directions. (iii) The Sobel-filtered image patch is passed as an additional
channel to aid the MTF estimation procedure. (iv) Channels are spatially downsampled
to enlarge the receptive field of early CNN layers. We alter step (ii) to distinguish
between estimations in horizontal and vertical directions1, and thus be able to compare
to baseline methods GBB and PMP.

The CNN consists of a convolutional layer, seven residual blocks with strided
convolutions, an intermediate feature representation layer that allows an averaged
feature activation of optional multiple input patches, and three fully connected
layers that regress the MTF outputs (bottom left branch of Fig. 4.3). The result-
ing output consists of eight MTF values at pre-defined spatial image frequencies
f ∈ {0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6} lines/px.

The training is supervised. In [Bau+18], pairs of sharp image patches and PSFs (I, h),
synthetic or real, are collected. Their convolution leads to the training samples I∗; and
the respective MTF samples of the PSFs at pre-defined frequencies are the training
labels. In contrast to [Bau+18], we blurred the sharp images by simulated random
defocus and motion blur kernels (kernel models from Sec. 3.2.1 and parameters from

1This method can estimate MTFs in any direction. For simplicity, we focus only on two directions.
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Sec. 5.1.1) and retrained the CNN with default parameters. In this way, the CNN is
expected to learn to specialize in defocus and motion blur estimation.

At inference time, we pass a batch of four input image patches, i.e., we stack temporally
consecutive patches from the same sensor position, pre-process them independently
and input them into the CNN at once. We expect better results this way according
to [Bau+18], although one patch works as well. The obtained CNN output is then an
(averaged) MTF estimation.

Since the original source code is not available, we re-implemented it with guidance from
the authors, who also provided their original training data. The final network comprises
6.76M parameters.

4.3.2 Noise Estimation

The goal of the image noise estimators is to predict the noise level σ of a noise process
given a noisy input image patch Ĩ, which is monochrome and of size of 128× 128 pixels
(following the ML approach). The right part of Fig. 4.3 depicts the steps of the two
main paradigms.

Traditional methods (non-learning–based)
As baseline estimators we use the works of [Shi+05] (self-implemented) and [CZA15]
(with its code basis [Yue19]). Both are representatives of the two major noise estimation
approaches in the literature:

The adaptive Gaussian filtering method [Shi+05] (B+F) uses the standard deviation of
the most homogeneous image patches as a basis to calculate a Gaussian kernel that is
used to filter such patches. The standard deviation of the difference between filtered and
unfiltered patches leads to the estimated σ̂Total. We increased the internal image patch
size from 3× 16 to 8× 16 pixels due to better observed results on the selected datasets.

The method [Yue19] decomposes image patches via Principal Component Analysis (PCA,
also abbreviation of the method) into their eigenvalues and assigns the noise ratio
to the smallest ones. In contrast to previous work, the authors tackle the problem
of overestimating or underestimating noise theoretically and propose an efficient non-
parametric algorithm for noise level estimation.

Learning-based Method
We use the deep residual noise-level estimator (DRNE) of [Tan+19; Tan18] as learning-
based (ML) approach. It was designed for pixel-wise noise level estimation from
signal-dependent noisy images. The noise model was Gaussian with parameters that
accounted for photon and readout noise.
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Figure 4.4: Proposed noise source estimation. Different noise sources affect the image
formation process of a scene. Our noise source estimator quantifies major noise source
contributions σ̂i∈{PN, DCSN, RN}, unexpected noise ξ̂M/I, and the total image noise σ̂Total
using an image and camera metadata.

The CNN consists of 16 convolutional layers (including three residual blocks) and lacks
pooling and interpolation layers due to a known performance decrease for image noise
tasks. The resulting output σ̂Total is estimated for each pixel, but for a better comparison
with baseline methods we use the average over the patch as the noise level estimator.
The CNN contains a total of 519k parameters.

Training in [Tan+19] is supervised, carried out by artificially adding noise with σTotal ∈
[0, 30] to images from the Waterloo dataset [Ma+16]. We retrained the CNN in the
same way using our noise model from Sec. 3.2.2 and parameters specified in Sec. 5.1.1.

4.3.3 Noise Source Estimation

Given a possibly corrupted image patch I ′ and metadata from the camera system, the
goal of our image noise source estimator is to determine the image’s total noise level

σTotal =
√︂

σ2
PN + σ2

DCSN + σ2
RN + ξM/I (4.2)

and its individual components: the photon shot noise (PN) level σPN, the dark current
shot noise (DCSN) level σDCSN, the readout noise (RN) level σRN and a component ξM/I

that quantifies unexpected (i.e., residual) noise (Fig. 4.4). We assume grayscale patches,
of size 128× 128 px. Next, we describe the base architecture, subsequently detail our
extensions, and lastly focus on training the noise source estimator.
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Figure 4.5: Noise level estimator vs. proposed noise source and level estimator. Left:
Customized baseline estimator DRNEcust., which predicts the noise level of the input
image’s total noise. Right: Proposed noise source estimator that additionally employs
camera metadata and predicts the noise levels of four different noise types.

Base Architecture
Our method is inspired by the DRNE from [Tan+19] (Sec 4.3.2). We customize its
architecture so that the neural network takes grayscale images as input and estimates
only one noise level per image patch (left part of Fig. 4.5). Specifically, we replace the
first 3× 3× 3 convolution kernel by a 3× 3 one, replace the last residual block by a fully
connected block (FCB) with three layers having 32, 16, and 8 neurons, respectively, and
apply global max pooling before the FCB to fit the dimensions. As a consequence, we
are able to reduce the total number of network parameters by 35%, from 519k to 336k
while achieving similar estimation accuracy as DRNE. Lastly, we retrain the network as
described in Sec. 4.3.3. In the upcoming sections we refer to this customized model as
DRNE cust..

Noise Source Estimation
The previous method estimates the noise level of the patch, but does not identify its
origin (i.e., type and amount of noise), which is critical information for a camera’s
maintenance operation. In the following, we describe the three major extensions to the
above method for noise source estimation (right part of Fig. 4.5): noise type identification
(with or without the inclusion of camera metadata), and quantification of unexpected
noise.

1. Noise Type Identification / Separation. In a first step we duplicate the FCB and its
preceding global max pooling layer to get three independent network branches. Each
branch will predict the noise level of one noise type.

2. Inclusion of Camera Metadata. In a second step we separate the camera’s metadata
pertaining to the noise model into fixed and variable metadata (see Tab. 4.1). We
assume the fixed metadata to be constant at training and inference times due to multiple
reasons: (i) Only parameters that in a sensitivity analysis lead to significant noise
changes in the noise model are picked as variable parameters (see App. B.2).
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Variable Parameter Value Range

Minimal Metadata
Camera Gain [0, 24] dB
Exposure Time [0.001, 0.2] s
Sensor Temperature [0, 80] ◦C

Full Metadata
Dark Signal FoM [0, 1]
Full Well Capacity [2, 100] ×103 e−

Variable Parameter Value Range

Full Metadata (cont.)
Pixel Clock Rate [8, 150] ×106 Hz
Sense Node Gain [1, 5] ×10−6 mm
Sense Node Reset Factor [0, 1]
Sensor Pixel Size [0.0009, 0.01] mm
Sensor Type {CCD, CMOS}
Thermal White Noise [1, 60] ×10−9 Hz

Table 4.1: Camera metadata used for noise source estimation. We split these into
fixed and variable parameters, and consider only variable ones. Fixed parameters and all
parameter definitions can be found in App. B.2.

From these parameters, we also fix (ii) the offset, for simplicity, and the ones that (iii)
we consider as too difficult to obtain from a consumer-grade camera.

For the variable metadata, we survey existing camera systems in the literature to
determine parameter ranges that are typical for our application scenarios (excluding
unique systems for specialized use cases). The variable parameters are arranged into
“minimal” and “full” metadata. We consider minimal metadata as easy to obtain2 and
full metadata as more comprehensively include parameters often provided by the camera
manufacturer. For comparison, we derive three models, where each one is fed with
different metadata: one without any (w/o-Meta), one with minimal (Min-Meta) and
one with full metadata (Full-Meta).

In preparation to use the metadata as input for the neural network, each parameter is
first normalized to the range [0, 1] (using their value ranges in Tab. 4.1). The metadata
subset associated to its respective noise type is then concatenated with the output of
the corresponding global max pooling layer and passed into its FCB. Note that using
FCBs over the noise model itself to estimate the noise levels is: (i) fast (using a GPU),
(ii) allows us to train on real noise data that is not covered by the noise model, and
(iii) allows us to perform non-trivial feature-wise fusion with the feature maps from the
processed input image.

3. Unexpected Noise Quantification. In the proposed system (right part of Fig. 4.5),
we add a fourth FCB that quantifies unexpected noise, i.e., when the metadata does
not agree with the considered image noise model. If we ensure that image noise is only
generated inside the camera system (by preventing image pre- and post-processing) and
assume a radiometrically calibrated camera (including a correct determination of the
relevant metadata), there are two reasons for noise-metadata mismatch: (i) corrupted
metadata (e.g., by camera malfunctioning) or (ii) unmodeled noise sources (e.g., also by
hardware damages, or a general mismatch between the noise model and the real image
noise).

2Camera gain (digital gain for simplicity) and exposure time are typically configurable, while most
camera systems comprise a temperature sensor to approach dark current compensation.



60 Chapter 4. Camera Self-Health-Maintenance Framework

Specifically, we train this fourth FCB to quantify

ξM/I
.= σModel − σImage

(4.2)=
√︂

σ2
PN(M1) + σ2

DCSN(M2) + σ2
RN(M3)−

√︂
σ2

PN(M ′
1) + σ2

DCSN(M ′
2) + σ2

RN(M ′
3)

(4.3)

with ξM/I normalized to [−1, 1] for training, the total image noise σImage, the total
modeled noise σModel, and metadata sets M1, . . . , M3, and altered sets M ′

1, . . . , M ′
3

having a different randomly generated camera gain. The metadata sets Mi∈{1,2,3} are
only fed to the FCBs (corresponding to noise level σModel) while the altered sets M ′

i∈{1,2,3}

are used to corrupt the image (with corresponding noise level σImage). In this way, the
network learns to capture the mismatch between the metadata and the image noise in
ξM/I.

With all the aforementioned extensions, the number of network parameters slightly
increases, from 336k to 345k.

Training Details
We utilize an almost noise-free dataset with natural images (TAMPERE21 [BPE22]),
whose noise variance is ensured to be σ2 < 1. These images are first augmented by a small
random image intensity change of [−20, 20] DN and afterwards corrupted with noise
generated by the noise model of [KW14]. Each image patch is corrupted independently
with its own set of randomly generated variable metadata. In this way we generate
≈103k data tuples to train the estimators in a supervised manner. Our motivation to
train on simulated noise only is to cover a large extent of different metadata and to
keep the limited real noise data available for model evaluation. Further implementation
details and the training configuration can be found in App. B.2.

4.4 Decision and Control Policy

This section introduces an approach to determine the dependencies of a target application
(object detection) on image quality attributes (blur and noise) (Sec. 4.4.1). On this
basis, we detail a camera parameter adjustment routine to trade off blur and noise in
order to maximize application performance (Sec. 4.4.2).

4.4.1 Object Detection Sensitivity Analysis

We choose object detection as a representative modern image application of great
importance in various fields. And, as presented, we choose image noise and blur as the
main data quality indicators of the state of our imaging system.

Specifically, we use YOLOv4-416 [BWL20] and Faster R-CNN [Ren+15] as state-of-the-
art real-time object detectors (with pre-trained models and default settings, applied on
grayscale images).
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Figure 4.6: Sensitivity analysis of object detector performances for blur and noise. The
detectors are evaluated on corrupted images resulting in average precision (AP) scores. For
the true detection areas, corresponding patch-wise noise (σ̂) and blur ( ˆ︁MTF) estimations
are aggregated to medians (σ̃ and ˜︁MTF) and, together with the APs, added to performance
curves.

The goal is to determine object detection sensitivities empirically for different noise
and blur levels of considered root causes (Fig. 4.6). For the sake of simplicity, we do
not consider specific blur or noise sources in this section. For a condition monitoring
application, we require this performance curves to be available at runtime, so we perform
this analysis offline. It is also feasible to build or refine the performance curves iteratively
in an online approach, however, at the expense of controlled image blur/ noise.

Let us explain the offline procedure on the example of a fixed image blur level MTF
and noise level σ. As input we assume NI images {I}NI

i=1 with NGT ground truth object
detections {BGT}NGT

i=1 , and corresponding patch-wise blur (∪jk{ˆ︁MTFjk}NI
i=1) and noise

estimations (∪lm{σ̂lm}NI
i=1) estimations, where j, k, l and m address respective patches

(Fig. 4.6). First, both object detectors are applied on the images to gather estimated
detections {BD}ND

i=1. Second, these estimations are scored with the well-known average
precision (AP) metric [Eve+09]. We provide details to the AP calculations in App. A.1.

In a subsequent aggregation step, we determine the corresponding median noise and
blur estimations of all the respective image patches overlapping with the ground truth
object detections:

˜︁MTF .= median({ˆ︁MTFjk |ˆ︁MTFjk ∈ ∪jk{ˆ︁MTFjk}NI
i=1 ∧ Ijk ∩Bjk,GT ̸= ∅})

σ̃
.= median({σ̂lm | σ̂lm ∈ ∪lm{σ̂lm}NI

i=1 ∧ Ilm ∩Blm,GT ̸= ∅})
(4.4)

To bound the complexity, we quantize the estimation parameter spaces into bins with
σ̃ ∈ {0, 5, . . . , 30}DN and ˜︁MTF ∈ {0.1, 0.2, . . . , 1.0}.

Finally, the resulting input-output tuples (σ̃, AP), (˜︁MTF, AP) or (σ̃, ˜︁MTF, AP) are
collected as performance curves (IOPCs).
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4.4.2 Optimizing Object Detection by Trading off Blur and
Noise

We now demonstrate how one can use the online blur/ noise estimators and the offline
empirical input-output performance curves to control image quality and hence optimize
the system’s performance (Fig. 4.1). We focus on actions tackling linear motion blur
(LinMB) here because object detectors are substantially more sensitive to LinMB than
to noise (cf. Sec. 7.1), and there is abundant motion blur in standard datasets like
Udacity (Fig. 5.6).

We make the following considerations knowing the camera’s physical process. The
main controllable influencing factor of motion blur is the camera’s exposure time texp

(Sec. 3.2.1.2). We exploit the relations

texp ∝ I and texp ∝ MB ∼ MTF−1 ∼ AP,

ISO ∝ I and ISO ∝ σ ∼ AP−1,
(4.5)

where ISO denotes the camera ISO gain and AP is the average precision of the object
detector.

Changing texp by a factor
α

.= told
exp/tnew

exp (4.6)

equally changes the aggregated amount of light intensity I (assuming sensor linearity)
and also MB by the same factor (assuming constant relative speed between camera and
scene). To compensate for the changed light, we may alter the camera ISO gain by
factor α, which likewise changes the noise level σ. This relationship depends on the
camera sensor architecture and whether the analog or digital signal is amplified [Igu19].
We assume digital amplification as the worst case and thus a linear relation. Consider
that texp ∝ σ2

DCSN during optimization as well (cf. Sec. 3.2.2.2).

Hence, we can model the problem as an optimization one, i.e., determining α from the
IOPCs to maximize the object detector’s score:

α⋆ = arg max
α

AP(α σ̂, α MBL(ˆ︁MTF)). (4.7)

Note that the relation MB ∼ MTF−1 may be non-linear, so we optimize the MB size
MBL that corresponds to an estimated MTF.
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4.5 Discussion

Let us briefly discuss the framework design based on its individual components: the
condition estimation (noise, noise sources, and blur estimation) and the decision &
control units.

4.5.1 Condition Estimation

Here we first address the proposed blur and noise (source) estimators. Subsequently, we
discuss on their applicability to general camera systems and consider alternative Sensor
AI approaches. Lastly, we reference a method for blur source estimation.

Blur/ Noise Estimation
In most approaches, blur/ noise estimation and deblurring/denoising are inseparable.
One the one hand, this limits the application to fight symptoms only and on the
other hand dedicated blur/ noise estimation comes with an overhead of computational
cost. This holds especially for the used traditional blur estimators that rely on the
maximum-a-posteriori framework, which prevents real-time capability and thus limits
their comparability to the proposed learning-based approach (cf. Sec. 5.2.1).

On the downside, machine learning methods are still considered black boxes, despite
recent advances in analyzing training and inference procedures [TG20]. As a consequence,
they can still produce unexpected results, for instance, in the case examples not seen
during training (out-of-domain examples), and thus decrease a reliable operation of
related mobile machines. However, researchers propose techniques to quantify and
decrease uncertainty of learning-based methods [Gaw+21]. To this end, we evaluate a
temporal aggregation of estimation results in our experiments (Sec. 5.6).

Noise Source Estimation
Let us consider an alternative approach to fuse the input image and the metadata
information: It would also be conceivable to input both at the first layer of the CNN and
to omit individual network branches, that is, to neglect the integration of prior knowledge
that relates certain metadata to independent noise sources in the network’s architecture.
In this way, the network could learn more powerful combined image–metadata features
and the network size could be reduced. However, as indicated in the work of [Wil+22],
prior knowledge about the physical processes helps the network to learn the desired
model and helps to counteract its black-box character.

Generality
The proposed noise and noise source estimators are applicable to sensors that follow the
noise model [KW14] for which they were trained, i.e., standard CCD and CMOS sensors
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introduced in Sec. 3.1.1. Deviating sensor components (e.g., germanium photodiodes
[Kau+11]) can lead to different noise statistics (e.g., fundamentally larger dark current
noise [Kau+11]). In addition, different noise types can be expected for sensors that do not
rely on the photoelectric effect to sense photons (e.g., film grain noise for photographic
film [NS78] or thermal fluctuation noise for microbolometers [Ric94, p. 8]). Both limit
the applicability of our estimators.

The blur/MTF estimation is not limited to a camera system design, as it operates on
the image plane and does not rely on model assumptions. The estimation procedure
can also be easily extended to cameras with multiple spectral bands by converting the
resulting multi-channel image into a grayscale one or by evaluating each band separately.
From an application perspective, MTF estimation relies on scene objects to serve as
image features. As a result, applications in scenes with large homogeneous areas (e.g.,
under- or over-illuminated areas, sky, space, underwater areas) limit the applicability.

Sensor AI
We introduce different approaches to combine data-based and physics-based paradigms
(Sensor AI) in Sec. 2.3.2. On this basis, all of our proposed learning-based estimators
can be classified as initialization combination methods. Moreover, our noise source
estimator also belongs to the architecture class. There are alternative ways to combine
both paradigms as well.

A different approach would be to integrate physical relationships into the loss functions
at training time, for example, one could add regularization terms to encode relationships
between the blur/ noise levels and the corresponding camera metadata explicitly. On the
one hand, previous studies have shown this could help to learn the desired physical model
and may reduce needed training data [Wil+22]. On the other hand, it would prevent the
possibility to fine tune on real-world data that is not covered by the respective physical
model.

Blur Source Estimation
The problem of blur source estimation is not covered in this thesis. We refer the
interested reader to the study of Tiwari et al. [Tiw+14] for an existing approach that
relies on blur pattern analysis in the frequency spectrum of an image. They propose to
estimate defocus blur radius, motion blur length, and motion blur angle from images
that are corrupted by joint defocus and motion blur. For the first two parameters, they
employ a generalized regression neural network that inputs a pre-processed image and
for the latter parameter a simple processing of a radon transformed image. However,
the authors evaluated their approach only on bar code images with simulated blur.
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4.5.2 Decision and Control Policy

In the following, we address the limitations of considering only two image quality
properties (blur and noise) and one target application (object detection) in our framework.
Analogously to Sec. 4.5.1, we further discuss on the applicability to general camera
systems.

Object Detection Sensitivity Analysis
The effectivity of the framework is limited in how careful the training dataset is created.
This includes how well the training dataset covers the target application domain, how
diverse the data is within the application domain, and how large the simulation-to-reality
gap is in the case of simulated image quality attribute effects [Rew+20].

Moreover, target application performance can also depend on further image quality
attributes besides blur and noise. The studies [Mic+19; HD19] benchmark exemplary
image effects for object detection (such as image intensity changes that we bypass by
compensating texp changes with the ISO gain). Each additional attribute we consider
in the sensitivity analysis increases the problem’s domain significantly (the necessary
data to analyze increases exponentially). A solution to this dimensionality problem
could be to investigate conditional independencies of image quality attributes on the
estimators and on the target application performance, so that attributes do not need to
be analyzed in combination (cf. [Dev11, p. 83]). Moreover, the sensitivity analysis is
highly parallelizable – each image data subset that corresponds a fixed image quality
attribute value configuration can be computed independently.

Extension to multiple Target Applications
Our proposed decision & control policy assumes that the camera images are used
exclusively for object detection, i.e., a single target application. However, mobile
machines typically employ camera images for multiple high-level applications to
support their actions at runtime (navigation, environment mapping, etc.). Our
proposed framework can be generalized to optimize multiple application performances in
combination. Therefore, we perform the sensitivity analysis for all desired applications
separately (corrupted images can be re-used within the same application domain). The
optimization in (4.7) can then be extended to

α⋆ = arg max
α

n∑︂
i=0

λiMi

(︂
α fi(σ̂), α gi(ˆ︁MTF)

)︂
(4.8)

where positive factors λi control the weighting of respective high-level application metrics
Mi (assuming larger scores to be better) and proxy functions fi, gi : R→ R to ensure
linear relationships α ∝ fi ∝ gi. This extension does not increase the computational
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cost at runtime, since α⋆ can be calculated offline for each bin of blur/ noise levels and
stored in look-up-tables.

Generality
The underlying assumptions of the proposed decision & control unit are stated in
Sec. 4.4.2: (i) the produced image intensity I is proportional to the exposure time
texp, (ii) camera sensor linearity, (iii) constant speed between camera and scene, and
(iv) digital ISO gain. A different relationship for (i) would result in changed relations
in (4.5) and hence a different calculation of α in (4.6). The relations in (4.5) require
only that texp is a function of I and that the relationship between the two is known
(e.g., empirically determined). Likewise, the same relations would change for (ii) non-
linear camera sensors (such as sensors with activated gamma correction post-processing
or logarithmic response CISs [Kav+00]) and (iv) a non-digital-only ISO gain (e.g., a
combination of analog and digital gains). If the (iii) relative speed between the camera
system and scene objects cannot be kept approximately constant in the case of occurring
motion blur, the framework may trigger camera parameter changes repeatedly within
a short time. An example could be an autonomous driving scenario with oncoming
traffic, where vehicles pass faster than the camera parameters can be adjusted. If this
behavior is undesired, approaching vehicles in the oncoming lane could be neglected in
the framework analysis (e.g., through lane detection and filtering).

4.6 Summary

This chapter introduced our proposed camera self-health-maintenance framework for
autonomous mobile machines.

Section 4.1 briefly recapitulated the objectives and the scope of the framework, and
Sec. 4.2 provided a high-level overview of the framework’s offline training and online
testing parts, and its basic components: the condition estimation and the decision &
control units.

Subsequently, Sec. 4.3 first introduced the condition estimation unit. There we
distinguished between two cases: total blur/ noise cases and multiple cases. For
the first case, we presented improved learning-based total blur/ noise estimators for
the framework and traditional approaches for evaluation. On this basis, we further
proposed a novel noise source estimation approach that combines the learning-base and
the physical-based paradigms.

In addition, Sec. 4.4 presented the decision & control unit. We first considered the
empirical sensitivity analysis of object detection performance with respect to blur and
noise to form input-output performance curves. These curves were then employed to
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determine camera parameter adjustments on the basis of online noise/ blur estimations
in order to optimize object detection performance.

Finally, we briefly discussed the framework design (Sec. 4.5). First, limitations of the
suggested estimators and an approach for blur source estimation were presented. Next,
we considered extensions for the decision & control unit, specifically, for additional image
quality attributes and multiple target applications. Lastly, the general applicability of
both units and different Sensor AI approaches were addressed.

In the following chapters, we evaluate the reliability of the proposed blur and noise
estimators (Ch. 5), and the noise source estimator (Ch. 6). The practical application of
the framework on mobile hardware and its analysis in terms of the required computational
cost are subsequently evaluated in Ch. 7.





CHAPTER 5

Evaluation: Blur and Noise
Estimation

This chapter covers the evaluation of the proposed learning-based and traditional blur
and noise estimators from the framework’s condition monitoring module. We first
introduce employed synthetic and real-world corrupted datasets (Sec. 5.1). Subsequently,
we evaluate blur and noise estimators on respective isolated corruptions (Secs. 5.2 and
5.3), and on simultaneously occurring corruptions (Sec. 5.4). On this basis, we propose
two improvements: blur estimation in the presence of high noise (Sec. 5.5) and noise
estimation with reduced uncertainty (Sec. 5.6). Finally, limitations and further potential
improvements are discussed (Sec. 5.7) and the chapter is summarized (Sec. 5.8). This
chapter is partially published in [Wis+23b].

All experiments are executed on an Intel Xeon W-2145 CPU and an NVIDIA Quadro
RTX 6000 GPU, with the neural networks running on the GPU.

5.1 Datasets

The proposed noise and blur estimators are evaluated on five datasets: three with
simulated blur and noise corruptions (Sec. 5.1.1), and two with real-world defocus and
motion blur, respectively (Sec. 5.1.2). Note that real-world noise evaluations are part of
Ch. 6.

5.1.1 Simulated Corruptions

We employ one simulated and two real-world datasets: Sim, KITTI [GLU12] and
Udacity [Uda16] (Fig. 5.1a).

We create Sim with the simulator [Irm+19] to provide accurate ground truth for blur
and noise estimation. Sim comprises 1000 images of a village environment acquired
from different viewpoints and includes vehicles, such as cars and bikes. From KITTI
we use the annotated object detection sub-dataset (with preceding frames), and from
Udacity we use sub-dataset #2. We subsample KITTI and Udacity for two reasons:



70 Chapter 5. Evaluation: Blur and Noise Estimation

Sim Udacity

KITTI

(a) Datasets

Original
Motion Blurred

45°0° 90° 135°

(b) Motion Blur Kernel Rotation

Figure 5.1: Datasets with simulated corruptions. (a): Exemplary images from datasets
Sim (896×768 px), Udacity (1920×1200 px) and KITTI (1242×375 px). (b): We mitigate
the influence of motion blur direction by evaluating four rotated versions of each kernel
separately. For each image and each kernel version, we calculate the average mean absolute
error (AMAE, defined in (5.1)) from the estimated blur ( ˆ︁MTF) and the associated ground
truth label (MTFGT), and use their average (AMAE) as final result.

to reduce processing time and to remove (in all conscience) clearly visible blur/noise
corrupted images that would bias estimation results. To this end, we pick 1000 images
per dataset for noise estimation and 150 images for blur estimation, and match these
numbers on Sim. For blur, we only use image patches containing detected objects of
interest. However, a residual risk of corruption in the natural images remains, so we
further reject ≈ 5 % outliers with respect to the blur and noise estimation error scores in
the experiments (using the modified z-score with default values from [IH93, pp. 11–13]).

All datasets are synthetically corrupted with controlled amounts of noise and blur using
the models of Sec. 3.2.

Noise
Following the “real noise” studies in [AB18], we generate noise with levels
σ ∈ {5, 10, 15, 20, 25}DN. We apply default CMOS camera parameters from [KW14]
and study noise (i) in isolation or (ii) in combination. (i) For isolated DCSN and
readout noise studies, we set the temperature to T = 330 K and the exposure time to
texp = 0.1 s. (ii) For the combined noise case, we include all noise sources with random
T ∈ [300, 330] K and texp ∈ [0.002, 1] s to emphasize different noise components in each
image. In order to reach the desired σ, we amplify the (raw) noise in both settings.

The datasets yield the following number of non-overlapping image patches (128× 128 px)
per noise level: 42k (Sim), 18k (KITTI), and 135k (Udacity).

Blur
We synthesize blur kernels of size d ∈ {3, 7, 11, 15, 21} px. d is the diameter for defocus
kernels or the approximate path length for motion blur kernels. Defocus blur kernels are
calculated analytically. Motion blur kernels are generated using [Bor20], distinguishing
between linear motion kernels (motion intensity parameter of [Bor20] set to 0) and
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non-linear ones (parameter set to 1.0), and manually selecting the kernels that satisfy
the target d. We mitigate the influence of motion blur direction by evaluating four
rotated versions of each kernel separately (rotating them with angle α ∈ {0, 45, 90, 135} ◦

counterclockwise, see Fig. 5.1b).

All datasets provide about 600 non-overlapping image patches (192 × 192 px) per
investigated blur kernel.

Combined Blur and Noise
We further propose two use cases for combined blur and noise occurrences: (i) Defocus
blur and DCSN (Defocus + DCSN) that might arise at high temperatures (as caused by
direct Sun illumination) and with defocus induced by material stress in the optics setup
[Küh+20; KBE21], and (ii) photon noise and motion blur (Photon + Motion) due to
high exposure times and signal amplification, typical of low light conditions.

We analyze the same image patches as for the isolated blur and noise cases, respectively.

5.1.2 Real-World Corruptions

In addition to the synthetically corrupted datasets, we propose two self-created image
datasets with real-world defocus and motion blur, respectively. The datasets are referred
to as DEFCARS (“DEFocused CARS”) and MOTCARS (“MOTion blurred CARS”).

Defocus Blur
The DEFCARS dataset contains 104 images of three different cars in an open parking
lot. We target to create the same defocus blur kernel sizes as for the synthetically
blurred datasets (cf. Sec. 5.1.1). To this end, we vary the camera focus distance dO

and fix the other defocus blur parameters specified in the defocus blur model (3.7).
In order to induce the kernel sizes within manageable distances dO (the parking lot
scene allows a maximum of dO = 6 m), we use a LEICA V-LUX Typ 114 [Lei16]
camera with a lens system that provides a wide range of adjustable focal lengths f to
trade-off dO with f for a fixed kernel size d. With the camera’s pixel pitch dp = 2.4 µm,
an aperture diameter DA = 6.03 mm, and an out-of-focus object distance dB = 6 m,
we calculate a focal length f = 21.11 mm and approximate focused object distances
dO ∈ {6.0, 4.5, 3.4, 2.7, 2.2, 1.8}m from (3.7) to produce the desired blur kernel sizes d.
Tab. A.1 provides details to the LEICA camera system.

Figure 5.2 summarizes the image acquisition procedure. First, we measure the distances
dO and dB between the center of the camera lens system and a car’s number plate, and
position the camera on a tripod at dB (Fig. 5.2a). Second, we place the Siemens star at
a distance dO and focus the camera to it by manually triggering the camera’s auto-focus
(Fig. 5.2b). Third, we keep the camera focus and image the car with the Siemens star
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Figure 5.2: Real-world defocus blur dataset DEFCARS. (a): Camera system on a tripod
and distances that correspond to different blur kernel sizes measured from the object of
interest (car). (b): Siemens star used as target to manually focus the camera to a specific
distance. (c): With camera focus set, the object of interest is recorded with the Siemens
star on it to determine the ground truth defocus blur.

on it (Fig. 5.2c). The Siemens star is used to determine the ground truth defocus blur.
We repeat this procedure for each measured dO and finally obtain 52 images (about 4k
car image patches) for blur estimation and 52 images for camera focusing. For each
image acquisition, the camera height is adjusted so that the center of the image aligns
with the center of the Siemens star or the center of the license plate, respectively. All
images are evaluated in raw grayscale format.

The top row of Fig. 5.3 depicts our defocus blur ground truth determination in five
steps: (1) In case the unblurred imaged Siemens star center is ≈ 1 px large, the resulting
CoC of the blurred Siemens star can be approximated visually. (2) Since this procedure
is subjective and thus inaccurate, we provide a minimum and a maximum CoC with
its diameters as blur kernel sizes. (3) Next, we apply the Siemens star image to the
resolving power tool and determine the ground truth MTFGT using the Siemens star
method (Sec. 3.3.1.2). (4) The PSF can be directly derived from the MTFGT by plotting
the reciprocal MTF value at the Nyquist frequency for each analyzed radius from the
Siemens star center (assuming a Gaussian-shaped and a rotationally symmetric PSF)
[Mei+20]. (5) To verify the results of step 2, minimum and maximum blur kernel
diameters are further estimated on the PSF (the resolving power tool provides an
interactive plot in pixel units). We only keep images where the mean blur kernel sizes
from steps 2 and 5 differ by at most 10% or 1 px (whichever is larger).

Motion Blur
The MOTCARS dataset contains 25 carefully selected raw grayscale images of three
cars (75 car image patches) in a parking garage recorded with an Allied Vision Prosilica
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Figure 5.3: Ground truth determination of real-world defocus blur (top row) and motion
blur (bottom row). (1): Siemens star image acquisition. (2): Manual minimum/maximum
blur kernel size estimation (circle diameter for defocus blur and ellipsoid length minus
its width in the case of motion blur). (3): Ground truth MTFGT determination with
Siemens star method or SLE method, respectively, using the resolving power tool. (4):
PSF approximation from MTFGT. (5): Verification of results from step (2) on the PSF.

Prosilica GC1380H

(a) Cam on Robot

Siemens Star
(1x1m)

Objects of
Interest

(b) Experimental Setup

Moving Direction

(c) Induce Motion Blur

Figure 5.4: Real-world motion blur dataset MOTCARS. (a): Camera system mounted on
a moving robotic platform. (b): Siemens star positioned alongside the cars of interest for
ground truth motion blur determination. (c): Robot moves parallel to cars with different
exposure times to induce motion blur.

GC1380H camera [Gmb21] attached on a Jaguar-4x4-wheel mobile robotic platform
[Dr 21] (Fig. 5.4a). The robotic platform enables a controllable constant movement to
create realistic motion blur in mainly horizontal image direction (Fig. 5.4c). The camera
uses a fixed-focus lens system (details in Tab. A.1) and is focused on its hyperfocal
distance of H ≈ 1.43 m (3.9) to aim for defocus blur of d ≤ 1 px for distances beyond
H/2. In order to induce different motion blur sizes, we set the camera exposure time
to texp ∈ {4, 6, 7, 8, 10}ms and fix other camera parameters. These exposure times are
selected manually to avoid excessive under- and overexposure in the images. Note that
images with higher exposure times are not necessarily brighter, as the lighting conditions
change between the image acquisitions.

Analogously to the DEFCARS dataset, we image a Siemens star for ground truth
determination. Specifically, we place a Siemens star at the same distance as the cars
(Fig. 5.4b), move the robot with a constant speed parallel to the cars, and record images
of the scene. This procedure is repeated with the different texp.
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The ground truth motion blur determination follows the same approach as for DEFCARS,
with two changes (bottom row in Fig. 5.3): In steps 2 and 5, we use an ellipsoid to fit the
Siemens star center blur [Mei+20]. The ellipsoid expansion h in motion direction includes
both the defocus size ddefocus and the motion blur size dmotion with h = ddefocus + dmotion.
The ellipsoid size w perpendicular to the motion direction contains only defocus blur
(i.e., w = ddefocus). Hence, dmotion = h−w. The second change is that we apply the SLE
method within the resolving power tool in step 3 (see Sec. 3.3.1.1). For more robustness,
we analyze two opposite edges of each Siemens star at about θ ∈ {5, 185} ◦ with respect
to the image’s vertical axis and calculate their mean MTF in horizontal image direction.

5.2 Blur Estimation

We assess blur estimation accuracy in terms of the average mean absolute error (AMAE)
between a median MTF estimation (˜︁MTF) and ground truth (GT) samples at eight
frequencies (fi) each in horizontal (H) and vertical (V) image directions (w):

AMAE .= 1
2

∑︂
w={H,V}

MAE(w),

MAE (w) .= 1
8

8∑︂
i = 1

⃓⃓⃓
MTFGT

w (fi)− ˜︁MTFw(fi)
⃓⃓⃓
.

(5.1)

The motivation behind this metric is addressed in Sec. 5.7.

We further consider the variance of the median MTF estimation (in this context, the
range between minimum and maximum MTF estimations) as an indicator of robustness
or uncertainty, respectively.

5.2.1 Simulated Blur

Let us first apply the blur estimators to the uncorrupted datasets, subsequently examine
accuracy and robustness using the corrupted datasets, and finally their computational
performances.

Uncorrupted Datasets
Median, minimum and maximum estimations (rejecting≈ 5% outliers) are first calculated
for the uncorrupted datasets in Fig. 5.5. In the Sim case, we determine MTFGT

by evaluating a Siemens star (generated in the simulator) with the resolving power
tool [Mei20]. For the real-world datasets however, there are no known GT values, but
we expect similar sharp images and hence we plot the estimations for comparison.

Analyzing Fig. 5.5 we make five major observations: (i) The CNN estimates a nearly
ideal MTF with hardly any variance in the Sim case and provides similarly confident
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Figure 5.5: Blur estimation of uncorrupted datasets (i.e., “ground truth”). Median,
minimum and maximum blur estimations of the uncorrupted datasets (depicted by sampled
points with interpolation in between and the shaded areas, respectively; horizontal direction
only).

estimations for KITTI. (ii) Contrary to expectations, the CNN estimates a more
uncertain (less robust) and lower MTF for Udacity. Concerning this, we found challenging
effects that influenced the estimation, like frequent windshield reflections and regular
slight motion blur in the moving direction, despite our pre-selection of images. The
traditional estimators (GBB/PMP) are also affected, producing lower median estimations
than for KITTI. (iii) The variances of GBB/PMP shrink from Sim, via KITTI towards
Udacity. (iv) GBB performs noticeably worse in Sim. We ascribe its low median and
large variance to the lack of image gradient diversity of the Sim dataset (GBB relies on
gradients, but strong horizontal edges are scarce in Sim). (v) PMP produces generally
low estimations and its maxima are far from the GT (Sim) or expected GT (real-world)
values.

Corrupted Datasets: Accuracy
Next, we corrupted the datasets with the generated blur kernels and used the sampled
MTFs of the kernels as ground truth. The blur AMAE scores are summarized in Tab. 5.1.
We make the general observation that PMP and GBB —unlike the CNN— usually
perform worst for small (3 px) and large (21 px) kernel sizes, respectively. This often
manifests in undesired artifacts like smear or cuttings in these estimations (Fig. 5.6b).
The decreased performance for small blur cases is in agreement with the results from
Fig. 5.5, where no additional blurring was added. There, GBB and particularly PMP
produce lower median estimations and higher variance for Sim/KITTI, and lower
variance for the already corrupted Udacity. Since GBB/PMP follow a coarse-to-fine
approach, more internal iterations would enhance the level of detail of the kernel and
thus produce smaller errors (at the expense of computational cost). On the other hand,
larger kernel estimations improve as larger image patches are used. Therefore, the
authors of GBB [Bai+18] suggest kernels to be much smaller than the image to have a
well-defined blur estimation problem. We further regularly observe larger estimation
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Defocus Blur Linear Motion Blur Non-linear Motion Blur

Size [px] 3 7 11 15 21 3 7 11 15 21 3 7 11 15 21
Kernel

Sim CNN 0.7 1.8 2.1 0.5 1.1 6.3 10.3 9.4 9.4 7.7 2.9 12.2 11.4 19.5 25.0
PMP 13.9 5.2 3.0 5.3 6.7 37.2 17.8 13.3 7.3 16.6 21.8 14.0 13.8 9.8 11.5
GBB 2.7 3.8 6.3 8.4 17.6 31.6 11.4 7.7 7.3 14.5 17.7 8.3 8.2 9.7 15.0

KITTI CNN 0.3 5.3 2.7 2.3 0.7 3.4 10.9 9.9 9.1 6.6 4.0 14.1 11.2 14.1 9.2
PMP 5.8 2.3 1.5 2.9 4.8 37.2 12.2 8.7 4.1 9.5 22.5 7.9 7.3 5.2 4.2
GBB 3.2 2.9 2.6 2.3 9.3 13.4 5.8 5.3 4.7 7.1 8.5 4.0 5.2 3.5 3.7

Udacity CNN 2.7 0.9 0.6 0.3 1.4 16.2 10.8 9.8 11.4 7.9 9.6 10.3 11.9 16.0 19.2
PMP 15.1 5.6 4.0 3.9 3.9 34.3 14.2 11.5 8.1 12.4 23.5 12.0 11.0 8.1 7.6
GBB 2.8 8.8 8.6 8.9 23.2 21.7 12.2 8.5 12.2 21.1 10.6 10.1 11.6 13.5 16.6

Table 5.1: Blur estimation of synthetically corrupted datasets. Ground truth blur
kernels and average mean absolute errors (AMAE) of horizontal and vertical median blur
estimations [%]. The best results per kernel and dataset are highlighted in bold.
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Figure 5.6: Undesired artifacts in blur estimation. (a): Slight motion blur of 3 px in
moving direction (1), light reflections (2) and two examples of severe motion blur (3, 4).
(b): Typical GBB/PMP kernel estimations with undesired artifacts (compare to respective
ground truth kernels from Tab. 5.1).

errors for Udacity. This confirms that Udacity is already corrupted by blur and/or the
estimations are influenced by challenging conditions (Fig. 5.6).

Apart from the already mentioned small/large kernels, all methods estimate defocus well
(Tab. 5.1). Nevertheless, the CNN delivers the most accurate results. GBB considers
the common simplification of Gaussian blur for defocus, whereas PMP does not and
tends to perform slightly better than GBB.

The CNN also estimates linear motion blur comparably well but (except for small/large
kernels) GBB tends to produce the smallest errors.

Non-linear motion estimation results (also in Tab. 5.1) differ for the CNN method,
which tends to produce larger errors towards the larger (and more complex) kernels
compared to the traditional estimators and the linear case. We interpret this as a larger
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uncertainty and conclude that the CNN might not be appropriate for estimation of
complex non-linear motion kernels. In contrast, the scores of GBB/PMP are more
accurate among the different kernels and datasets (with GBB a bit better). This slightly
better motion blur estimation performance of GBB compared to PMP is consistent
with the experiments in [Bai+18], where PMP is compared to the work of Pan et
al. [Pan+17a] that first proposes a dark channel prior.

Corrupted Datasets: Robustness
The MTF graphs associated with Tab. 5.1 are shown in Figs. B.1, B.2, and B.3 (for
the sake of clarity and readability, these are located in the appendix), which we use to
assess the robustness of the blur estimators.

For all blur types, the first general observation is that if an estimator produces results
with low variance, it also shows high accuracy. It can further be seen that PMP and
GBB are most uncertain for small kernel sizes d = 3 px (PMP and GBB) and large sizes
d = 21 px (GBB only), which is consistent with the observations on their low accuracies.

In the case of defocus blur (Fig. B.1), the CNN shows almost no variance, corresponding
to its high accuracy (except for Udacity d = 3 px with its initial blur, cf. previous
findings on accuracy). Comparing the three methods, GBB shows the highest variance,
followed by PMP.

When it comes to linear motion blur (Fig. B.2), the CNN and PMP variances tend to be
higher for less accurate estimates. However, GBB shows mismatches between accuracy
and variance (higher accuracy with higher variance, for instance, in Sim (d = 21 px),
KITTI (d ∈ {11, 21} px), and Udacity (d ∈ {11, 21} px)). Apart from the small and
large kernel cases, PMP produces the lowest variance, followed by GBB and CNN.

For non-linear motion blur (Fig. B.3), CNN shows higher variance for the more complex
kernels (d > 3 px), which agrees with the previous finding that the CNN is not suitable
for estimating complex non-linear kernels. At this point, CNN’s variances do not
match its accuracies. The same is true for GBB, whose variances tend to increase with
increasing kernel size (d ≥ 11 px for Sim and for d ≥ 15 px otherwise). In contrast, PMP
has relatively low variances for d > 3 px, corresponding to its higher accuracies.

All results show that larger uncertainties are typically associated with lower accuracy.
In particular, no estimator yield high certainty at low accuracy. For this reason, we
recommend to evaluate the variance together with the median for short time intervals
as an indicator of the expected accuracy of an estimator (assuming constant blurring
within this time interval).

Computational performance
In order to assess the real-time capability of each blur estimator, we perform intermediate
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Defocus Blur

Size [px] 20–25 25–30 30–35 35–40 50–55 >100

Car #1 CNN 12.9/13.0 12.6 16.5 - - 7.0
PMP 11.5/10.4 10.5 12.9 - - 11.1
GBB 13.9/13.1 16.0 14.8 - - 12.5

Car #2 CNN - 9.3 10.5/6.3/7.8 10.1 - 5.4
PMP - 4.3 2.9/3.9/3.6 5.9 - 8.8
GBB - 3.1 1.5/3.5/3.3 4.9 - 12.9

Car #3 CNN - 11.4 9.0/5.3 3.8 4.9 5.4
PMP - 6.5 3.9/3.4 3.8 7.6 11.0
GBB - 5.1 2.6/4.0 3.5 7.4 12.3

(a) DEFCARS defocus blur estimation results
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Figure 5.7: Defocus blur estimation on real-world corrupted DEFCARS dataset. (a):
Average mean absolute errors (AMAE in %). The best results per blur size bin and
object (car) are highlighted in bold. (b): CNN overestimates real-world defocus blur in
DEFCARS data.

runtime measurements at this point; a more comprehensive analysis is provided in Ch. 7.
We measure the following mean runtimes: 13.07 s (GBB, per image patch), 12.69 s (PMP,
per image patch), and 0.24 s (CNN, per input batch of four images). The CNN executes
more than ×50 faster than GBB/PMP and moves in the realm of real-time capability.
We also found that CNN requires 98% of its runtime for serial data pre-processing, which
can be improved by vectorization (details in Sec. 7.4). Although the CNN itself executes
on a GPU, the running times of current GBB/PMP implementations (running on the
CPU) are too long to be practical for a condition monitoring application (especially for
multiple image patches).

Summary
In summary, the GBB and PMP methods are in general neither accurate nor robust
for blur-free or small/large blur kernel estimation on the image patch sizes used, and
available implementations are not real-time capable. Nevertheless, they provide the
best estimates for medium-sized linear and non-linear motion blur kernels. The CNN
method, on the other hand, might not be suited for complex non-linear motion kernels,
but performs well in terms of defocus, linear motion and real-time requirements. If
non-linear motion blur can be circumvented (e.g., with short exposure times or slow
motions), the CNN method can be employed for monitoring a camera’s condition. For
more robust estimates, we recommend using median statistics over small time spans
and the variance to assess estimation uncertainty.

5.2.2 Real-World Defocus Blur

The real-world defocus blur estimation results are summarized in Fig. 5.7 and reported
as non-aggregated AMAE values per image. Supplements are provided in App. B.1.2
(Fig. B.4).
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Figure 5.8: Overestimation of defocus blur in overexposed images. (a): Exemplary image
crops acquired from car #1 and car #3 scenes with a defocus blur size of d ∈ [30, 35] px.
The car #1 image is strongly overexposed (see corresponding histogram below with a
peak at 255 DN), the car #3 image is less overexposed by comparison. (b): Corresponding
MTF estimations. Missing intensity values due to overexposure indicate a lower degree of
blur, i.e., higher MTF values, which leads to overestimation.

We first note that the visually determined ground truth kernel sizes are significantly
larger than the calculated ones provided by the theoretical model (cf. Sec. 5.1.2 with
Fig. 5.7b). These differences are mainly caused by a model deviation from reality and
measurement inaccuracies. The model deviation is in agreement with the results of Seo
[Seo20], who compared the blur from the thin lens model to a similar camera system
(Nikon D300S [Nik23]) and stated that “[...] the discrepancy between the theoretical
blur amount and the blur amount of the DSLR camera was found to be non-trivial”.
However, the reasons are not identified. Potential lens system model deviations and
further reading are provided in Sec. 3.4.1. Measurement errors have the greatest relative
impact on the lens system’s side, since a small deviation from the true optical center of
a lens system results in different dI and dO in (3.7). As opposed to a single lens, the
optical center of a multi-lens system can differ from the center of the lens system we
assumed [Hec17, p. 169, pp. 178–181]. To cluster our defocus blur estimation results, we
bin the kernel sizes into six categories.

When it comes to blur estimation accuracy, we make four major observations on Fig. 5.7:
(i) Although the CNN is trained on defocus blur sizes d ≤ 21 px (cf. Sec. 4.3.1), its
estimation accuracy is comparable to the ones of GBB and PMP, suggesting that
CNN learned to generalize for d > 21 px. (ii) CNN generally produces higher AMAE
scores compared to GBB/PMP and to the results on synthetically corrupted datasets
(Sec. 5.2.1). This is due to the original supervised CNN training, where the CNN
only learned the corruption blur, but not the initial blur in the uncorrupted images
that is introduced by the camera system (cf. [Bau+18]). This makes the CNN prone
to overestimation (Fig. 5.7b). Note that this additional camera blur is part of the
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determined real-world defocus ground truth but not part of the ground truth of the
synthetically blurred datasets. (iii) Estimation errors of GBB and PMP are comparable
to those of the simulated experiments, but increase only for d ≥ 50 px, while they
increase for d = 21 px in simulated blur experiments. This supposedly overall larger
kernel sizes in DEFCARS result from the camera sensor’s smaller pixel pitch1. In order
to compare a blur size d(c1) with d(c2) from two camera systems c1 and c2, the following
transformation has to be applied (cf. (3.7)):

d′(c1) =
d(c1)d(c1)

p

d
(c2)
p

, (5.2)

with d′(c1) being the blur size of c1 in the coordinate system of c2 and the respective
pixel pitches d(c1)

p and d(c2)
p . That is, a blur size of, for instance, 21 px in KITTI

data acquired with a camera sensor having dp = 4.65 µm [GLU12; Aud23] would be
comparable to a DEFCARS blur size of ≈ 41 px, which is close to where the GBB and
PMP blur estimation errors start to increase in Fig. 5.7a. (iv) All estimators yield higher
estimation errors for images of car #1. That is because these images are overexposed
(Fig. 5.8a), which was not mitigated by the camera’s default automatic exposure control.
Overexposure results in a loss of grayscale values generated by the blur process, which
are therefore important for estimating blur. In turn, the missing grayscale values indicate
a lower degree of blur, i.e., higher MTF values, which were produced by all estimators
(Fig. 5.8b). We expect the same effect for underexposed images.

Summary
In real-world defocus estimation, CNN performs generally less accurate than GBB and
PMP as it does not account for initial blur of a camera system. This error can be
reduced in a re-training to enable a camera-agnostic monitoring. However, PMP and
GBB are still inferior to CNN in estimating large defocus blur sizes. The experiment
also reveals that all estimators are susceptible to overexposure in that they estimate
lower blur. Therefore, image intensity should also be taken into account for reliable blur
estimation in a condition monitoring.

5.2.3 Real-World Motion Blur

Real-world motion blur estimation results are summarized in Fig. 5.9 and supplemented
by the appendix Fig. B.4. Results are reported in median MAE scores for the horizontal
image direction in binned categories for the determined motion blur sizes.

We notice three aspects: (i) All blur estimators generally produce higher errors than
in the simulated blur experiments (Sec. 5.2.1). This is in accordance with the real-
world defocus blur results for car #1 and comes from severe over- and underexposure

1Note that our MTFs are specified in pixel units and are thus relative to the pixel pitch (cf. Sec. 3.3.1).
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Motion Blur

Size [px] 1–4 4–6 6–10 12–16 16–20

Car #1 CNN 11.9 16.4 10.6 22.1 21.7
PMP 30.7 23.8 25.3 15.4 18.5
GBB 7.4 16.3 14.9 32.3 12.1

Car #2 CNN 6.3 5.7 9.3 19.2 13.6
PMP 41.5 29.7 25.1 15.8 26.4
GBB 9.9 9.9 6.4 5.6 6.4

Car #3 CNN 12.5 10.8 10.0 19.4 17.9
PMP 34.5 23.8 20.0 10.1 18.1
GBB 3.3 15.0 11.4 18.9 19.1

(a) MOTCARS motion blur estimation results
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Figure 5.9: Motion blur estimation of real-world corrupted datasets. (a): Median mean
absolute errors (MAE (5.1)) of horizontal blur estimations [%]. The best results per motion
blur size bin and object (car) are highlighted in bold. (b): Exemplary image patches of car
#3 taken with exposure times texp ∈ {6, 8}ms and corresponding blur kernel estimations
of PMP and GBB. In case of texp = 8 ms, severe overexposure reduces image information,
which prevents accurate PMP blur estimation (undesired artifacts in corresponding blur
kernel and high MAE of 40.1%). In case of texp = 6 ms, the less overexposed image results
in better PMP blur estimation (smooth blur kernel shape and lower MAE of 9.9%). In
contrast, GBB blur estimations are less prone to image content loss.

in the images (see Fig. 5.4 and compare to Fig. 5.8). Each image of MOTCARS
contains over- and underexposed areas near the car objects, since the used camera
system is not able to capture the high dynamic range of the scene (which is a common
issue of conventional cameras [Reb+19]). Moreover, the CNN is further affected by
the aforementioned influence of the initial camera system blur (cf. Sec. 5.2.2). (ii)
Analogous to the simulated and real-world defocus experiments, all methods are prone to
estimation errors for small or large kernel sizes. CNN produces noticeably higher errors
for d ≥ 12 px (similar to the synthetic non-linear blur kernel results), PMP for small
kernels (d ∈ [1, 4] px), and GBB for three large kernels (d ≥ 12 px). (iii) PMP produces
significantly higher estimation errors compared to the synthetic blur experiments. This
effect comes from the reduced information in images with large overexposed areas and
is illustrated in Fig. 5.9b (note that unlike Fig. 5.8, not the entire image is overexposed,
but only areas near the outside of the car park). The figure demonstrates that PMP
estimates a blur kernel with undesired artifacts in the case of severe overexposure (which
leads to a high MAE score of 40.1%) and a smoother kernel in a comparable image
with less overexposure (which leads to a lower MEA score of 9.9%). We observe such
kernel artifacts also in the simulated blur experiments for small/large blur kernels (cf.
Fig. 5.6b), with the same underlying reason of an ill-posed blur estimation problem
(Sec. 5.2.1). In comparison, GBB is less susceptible to this level of information loss.

Summary
In summary, the results support the finding of the previous experiments that the
estimators are inaccurate for small (PMP) or large (CNN and GBB) motion blur.
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Figure 5.10: Noise estimation of uncorrupted datasets. All reference methods estimate
little median noise in KITTI and Udacity images (σ̂ ⪅ 1.0 DN). However, PCA and
B+F incorrectly estimate significant noise in Sim images (with σ̂ often in the range of
[2, 10] DN).

The results also show that all estimators are affected by under- and overexposed areas,
which reduce the information content of an image that is vital for blur estimation;
especially PMP becomes impractical in the case of large overexposed image areas.
Nevertheless, CNN and GBB provide the best estimates for small and medium-sized
motion blur kernels. This experiment confirms the necessity to avoid or minimize
under- and overexposure for a reliable blur estimation (e.g., by using an additional
under-/overexposure estimator or by a custom exposure time control).

5.3 Noise Estimation

We first investigate the initial noise level for the uncorrupted datasets. The synthetic
images of Sim do not include noise, while the ground truth (GT) values for KITTI and
Udacity are unknown. For an assessment, we apply all three estimators to both datasets
and to Sim for comparison.

Analyzing Fig. 5.10, the reference methods estimate the lowest noise level in the Udacity
data with a median of σ̃ ⪅ 1.0. For KITTI data, B+F provides the largest estimates
(σ̂ ≤ 5 DN), followed by PCA (σ̂ ≤ 3 DN) and CNN (σ̂ ≈ 0.75 DN). Nevertheless,
all median values are close to σ̃ ≈ 1.0 DN. In the case of Sim, B+F and PCA have
been distracted by the high density of detailed textures in the images and estimate
too high noise levels (σ̂ ≤ 10 DN and σ̂ ≤ 5 DN). This is a well-known phenomenon in
traditional noise estimation (cf. Sec. 2.2.2.1) and holds especially for B+F that relies
on homogeneous image patches. Only CNN estimates σ̂ ≤ 1.0 DN and thus produces
the lowest error. Note from all graphs that estimation outliers can be expected, which
makes a median estimator more robust than, for instance, a mean estimator. As an
intermediate result, the estimations indicate that Udacity and KITTI images contain
noise with a median noise level of σ̃ ≈ 1.0 DN, which makes both datasets suitable for a
median noise estimation evaluation. Moreover, B+F and PCA produce large errors for
Sim as these approaches are distracted by texture.
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Figure 5.11: Noise estimation of synthetically corrupted datasets. Median, minimum
and maximum statistics (depicted by sampled points with interpolation in between and
the shaded areas, respectively) of the three proposed noise estimators (CNN, PCA, B+F)
as the noise level σ increases (from 0 to 25 grayscale levels, DN), for several types of noise
(Photon Shot, DCSN, etc.) and datasets (Sim, KITTI, Udacity). The last plot shows the
effect of combining all noise types (on the Udacity dataset).

Next, we corrupt the datasets with the proposed noise processes and evaluate the three
noise estimators by comparing their median, minimum and maximum statistics (rejecting
≈ 5 % outliers) against the controlled ground truth noise levels. Results are reported in
Fig. 5.11. Since we obtained comparable results for KITTI and Udacity, we dropped
similar plots.

We first observe from Fig. 5.11 that B+F and PCA methods are prone to structural
misestimation: both over-estimate low noise levels, and B+F under-estimates high
noise levels. These phenomena have been already reported and are characteristic of the
corresponding model family [Shi+05; CZA15]. Moreover, all methods tend to strongly
under-estimate noise in natural images, which even reduces the median performance of
the B+F method. We observed this behavior in over-exposed areas where most pixels are
in saturation, which is expected from vehicle camera images containing large sky areas.
The CNN method is less vulnerable since it learned employing fewer meaningful pixels;
[Shi+19] omits such image regions under the assumption that under-/over-saturated
patches “cannot contain noise” (which only holds for completely saturated regions).
When comparing results of synthetic and natural images, B+F and PCA produce higher
median and minimum noise level estimates for Sim images. This is consistent with
the observation from Fig. 5.10 that the high amount of detailed texture in Sim images
distracts both estimators and may indicate a too high minimum noise level.



84 Chapter 5. Evaluation: Blur and Noise Estimation

Another observation is the striking difference between the signal-dependent and signal-
independent noise cases. Signal-dependent photon shot noise increases the variance of
all estimators, especially on real-world data. We observed that large variations in bright
and dark intensity areas within one image patch led to over- and under-estimation,
respectively. The CNN noise level is limited here since it was trained with σ ≤ 30 DN. If
all noise types occur simultaneously (combined noise plots in Fig. 5.11), the estimations
become more accurate and more robust than in the case of all noise being attributed
to photon shot noise. According to the observations of [Xu+18; AB18], realistic noise
follows a combined Poisson-Gaussian distribution, and the Poisson part is troublesome
for the noise estimators (in particular for those with Gaussian assumptions). Hence,
we consider isolated photon shot noise as the worst case scenario. The CNN and PCA
methods perform similarly if signal-dependent photon shot noise is included, and the
CNN is more reliable (smaller variance) otherwise. In terms of denoising, similar results
have been shown by comparing traditional and learning-based methods on real data
[Xu+18].

Computational performance
Analogous to Sec. 5.2.1, we perform an intermediate runtime measurement at this point
to assess the real-time capability of the noise estimators (more details in Ch. 7). We
determined the following average runtimes per image patch: 0.005 s (B+F), 0.002 s
(PCA), and 0.002 s (CNN). CNN and PCA executed the fastest, but in the same order
of magnitude as the B+F. All noise estimators are real-time capable and considerably
faster than blur estimators.

Summary
The CNN and PCA noise estimation methods are accurate in median but their reliability
decreases the stronger the photon shot noise is. In case of signal-independent noise only,
the CNN performs by far most reliably. Since PCA is prone to structural misestimation
(e.g., over-exposed areas, small noise levels), we suggest using the CNN for condition
monitoring applications. Finally, the reliability of all estimators could be improved by
using the median estimation from consecutive frames (Sec. 5.6).

5.4 Estimation of Combined Blur and Noise

Because previous sections showed that CNN blur and noise estimators performed among
the best ones on isolated blur/noise cases, we now use these estimators on combined blur
and noise corruption experiments. We investigate the cases of combined defocus blur and
DCSN (“Defocus + DCSN”), and Photon Shot Noise with simultaneous linear motion
blur (“Photon + Lin. Motion”), both on Udacity as the most realistic transportation
scenario among our datasets. In both cases, we estimate blur and noise separately.
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Defocus + DCSN Photon + LinMB

Size [px] 3 7 11 15 21 3 7 11 15 21

Kernel

Noise Level 0 2.7 0.9 0.6 0.3 1.4 16.2 10.8 9.8 11.4 7.9
5 6.0 20.3 10.3 34.5 5.5 3.2 10.5 13.6 14.8 6.3
10 20.5 49.6 60.4 69.1 70.9 3.1 13.7 16.8 20.6 5.7
15 23.7 50.2 62.4 69.9 76.5 3.1 15.5 22.4 24.7 14.0
20 24.0 50.7 62.7 70.6 76.7 3.1 21.3 27.8 25.9 12.1
25 24.1 50.8 62.5 70.1 76.9 3.1 23.8 31.2 28.1 19.3

Table 5.2: Blur estimation in the presence of noise for two image corruption configurations:
Defocus + DCSN and Photon + Linear Motion Blur, both on the Udacity dataset. The
table contains median blur estimation (AMAE (5.1) in %) for different noise levels and
kernel sizes.
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(a) Noise estimation results (b) PSF reconstructed from MTF

Figure 5.12: Noise estimation in the presence of blur for two image corruption
configurations: Defocus + DCSN and Photon + Linear Motion Blur, both on the Udacity
dataset. (a): Plots of the median noise estimations for different noise levels and blur
kernel sizes. Noise estimated for different blur kernel sizes is color-coded from blue to
purple. However, differences are almost indistinguishable at this scale. (b): Exemplary
PSF reconstruction of a blur estimation (MTF) in the presence of noise that approaches
the delta function (assuming Gaussian shape and rotational symmetry).

Blur estimation results are summarized in Tab. 5.2 and those of noise estimation in
Fig. 5.12a.

Defocus + DCSN
According to the physics behind the image formation process in Fig. 3.7, an image is
corrupted by defocus first and DCSN afterwards. Hence, high-frequency image content
is filtered and fully represented by the DCSN. In theory, the larger the blur the easier
the noise estimation. This is what we observe in the first plot of Fig. 5.12a. Although
there is a small estimation error for zero defocus, σ̃ becomes most accurate for d ≥ 3 px
and remains unchanged. Hence, defocus is favorable for DCSN estimation. We expect
the same effect for similar combinations of defocus/motion blur and DCSN/readout
noise.
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On the other hand, DCSN negatively affects defocus estimation because advantageous
information for detecting blur (the absence of high frequencies) gets corrupted by noise.
We notice two effects from the results of Tab. 5.2: All defocus estimations worsen with
increasing noise levels, and this impact becomes more severe with increasing kernel
size. While estimations for the smallest and largest kernels (d ∈ {3, 21} px) can be
considered as still good for σ = 5 DN, the same noise level otherwise already leads to
poor blur estimations. This outcome was investigated in the context of motion deblurring
[TL12], where it was found that, as σ grows, blur estimations approach the Dirac delta
function in a large variety of approaches. We observe the same behavior for the CNN
estimations, hence the increasing relative error towards larger kernels. Figure 5.12b
illustrates an exemplary Dirac delta function reconstructed from an MTF estimation for
the configuration (d, σ) = (21 px, 25 DN). Generally, defocus estimations are not robust
in presence of subsequent noise. Since sensor noise can be detected accurately in case of
defocus, a small σ̂ should be assured before trusting blur estimations.

Photon + Lin. Motion
In this case, noise is added before the blur (due to the physics behind the image
formation model in Fig. 3.7). Therefore, we expect the opposite behavior, i.e., a
poor noise estimation (the blur kernel acts as a classical noise filter) and a good blur
estimation. However, only the noise estimation meets the expectations (see the second
plot in Fig. 5.12a and Tab. 5.2). A motion blur of size d = 3 px already majorly
disturbs noise estimation (note that noise is not removed from the image but spread
among neighboring pixels). On the other hand, the motion blur leads to structured
directional noise (i.e., false image details), which in turn reduces the estimated blur
level by increasing ˜︁MTF (Fig. 5.13). This effect intensifies with increasing noise level.
Depending on whether blur is overestimated (e.g., for d = 3 px) or underestimated (e.g.,
for d = 11 px) when σ = 0, the AMAE score decreases or increases for higher noise
levels, respectively.

We do not observe the same behavior when we replace motion blur with defocus blur
(“Photon + Defocus”, Fig. 5.14), as defocus blur distributes the noise evenly to the
neighboring pixels. The noise still influences the blur estimation of the defocus kernel
d = 3 px, however, the effect becomes negligible for larger defocus kernels (d ≥ 7 px).

We build upon this finding and propose a simple approach to suppress high noise in
order to re-enable the detection of preceding blur. Specifically, we apply an additional
defocus filter to estimate preceding small or medium blur on the example of high sensor
noise levels σ ≥ 10 DN (Sec. 5.5).

Summary
In summary, we conclude that even a small amount of blur boosts the detection of
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Figure 5.13: Linear motion blur estimation in presence of preceding photon shot noise
(PN). (a): Increasing noise levels σ increase the MTF estimation and thus decrease the
estimated blur level d. (b): Corresponding exemplary image with (d, σ) = (11 px, 25 DN)
showing structured noise induced by subsequent motion blur.

Photon + Defocus

Size [px] 3 7 11 15 21
Kernel

Noise Level 0 2.7 0.9 0.6 0.3 1.4
5 0.6 1.1 0.8 0.4 1.3
10 0.5 1.1 0.5 0.4 1.3
15 1.2 2.5 0.6 0.4 1.3
20 5.4 1.7 0.5 0.3 1.4
25 5.6 1.8 0.5 0.3 1.4

(a) Defocus est. in presence of PN (b) Defocus blur distributes noise evenly

Figure 5.14: Defocus blur estimation in presence of preceding photon shot noise (PN).
(a): Increasing noise levels σ only significantly increase the AMAE values for the smallest
blur kernel d = 3 px. (b): Corresponding exemplary image with (d, σ) = (11 px, 25 DN)
showing that subsequent defocus blur distributes the noise evenly to neighboring pixels.

subsequent noise while suppressing preceding noise sources. So, in the presence of
blur, photon noise is difficult to estimate and therefore should be avoided. Regarding
blur estimation, preceding photon noise can corrupt the result in case of motion blur.
Subsequent DCSN with σ ≥ 10 DN already prevents blur estimation, however, it can be
re-enabled by applying an additional defocus filter. Hence, if one can minimize photon
noise in images2, we suggest estimating noise before judging a blur estimation result.
As in the noise evaluation of Sec. 5.3, sensor noise (DCSN and readout noise) is more
favorable than photon shot noise for condition monitoring.

2Digitized photon shot noise in images can be mitigated, for instance, by using a camera with a
large full-well capacity and by ensuring a well-illuminated scene.
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Corruption Levels Error Metrics

d1 [px] σ [DN] MAE (H) MAE (V) AMAE AMAEExp.

d
2

=
7p

x

3 10 2.9 2.0 2.5 16.2
3 25 3.5 2.1 2.8 16.2
7 10 12.3 7.7 10.0 10.8
7 25 11.6 8.8 10.2 10.8
11 10 11.1 8.4 9.7 9.8
11 25 14.1 10.1 12.1 9.8

d
2

=
11

px

3 10 1.5 0.3 0.9 16.2
3 25 1.7 0.3 1.0 16.2
7 10 14.7 12.7 13.7 10.8
7 25 14.8 12.8 13.8 10.8
11 10 18.6 14.1 16.4 9.8
11 25 20.2 15.1 17.6 9.8
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Figure 5.15: Proposed improved blur estimation in presence of high noise. (a): Estimation
of linear motion blur b1 (LinMB) on combined pipeline (LinMB + DCSN + Defocus),
using Udacity data. The table reports mean absolute errors (MAE) of horizontal (H) and
vertical (V) estimations, their average (AMAE), and their expected values (AMAEExp.

(5.3)). (b): Exemplary scenario of LinMB + DCSN with d1 = 11 px and σ = 10 DN. We
target estimating the LinMB with a ground truth of MTFGT = 0.75 (combined image
directions at f = 0.1). Top of (b): Noise distracts the blur estimation ( ˆ︁MTF = 0.54).
Bottom of (b): Defocus filtering the noise with d2 = 7 px assists the blur estimation
( ˆ︁MTF = 0.70, the influence of defocus was canceled out during the estimation).

5.5 Improved Blur Estimation in Presence of High
Noise

The Sec. 5.4 has pointed out that blur is not accurately estimated in the case of high
subsequent noise (e.g., DCSN, with σ ≥ 10 DN). Here we demonstrate a simple approach
to improve the accuracy of such MTF estimates (Fig. 5.15). The approach exploits that
preceding photon noise is not expected to significantly influence the MTF estimation of
subsequent defocus blur (see Sec. 5.4). Hence, the approach consists of considering the
above-mentioned “high subsequent noise” as the preceding noise of a new blur stage,
estimating the overall MTF and reassigning the credit between the two blur stages.
Specifically, following up on the Defocus + DCSN case in Sec. 5.4, the considered
pipeline has now three stages: LinMB + DCSN + defocus filtering. Letting the first
blur kernel be b1, we filter noise by an additional kernel b2, estimate the overall blur
ˆ︁MTF(b1, b2) = ˆ︁MTF(b1) ˆ︁MTF(b2) and lastly divide the MTF by the known MTFGT(b2)
according to the Fourier convolution theorem [Jah00, p. 242]. To this end, we assume
MTFGT(b2) ≈ ˆ︁MTF(b2) and determine the estimation error of ˆ︁MTF(b1) with respect to
MTFGT(b1).

Due to the combinatorial complexity of the experimental configuration, we focus on
the following one grounded on the results from Sec. 5.4: We employ only the CNN
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method for MTF estimation on Udacity data, and we consider the case of LinMB +
DCSN (representative for sensor noise, to keep it clear and concise). The operating
points for this experiment rely on three reasons: (i) The choice of b2’s size (d2) is a
trade-off between filtering the noise to reduce its influence on blur estimation without
loosing image details necessary to determine b1. Hence, we pick the smallest defocus
filters d2 ∈ {7, 11} px that lead to stable blur estimation (cf. Fig. 5.14). (ii) We consider
small/medium motion blur d1 ∈ {3, 7, 11} px so that the overall blur is still detectable
by the CNN. (iii) We focus on severe high/higher noise levels σ ∈ {10, 25}DN. We next
evaluate ˆ︁MTF(b1) ≈ ˆ︁MTF(b1, b2) / MTFGT(b2) with Fig. 5.15a.

We need to ensure three preconditions to divide MTFGT(b2) from ˆ︁MTF(b1, b2) for a
meaningful result: (i) ˆ︁MTF(b1, b2) ≤ MTFGT(b2), (ii) MTFGT(b2) > 0 + ϵ and (iii)
ˆ︁MTF(b1, b2) > 0+ϵ, for all sampled frequencies. We chose the control parameter ϵ = 0.05
to avoid large quotients for small values, and omit frequencies that do not satisfy the
conditions.

Figure 5.15a presents results in terms of MAE and AMAE scores (5.1), and their
expected values

AMAEExp. .=
√︂

AMAE(ˆ︁MTF(b1))2 + AMAE(ˆ︁MTF(b2))2 (5.3)

from the error propagation of ˆ︁MTF(b1) and ˆ︁MTF(b2) (cf. Tab. 5.1).

We observe generally slightly worse MAE scores in horizontal than in vertical image
direction, which are in agreement with the already-mentioned slight motion blur in the
moving direction on Udacity data (the moving direction is closer to the horizontal image
axis; see Sec. 5.2.1). It can also be seen that the higher the considered noise and blur
levels, the worse the estimations of b1. The impact of higher noise, which relativizes
with increasing d1, corresponds to the results of Fig. 5.14. Higher blur levels d1 or d2

increase the loss of information (where the MTF estimates unrealistically drop below
zero) and thus worsen estimations of b1. This is also why the smaller defocus d2 = 7 px
performs better (with results closer to their expected values) and smaller motion blurs
d1 are estimated more accurately (despite their higher expected values). Moreover, the
information loss causes the CNN to generally overestimate d1, which in turn limits the
estimation error for d1 = 3 px as its MTF values for the considered frequencies are
already close to one. All in all, a defocus filter with d2 = 7 px has been shown to be the
best working solution to restore a blur estimation of d1 in presence of high noise.

Summary
Additional defocus filtering suppresses noise so that estimation of preceding small or
medium blur can be re-enabled for high sensor noise levels σ ≥ 10 DN.
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This procedure is also suitable for a condition monitoring application as it can be applied
in the background without changing the camera configuration.

5.6 Improved Noise Estimation Uncertainty by Tem-
poral Result Aggregation

In previous sections, we identified scenarios in which the blur and noise estimators
produce poor estimates (e.g., over-exposure or high texture images, cf. Secs. 5.2.2, 5.2.3
and 5.3). Such estimation errors increase an estimator’s uncertainty and thus decrease
its trustworthiness, which is undesirable for a robust condition monitoring.

Estimator uncertainty can be reduced in post-processing with low computational
overhead by a spatial and/or temporal aggregation of multiple estimations if the
underlying blur/noise corruption process is identical over the analyzed spatial domain
and/or time span. This post-processing is motivated by spatio-temporal video noise
filtering, which aims to increase a video’s signal-to-noise ratio [Bra+95].We demonstrate
this post-processing on the example of temporal aggregation of median noise estimates
generated with a GT noise level σ = 25 DN for three reasons: (i) The focus of this thesis
lies on spatially varying corruptions, which favor temporal aggregation (cf. Sec. 1.1). (ii)
The faster runtimes of the considered noise estimators (compared to the blur estimators)
allow for the processing of large datasets, which is favorable for a statistical analysis
of potentially large aggregation windows. To keep the combinatorial complexity of
the experiment’s configuration low, we focus on combined noise (all noise types occur
simultaneously) with σ = 25 DN. (iii) Median aggregation is robust to outliers within
the temporal aggregation window.

Specifically, we apply patch-wise median aggregation to the already calculated patch-
wise noise estimations σ̂(i, j) (from Sec. 5.3) using aggregation windows of size n ∈
{1, 2, 4, 10, 20, 40, 100} .= An consecutive frames:

σ̃n(i, j) .= median
(︂
σ̂(1)(i, j), . . . , σ̂(n)(i, j)

)︂
, (5.4)

where σ̃n(i, j) denotes the temporally median aggregated noise estimation of an image
patch with index (i, j) and σ̂(k) the k-th consecutive image frame. These aggregated
median noise estimations are then combined into a probability distribution Pσ̃n : R≥0 →
[0, 1] per dataset, noise estimation method, and aggregation window size (Pσ̃n is assumed
to be continuous for simplicity). Following, we analyze the dispersion of each Pσ̃n with
increasing aggregation window size n as estimator uncertainty and employ the standard
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Figure 5.16: Reduction of noise estimation uncertainty by temporal result aggregation
for a fixed GT noise level of σ = 25 DN and different numbers of aggregated median
estimations for consecutive frames (aggregation windows size). First three plots: Results
for all noise estimators and datasets in form of boxplots (bold line: median, dashed line:
ground truth, colored area: interquartile range (IQR) between first (Q1) and third (Q3)
quartiles, lower whisker: last datum less than Q1 + 1.5× IQR, upper whisker: first datum
greater than Q1− 1.5× IQR, circle: outlier). Fourth plot: Change in standard deviations
of noise estimation distributions as the size of the aggregation window n increases.

deviation σσ̃n of Pσ̃n as metric for this3. Further, we define

∆σ̃a→b

.= ∆σ̃1→a −∆σ̃1→b
,

∆σ̃1→c

.= σσ̃1 − σσ̃c

(5.5)

to describe the change of a standard deviation between two aggregation window sizes,
with a, b, c ∈ An\{1} and a < b.

3Not to be confused with the “standard error of the median” metric, which quantifies the deviation
between medians of a population dataset and a sample, similar to the “standard error of the mean”
[LIL15].
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The first three plots in Fig. 5.16 depict the temporal aggregation results in form of box
plots to put emphasis on the distribution dispersions. One can already see visually that
the distributions become narrower and that the spread of outliers generally decreases
with increasing window size n. Considering the median values (bold lines), we find that
they do not change significantly with increasing aggregation windows size n. This is
because the sample median approaches the population median for large sample sizes
[Mar18], which is the case for all n ∈ [1, 100] frames (cf. dataset sizes in Sec. 5.1.1).

The last plot in Fig. 5.16 and Tab. 5.3 detail the changes of the distribution standard
deviations. We make two major observations: (i) In Sim, B+F benefits the most from
increasing window sizes n (∆σ̃1→100 = 2.56 DN), compared to CNN (∆σ̃1→100 = 0.84 DN)
and PCA (∆σ̃1→100 = 1.06 DN). This is due to the aforementioned issue of B+F with
the texture-rich images in Sim (cf. Sec. 5.3) – the more images of Sim are analyzed, the
more likely there are small homogeneous regions from which B+F benefits. B+F profits
the most in relative terms, being the most uncertain at n = 1 compared to the similarly
influenced PCA. (ii) In KITTI and Udacity, the initial noise estimation distributions
Pσ̃1 are comparable, but the corresponding changes of σσ̃n differ for n → 100. In
Udacity, all methods only gain small estimation certainty for n→ 100 (CNN: ∆σ̃1→100 =
0.34 DN, PCA: ∆σ̃1→100 = 0.98 DN, B+F: ∆σ̃1→100 = 1.16 DN). In KITTI, however,
especially PCA and B+F benefit the most from n → 20 (CNN: ∆σ̃1→20 = 1.23 DN,
PCA: ∆σ̃1→20 = 2.33 DN, B+F: ∆σ̃1→20 = 2.51 DN), while neither method improve
significantly for n > 20 (CNN: ∆σ̃20→100 = 0.13 DN, PCA: ∆σ̃20→100 = 0.28 DN, B+F:
∆σ̃20→100 = 0.27 DN). Among the datasets, we observe the greatest effect of temporal
aggregation for KITTI, followed by Sim and Udacity (where Sim provides a larger
relative change than Udacity). We attribute this to the scene variation between the
consecutive frames. While Sim and Udacity images are recorded contiguously in time
and we note comparably higher scene variations between the images of Sim than in
Udacity (which is influenced by motion in the scene, camera movement, and exposure
time), consecutive KITTI images are independent from each other. Both results support
the natural assumption that the more diverse the image content in the analyzed images
of the aggregated estimates, the smaller the estimation uncertainties.

Summary
We conclude that temporal result aggregation can reduce estimation uncertainty in
online condition monitoring. The results show that, as long as a static noise process can
be assumed among the considered frames, the aggregation benefit increases the more
the image content varies between the aggregated frames, the larger the aggregation
windows size, and the more susceptible the estimators are to specific image content (e.g.,
texture). We expect a similar benefit for blur estimation.
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Windows Size n for ∆σ̃1→n
[# Frames]

Dataset/Method (σn=1) 2 4 10 20 40 100

Sim CNN 1.82 0.06 0.09 0.22 0.38 0.52 0.84
PCA 2.19 0.10 0.17 0.34 0.51 0.72 1.06
B+F 4.37 0.30 0.45 0.82 1.23 1.7 2.56

KITTI CNN 3.00 0.71 0.88 1.11 1.23 1.32 1.36
PCA 4.17 1.05 1.55 2.06 2.33 2.48 2.61
B+F 3.60 1.02 1.68 2.24 2.51 2.69 2.78

Udacity CNN 3.06 0.12 0.11 0.14 0.21 0.26 0.34
PCA 4.39 0.18 0.24 0.41 0.59 0.79 0.98
B+F 4.13 0.27 0.41 0.62 0.78 0.97 1.16

Table 5.3: Change of standard deviations ∆σ̃1→n (5.5) for increasing aggregation window
size n (with the initial standard deviations σn=1). Compare to last plot in Fig. 5.16.

5.7 Discussion

This discussion addresses limitations of our experiments, and provides further considera-
tions on methods and results.

Dataset Design
We suggest that follow-up studies focus on the following five aspects to improve the design
of evaluation datasets compared to ours: (i) The choice between clean synthetic datasets
and initially corrupted data is a trade-off between increasing corruption accuracy and
data realism. The latter problem is referred to as the simulation-to-reality gap [Rew+20].
However, there are other image simulators for mobile machines that demonstrate
improved data realism, which can be extended by the considered blur and noise corruption
processes close to physics [Dos+17; Sha+18]. (ii) We reject ≈ 5% outliers in synthetically
corrupted datasets to reduce initial corruptions and further consider median statistics
for all datasets to handle remaining outliers. Compared to the applied outlier rejection,
manual image selection could additionally improve dataset quality. (iii) The data for
blur estimation is limited due to the high manual labeling effort and the long runtime
of the blur estimators, so results could be biased (especially for real-world blur). In
addition, more motion blur kernels can be considered to account for motion length and
direction. However, this again refers to the trade-off addressed in (i). Note that there
are also related studies that examine more artificial kernels, such as ones with perfect
straight paths [SJA08; Sun+15]. To provide more validity to our results, future work
should focus on creating more comprehensive, large-scale blur estimation datasets. (iv)
Future datasets could also put emphasis to cover more isolated and combined blur and
noise cases, which we limited to reduce the combinatorial complexity of the experiments.
(v) The balance of the dataset in terms of the scenes studied, including image properties
and objects of interest, could be considered as well.
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General Blur Estimation
On top of the aforementioned initial corruptions of the real-world image datasets, we
identified more image content (such as windshield reflections, over-/underexposure, and
the availability of image gradients) that also affect blur estimation and thus have to
be investigated for a more reliable condition monitoring. Particularly local over- and
underexposed areas can adversely influence classic camera exposure controls in that
the control tries to alter global camera parameters, which is another motivation for a
custom exposure control. A workaround is addressed in Ch. 8. We observed similar
critical image content for noise estimation.

This undesired image content is typical for mobile systems operating under natural
lighting conditions and can lead to outliers in blur estimation, which we mitigate by
using median statistics. In line with this, we evaluate MTF estimates in terms of the
(A)MAE score (5.1) that is more robust to outliers than, e.g., the widespread (root-)
mean-squared error metric. Moreover, the median value is the optimal minimizer of the
MAE metric [Str11, p. 43].

When it comes to the GBB and PMP blur estimators, there are two major improvements
necessary before they could be considered for online blur estimation. First, speedups
need to be investigated to archive real-time capability, for instance, vectorization or
GPU processing. This could enable the usage of GBB/PMP as alternatives to CNN
when non-linear motion is expected (e.g., on uneven driving ground at dark scenes that
require high exposure times). Second, for accurate blur estimation, the sensitivity of
GBB/PMP to image input size, available image content, expected blur kernel size, and
kernel complexity must be investigated. Therefore, our results can serve as a basis.

Real-World Blur Estimation
We propose two datasets DEFCARS and MOTCARS for real-world blur estimation and
determined ground truth values manually on a reconstructed PSF (Fig. 5.3). This PSF
relies on the assumptions of rotational symmetry and a Gaussian shape to compensate
for the missing phase transfer function (3.20). However, the symmetry assumption may
be too simplistic for real-world PSFs of cameras [Dub+17]. Moreover, the determination
of reproducible blur kernel sizes is more difficult for a Gaussian shape than for a uniform
kernel shape, which we assume in (3.6). As a criterion, we require the kernel sizes
to include ≈ 95.4% of the Gaussian, i.e., four standard deviations, which we could
determine using the resolving power tool labels.

In contrast to DEFCARS, MOTCARS includes significantly fewer image patches (75
compared to 4k) due to the lower spatial resolution of the used camera and the higher
GT labeling overhead.
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The first shortcoming is rooted in the fact that we installed a camera with a programmable
API to trigger automatic image acquisition and camera parameter changes on the
robotic platform (especially in preparation for Ch. 7). The second reason is the
evaluation of two SLEs per Siemens star. We also like to point out that SLE angles
marginally differ between the images due to the slightly varying camera movements.
Since the used Siemens star with 32 segments provides edges in discrete increments
of 360◦/ 32 segments = 11.25◦/segment, we chose positions closest to the suggested
θ ∈ [5, 180 + 5] ◦ (cf. Sec. 3.3.1.1), but this decreases comparability as the analyzed
directions can differ by at most 11.25◦/ 2 = 5.625◦. This only affects MOTCARS
data with ellipsoid PSF shapes. Also note that for better comparison, only images of
MOTCARS containing the same parts of the scene are selected, and that the dataset is
mainly limited to horizontal movements.

Improved Blur Estimation in Presence of high Noise
The proposed defocus filter post-processing comes with limitations as well. The filter
size needs to be chosen carefully to avoid information loss, since high image details
(i.e., high image frequencies) can be irreversibly filtered (when the corresponding MTF
approaches zero). Further research could empirically determine adaptive defocus blur
sizes for different noise levels and total image blur estimations. Also note that this
technique is not applicable to large initial blur. For an online condition monitoring, we
suggest to detect and tackle small blurs before they become more severe (if possible), or
otherwise to initiate actions outside the camera system (e.g., in case of large defocus
blur: request human interaction to inspect the lens system for a possible defect; in case
of large motion blur: request spotlight activation and exposure time reduction in dark
scenes, or speed adjustment of the platform).

Improved Estimation Uncertainty
The assumption of spatially varying corruptions can be weakened if they can be excluded
(for instance, noise can be assumed spatially constant when imaging static scenes with a
temperature regulated camera system). Temporal and spatial aggregation window sizes
can also compensate each other, which enables to make weaker assumptions of temporal
or spatial consistency of the corruptions.

In recent years, researchers also addressed the reduction of estimation uncertainty directly
at its source (e.g., to reduce CNN model uncertainty by integrating further techniques
of Physics-ML or to reduce data uncertainty by CNN training data augmentation). The
interested reader is referred to [Gaw+21].
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5.8 Summary

In this chapter, we commenced to evaluate the condition monitoring part of the proposed
self-health-maintenance framework, specifically image blur and noise estimation, and
addressed individual shortcomings.

We first introduced five datasets in Sec. 5.1: three with synthetic blur/noise corruptions
(Sim, KITTI, and Udacity), and two self-recorded with real-world defocus and motion
blur, respectively (DEFCARS and MOTCARS).

The subsequent Sec. 5.2 focused on blur estimation. We found that CNN is best suited
for online condition monitoring when it comes to real-time requirements, defocus, linear
motion, or generally small blurs. In contrast, the traditional estimators (GBB and
PMP) operate best for complex non-linear motion in non-real-time scenarios. Results
on real-world corrupted data further revealed that CNN decreases in accuracy when
initial inherent blur of real camera systems is taken into account. Challenging scenes of
under- and overexposure reduced the performance of all estimators. For more robust
estimates, it is recommended to employ median statistics over small time spans and the
variance to assess estimation uncertainty.

Noise estimation experiments in Sec. 5.3 showed that the learning-based CNN archived
the best results in terms of accuracy in all scenarios. However, the accuracy of CNN
and the traditional estimators (PCA and B+F) decreased as photon shot noise in the
image data increased. We also identified structural mis-estimations for all methods
(in cases of overexposure), B+F and PCA (overestimate small noise levels), and B+F
(underestimates high noise levels). All noise estimators were considerably faster than
the blur estimators, with CNN and PCA being the fastest.

In Sec. 5.4, we investigated blur and noise estimation when both corruptions are present
simultaneously, and found that blur and noise affect each other’s estimates: (i) Blur
boosts the detection of subsequent noise but suppresses preceding noise. (ii) Preceding
noise and high subsequent noise (σ ≥ 10 DN) both corrupt blur estimation. As for
isolated noise estimation, photon shot noise is less favorable than sensor noise.

Section 5.5 introduced an improved blur estimation in presence of high subsequent
noise. We demonstrated that an additional defocus filter can suppress the noise to
re-enable estimation of small and medium sized motion blur without changing the
camera configuration. For this improved condition monitoring, we concluded to estimate
noise before judging blur estimation, if photon shot noise could be minimized.

In Sec. 5.6, we examined the reduction of noise estimation uncertainty by temporal
result aggregation. It could be demonstrated that median aggregation of patch-wise
estimations for consecutive frames can reduce uncertainty under the assumption of a
static corruption process within the considered aggregation window.



Section 5.8 Summary 97

The benefit of this improvement increases the better this assumption, the larger the
windows size parameter, and the more sensitive an estimator is to specific occasional
image content (e.g., high texture density).

The last Sec. 5.7 addressed improvements for the blur estimators (e.g., vectorize GBB and
PMP) and the noise estimators (e.g., avoid photon shot noise or improve its estimation).
We also raised awareness about limitations of improved blur estimation (too large
post-filter sizes) and concluded to target blur when it is still small, or otherwise try
to initiate actions outside the camera system (e.g., request for human interaction or
active headlights on a vehicle). Lastly, the improvement of estimation uncertainty can
be extended to spatial aggregation as well.





CHAPTER 6

Evaluation: Noise Source Estimation

The underlying idea of noise source estimation is to employ camera metadata in addition
to the captured image to determine the noise contribution of each noise source from
within a camera system in order to find adequate countermeasures (Sec. 4.3.3). Noise
source estimation is considered the second part of our proposed condition monitoring
module – this chapter covers its evaluation. We would like to emphasize that this
chapter also provides real-world noise evaluations that complement the experiments
from Sec. 5.3.

We first describe the datasets used and the image noise applied (Sec. 6.1). Depending
on whether a dataset includes ground truth (GT) labels or not, we conduct either
quantitative or qualitative experiments. Our quantitative experiments comprise
performance evaluations on simulated and real-world data (Sec. 6.2). We further
demonstrate our methods in real field campaigns and on three use cases of unexpected
noise (Sec. 6.3). Besides the ability to quantify individual noise sources, we subsequently
demonstrate the improved total noise estimation performance on the downstream task
of real-world image denoising (Sec. 6.4). Next, we examine the effects of each of
the individual camera metadata on the estimated noise and compare them to the
theoretical noise model (Sec. 6.5). Lastly, shortcomings and potential extensions are
briefly addressed (Sec. 6.6) and the chapter is summarized (Sec. 6.7). This chapter is
partially published in [Wis+23a].

We compare our proposed estimators against:

(i) B+F [Shi+05], DRNE cust., PCA [CZH15], and PGE-Net [BCM21] in the case of
σTotal,

(ii) PGE-Net for σPN, and

(iii) noise model [KW14] predictions from the respective metadata for all individual
noise levels σi∈{PN, DCSN, RN}.

Note that PGE-Net is only applicable in the quantitative experiments, since it requires
(uncorrupted) GT images in order to calculate estimations σ̂i∈{PN, Total}.
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Parking Lot

TAMPERE17 Cellar

(a) Datasets

Prosilica GC1380H
(Sony ICX285,

CCD Image Sensor)

Ximea MQ013RG-E2 
(E2V EV76C661, 

CMOS Image Sensor)

(b) Camera Systems

Figure 6.1: Datasets and camera systems. (a): Exemplary image snippets from new
datasets that complement Sim, KITTI and Udacity (see Fig. 5.1a), namely TAMPERE17
(512×512 px), Cellar , and Parking Lot. Cellar and Parking Lot are both acquired with the
camera systems ICX285 (1360× 1024 px) and EV76C661 (1280× 1024 px). (b): ICX285
is attached on an autonomous robotic platform and EV76C661 on an inspection helmet.

All experiments are executed on an Intel Xeon W-2145 CPU and an NVIDIA Quadro
RTX 6000 GPU, with the neural networks running on the GPU.

6.1 Datasets

We augment four datasets with ground truth labels and two datasets with pseudo ground
truth labels (Fig. 6.1a).

6.1.1 Datasets with Ground Truth

We employ one simulated and three real-world datasets: Sim, KITTI [GLU12], Udacity
[Uda16], and TAMPERE17 [Pon+18]. The uncorrupted images from Sim, KITTI
and Udacity are reused as described in Sec. 5.1.1. Similar to our training dataset
TAMPERE21 (Sec. 4.3.3), TAMPERE17 provides 300 natural images (4.8k patches of
size 128× 128px) with a controlled noise level of σ2 < 1 DN. From TAMPERE17 we
use the grayscale version.

Noise Generation Overview
We corrupt all datasets with simulated or real-world noise. In the simulated case, we
added noise to the images like in our training dataset (cf. Sec. 4.3.3). Note that in
contrast to the (total) noise generation proposed in Ch. 5, we do not generate fixed
random noise levels but random noise model metadata (i.e., random camera sensors in
random states) and omit raw noise amplification to obtain matching pairs of metadata
and corresponding noise levels. In the real-world case, we generated in total 12k RN
and DCSN image tuples (IRN, IDCSN) with about 600 different metadata sets from two



Section 6.1 Datasets 101

different camera systems that we abbreviate according to their implemented camera
sensors: ICX285 [Gmb21] and EV76C661 [Xim23] (Fig. 6.1b). The first one is considered
a scientific-grade CCD and the latter an industrial-grade CMOS camera system. PN is
calculated synthetically as the quantum nature of light determines PN to strictly follow
the Poisson distribution.

Real-World Noise Generation
The real-world noise generation took place in a darkroom with closed camera apertures
to prevent light signal (i.e., we took dark frames). Moreover, we disabled all image
post-processing and used the highest possible camera bit depths (12 and 10 bit) to
minimize quantization errors. To generate RN, we set the exposure time to the minimum
of 0.001 s to counteract dark current integration, applied a random camera gain from
[0, 24] dB, and generated multiple image sequences. In order to generate corresponding
DCSN images right after an RN image sequence, we sampled another exposure time
from [0.001, 0.2] s but kept the same gain (note that RN is still included in the DCSN
images at this point).

Real-World Noise Processing
We identify three issues with the raw noise images that needed to be addressed in post-
processing: (i) The DCSN and RN intensity distributions may be truncated with all
negative intensity values set to zero, which supports our zero-camera-offset assumption,
but also affects the ground truth noise level determination. We tackle this issue in four
steps: (a) In each noise image histogram we determine the bin xmax that corresponds to
the distribution maximum, (b) mirror histogram bins x ≥ 2xmax along the vertical axis
at xmax to reconstruct bins x ≤ 0, (c) fit a Gaussian distribution N (µ, σ2) into the fixed
histogram, and (d) sample a new noise image from N (µ, σ2). (ii) Secondly, the images
IDCSN still contain RN. We approach this issue during the step (i.c) by calculating a
rectified Gaussian distribution N (µDCSN*, σ2

DCSN*) with

µDCSN*
.= µDCSN − µRN,

σ2
DCSN*

.= σ2
DCSN − σ2

RN,
(6.1)

following the central limit theorem for the addition of two statistically independent
Gaussian distributed random variables [Dev11, pp. 230–232]. Corrected DCSN images in
(i.d) are then sampled from this rectified distribution. (iii) Lastly, we observe residual
dark current in images IDCSN. To counteract this, for each image set Ii∈{DCSN, RN} we
calculate pixel-wise means from the respective first 20 images and remove this mean
image from the remaining images in the set, which form the final dataset. The whole
real-world noise processing is detailed in App. A.3 (Alg. 1).
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6.1.2 Datasets without Ground Truth

We collect two datasets from field campaigns without ground truth labels: Cellar
and Parking Lot. Both datasets contain about 1000 grayscale images from respective
eponymous environments and were recorded with both camera systems ICX285 and
EV76C661 . We ensured high noise levels by applying the minimum exposure time of
0.001 s (to capture low but detectable signals), maximum gain of 24 dB (to strongly
amplify signal and noise without saturation), and by disabling image post-processing
(that could reduce noise).

Experiments on Unexpected Noise
We evaluate the fourth noise type ξM/I (Sec. 4.3.3) as part of these field campaign
experiments to demonstrate the detection of unexpected noise during operation time.
Therefore, we split these experiments into two cases: ξM/I = 0 and ξM/I ̸= 0. The
case ξM/I ̸= 0 is further subdivided into ξM/I < 0 and ξM/I > 0. For ξM/I < 0, we
simulate an additional image noise source by adding randomly generated Gaussian
noise N (µ = 0, σ = 5 DN) to the images. For ξM/I > 0, we increase the model noise
by synthetically doubling the value of the camera metadata thermal white noise. This
parameter adjustment can be interpreted as a mis-calibration of the camera sensor’s
readout profile or a malfunctioned sensor component (e.g., the source follower). Moreover,
we demonstrate the case of doubling the metadata sensor temperature.

Experiments on Denoising
We also employ Cellar and Parking Lot to examine the noise source estimators in terms
of denoising1. Therefore, we select 50 consecutive image frames per camera and dataset
that depict a static scene. In order to create pseudo-ground truth images with minimized
temporally varying noise, we follow the standard real-world denoising studies [LTO14;
ZCH16; Zha+19] and pixel-wisely average each 50 consecutive image frames. Similarly
inspired by [Zha+19], different smaller real-world noise levels are generated by averaging
n ∈ {1, 2, 4, 8, 16} consecutive image frames per sub-dataset. All in all, we obtain 20
sub-datasets for denoising (two scenes, two cameras, and five noise levels).

1Keep in mind that we need the camera metadata and therefore cannot use standard datasets.
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Figure 6.2: Noise source estimation on synthetic noise (dataset: Sim, camera: random).
Each dot represents the mean noise estimation of one image. The plots of DRNEcust. and
PCA are omitted in the case of σ̂Total due to a strong similarity with the other plots (to
avoid clutter).

6.2 Quantitative Experiments

We follow [CZA15] and evaluate our noise source estimators in terms of accuracy (Bias),
robustness (Std), and overall performance (RMS):

Bias .= |E[σ − E(σ̂)]| ,

Std .=
√︂
E[(σ̂ − E(σ̂))2],

RMS .=
√︂

Bias2(σ̂) + Std2(σ̂),

(6.2)

where σ̂ is the estimated noise level and σ is the true noise level. Smaller RMS, Bias,
and Std values indicate better performance.

6.2.1 Simulated Noise

The performance on the synthetically-added noise datasets is summarized in Tab. 6.1,
while mean noise estimation results on Sim are depicted in Fig. 6.2.

Let us focus on results from Tab. 6.1 first. Among the reference methods, we observe that
PGE-Net performs the worst due to underestimation (cf. Fig. 6.2), which agrees with
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Photon Shot Noise DCSN Readout Noise Total Noise

Bias Std RMS Bias Std RMS Bias Std RMS Bias Std RMS

Si
m

B+F - - - - - - - - - 2.51 3.00 3.91
DRNEcust. - - - - - - - - - 0.07 0.23 0.23
PCA - - - - - - - - - 0.75 1.07 1.30
PGE-Net 1.74 3.02 3.49 - - - - - - 3.23 4.36 5.43
W/o-Meta 0.01 0.75 0.75 0.35 4.23 4.24 0.35 3.40 3.42 0.50 1.22 1.32
Min-Meta 0.05 0.75 0.76 0.13 2.82 2.83 0.13 3.38 3.39 0.47 0.97 1.08
Full-Meta 0.09 0.07 0.09 0.07 0.34 0.35 0.09 0.46 0.47 0.16 0.29 0.33

K
IT

T
I

B+F - - - - - - - - - 0.00 2.09 2.09
DRNEcust. - - - - - - - - - 0.18 0.22 0.28
PCA - - - - - - - - - 1.74 1.36 2.21
PGE-Net 2.03 1.16 2.33 - - - - - - 4.00 4.80 6.24
W/o-Meta 0.16 0.67 0.69 0.18 2.36 2.37 0.61 2.33 2.41 0.32 0.98 1.04
Min-Meta 0.04 0.66 0.66 0.14 1.50 1.51 0.04 1.92 1.92 0.01 0.78 0.78
Full-Meta 0.11 0.14 0.18 0.05 0.31 0.32 0.10 0.38 0.40 0.03 0.34 0.35

TA
M

PE
R

E1
7

B+F - - - - - - - - - 2.22 4.19 4.74
DRNEcust. - - - - - - - - - 0.21 0.44 0.49
PCA - - - - - - - - - 2.81 3.04 4.14
PGE-Net 2.06 1.72 2.68 - - - - - - 3.15 3.34 4.59
W/o-Meta 0.16 0.84 0.85 0.07 3.11 3.11 0.02 3.04 3.04 0.02 1.18 1.18
Min-Meta 0.09 0.82 0.83 0.21 2.01 2.02 0.39 3.73 3.75 0.02 1.05 1.05
Full-Meta 0.10 0.13 0.16 0.09 0.29 0.30 0.17 0.37 0.41 0.05 0.43 0.43

U
da

ci
ty

B+F - - - - - - - - - 1.09 2.19 2.44
DRNEcust. - - - - - - - - - 0.24 0.50 0.54
PCA - - - - - - - - - 0.70 0.93 1.17
PGE-Net 1.58 2.05 2.59 - - - - - - 3.04 3.70 4.79
W/o-Meta 0.05 0.54 0.54 0.28 3.31 3.33 0.45 2.54 2.58 0.44 1.39 1.46
Min-Meta 0.19 0.66 0.68 0.03 2.21 2.21 0.27 2.38 2.40 0.11 0.88 0.89
Full-Meta 0.06 0.14 0.15 0.04 0.30 0.30 0.10 0.44 0.45 0.14 0.42 0.45

Table 6.1: Noise source estimation on synthetically corrupted datasets. The simulated
noise is generated on the basis of randomly simulated camera sensors. The best results
per method and dataset are highlighted in bold.

the observation from the original authors [BCM21]. We can further see that DRNE cust.

generally produces better results than PCA for all metrics, and both yield better results
than B+F. This observation matches the results from Sec. 5.3. Considering our proposed
methods, we observe that all three estimators accurately and robustly determine σTotal,
where Full-Meta is generally the best, and Full-Meta and w/o-Meta perform slightly
more robust than Min-Meta (smaller Std). In comparison to the reference methods,
Full-Meta is on par with DRNE cust.. When it comes to noise source estimation, Full-Meta
performs the best. Both accuracy and robustness span intensity levels below the 1 DN
resolution for all three noise sources in all three datasets. w/o-Meta and Min-Meta
also accurately quantify the single noise types within sub-intensity levels on average
(small bias). However, they have worse robustness in all datasets, particularly for DCSN
and RN (large Std). We considered that this might be a problem of insufficient model
capacity, but increasing the number of layers and neurons of the FCBs did not produce
any change. We further make two detailed observations: all three methods estimate PN
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the best, and Min-Meta determines the DCSN amount more robustly than w/o-Meta.
We attribute the former observation to the strong link between image intensity and PN
in the noise model, and the weaker influence of any metadata. However, only Full-Meta
obtains the camera’s full well capacity parameter, which seems to slightly improve
PN estimation. The more robust DCSN estimation performance of Min-Meta can be
ascribed to its access to temperature and exposure time metadata, since both have a
major impact on thermal noise [KW14]. The significance of metadata on separating the
noise sources is further underpinned by the minor performance on RN estimation (as the
minimal metadata only have a minor impact on the noise model) and by the prevailing
performance of Full-Meta, which has access to the largest amount of metadata.

Figure 6.2 confirms the results of Tab. 6.1. It further indicates an increasing bias
for w/o-Meta, and an increasing Std (spread of the distributions) for w/o-Meta and
Min-Meta with increasing noise levels σi∈{Total, PN, DCSN, RN}.

Computational Cost
The computation time is determined by averaging the noise estimation inference times for
13.5k Udacity image patches (i.e., 100 Udacity images). We repeated the measurements 5
times and took the average to mitigate the influence of background processes and caching.
We measured the following average runtimes per image patch: 1.4 ms (w/o-Meta), 1.3 ms
(Min-Meta), 1.3 ms (Full-Meta), 1.2 ms (DRNE cust.), and 0.1 ms (PGE-Net). The small
differences of the proposed methods are in accordance with their similar number of
network parameters. Note that PGE-Net is faster because it processes a whole image at
once, but it does not estimate as many noise sources nor is as accurate as the proposed
method(s).

Summary
In summary, only Full-Meta with access to the full set of camera metadata can accurately
and robustly quantify the contribution of each noise source. Although all variants of the
proposed method can estimate the total noise level well, the lack of camera metadata for
w/o-Meta and Min-Meta makes it difficult for them to disambiguate the origin of the
noise (i.e., to identify the noise sources). The additional incorporation of the metadata
increases the runtime marginally.

6.2.2 Real-World Noise

Next we discuss the estimation performances of the real-world DCSN/RN produced by
ICX285 and EV76C661 using Tab. 6.2 and Fig. 6.3. Note that these two noise-optimized
sensors produce lower noise levels compared to our simulated sensors (σi∈{DCSN,RN} ≤
5 DN). Both sensors lead to similar results, hence we focus on ICX285 here and consider
EV76C661 in App. B.2.3 (Tab. B.5).
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Figure 6.3: Noise source estimation on real-world noise (dataset: Sim, camera: ICX285).
Compare to Fig. 6.2.

In contrast to the fully simulated noise experiments (Tab. 6.1), the absolute DCSN
and RN estimation performances of w/o-Meta and Min-Meta seem to have improved in
Tab. 6.2. These results should not be overrated due to the generally smaller noise levels
and because the errors in the fully simulated cases started to majorly increase for noise
levels σi∈{DCSN,RN} ≥ 5 DN. However, we observe two significant relative performance
changes: Full-Meta worsened for RN, and w/o-Meta improved for DCSN/RN. We
attribute the change of both methods in the case of RN to the simulation-reality-gap of
the noise model that w/o-Meta coincidentally profits from (cf. Fig. 6.3), because both
methods are trained on simulated data only where it has been shown that Full-Meta
matches it better (Tab. 6.1). In the case of DCSN, the better performance of w/o-Meta
is misleading, since only Full-Meta seems to approximately fit the ground truth, while
the others fail (see Fig. 6.3). These errors also propagate to the overall noise estimation.
The estimations of the simulated PN have not changed significantly.

Summary
In summary, despite the simulation-to-reality gap observed in these experiments the
access to the full metadata still leads to the best results in terms of noise source
quantification, thus providing evidence for the generalization capabilities of the method.

6.3 Experiments on Real-world Platforms

We recorded datasets Cellar and Parking Lot with camera systems ICX285 and
EV76C661 in field campaigns (Fig. 6.1b). For comparison, we use B+F, DRNE cust.,
and PCA in the case of total noise and the noise model predictions with live recorded
metadata for the individual noise sources. Since we observed similar results for both
cameras and both datasets, we focus on ICX285 and Cellar here, and consider the rest
in App. B.2.3. We first evaluate the raw dataset (Sec. 6.3.1) and subsequently test three
altered versions with unexpected noise (Sec. 6.3.2).
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Photon Shot Noise DCSN Readout Noise Total Noise

Bias Std. RMS Bias Std RMS Bias Std RMS Bias Std RMS
Si

m
B+F - - - - - - - - - 3.12 1.60 3.51
DRNEcust. - - - - - - - - - 0.17 0.28 0.33
PCA - - - - - - - - - 1.11 0.82 1.38
PGE-Net 3.01 1.22 3.25 - - - - - - 3.11 1.26 3.35
W/o-Meta 0.63 0.63 0.89 0.68 0.59 0.90 0.43 0.61 0.75 0.08 0.27 0.29
Min-Meta 1.03 0.21 1.05 0.80 0.86 1.18 0.26 1.35 1.38 0.77 0.65 1.00
Full-Meta 0.14 0.09 0.17 0.15 0.45 0.47 0.82 0.95 1.25 0.04 0.19 0.20

K
IT

T
I

B+F - - - - - - - - - 0.30 0.64 0.71
DRNEcust. - - - - - - - - - 0.09 0.32 0.33
PCA - - - - - - - - - 0.53 0.68 0.86
PGE-Net 2.51 1.02 2.71 - - - - - - 3.03 1.50 3.41
W/o-Meta 0.66 0.57 0.88 0.53 0.60 0.80 0.03 0.64 0.64 0.10 0.03 0.11
Min-Meta 0.83 0.19 0.85 0.69 0.78 1.05 0.02 1.27 1.27 0.12 0.31 0.34
Full-Meta 0.10 0.12 0.16 0.16 0.49 0.51 0.90 1.10 1.43 0.45 0.76 0.89

TA
M

PE
R

E1
7

B+F - - - - - - - - - 2.71 3.54 4.43
DRNEcust. - - - - - - - - - 0.37 0.40 0.55
PCA - - - - - - - - - 3.07 2.77 4.14
PGE-Net 3.03 1.35 3.32 - - - - - - 2.74 1.71 3.23
W/o-Meta 0.46 0.68 0.82 0.83 0.55 1.00 0.74 0.76 1.06 0.26 0.53 0.59
Min-Meta 0.95 0.28 0.99 0.85 0.82 1.18 0.37 1.36 1.41 0.59 0.78 0.98
Full-Meta 0.22 0.14 0.26 0.14 0.41 0.44 0.85 0.87 1.21 0.13 0.36 0.38

U
da

ci
ty

B+F - - - - - - - - - 0.33 0.58 0.66
DRNEcust. - - - - - - - - - 0.01 0.53 0.53
PCA - - - - - - - - - 0.14 0.63 0.64
PGE-Net 2.44 1.02 2.64 - - - - - - 3.00 1.48 3.35
W/o-Meta 0.44 0.49 0.66 0.64 0.57 0.85 0.27 0.65 0.70 0.04 0.27 0.27
Min-Meta 0.63 0.21 0.66 0.76 0.84 1.14 0.28 1.33 1.36 0.41 0.68 0.79
Full-Meta 0.04 0.10 0.11 0.17 0.44 0.47 0.87 0.97 1.30 0.25 0.30 0.39

Table 6.2: Noise source estimation on real-world noise extracted from a Sony ICX285
CCD sensor. DCSN and RN with corresponding metadata were recorded from the camera.
PN was generated synthetically using the real metadata. The best results per method and
dataset are highlighted in bold.

6.3.1 Expected Noise (σModel ≈ σImage)

Let us first focus on the noise source identification (top row in Fig. 6.4). We see that Full-
Meta matches the noise model best with |σ̂Full-Meta − σ̂Noise Model| < 1 DN in each noise
case, followed by Min-Meta and w/o-Meta. These results are generally in accordance to
the simulated noise evaluations in Sec. 6.2.1. The only significant difference we observe is
that Min-Meta matches the relative value range of the PN noise model curve better than
w/o-Meta (smaller Std). This can be explained with the camera gain parameter that
Min-Meta obtains as one key parameter in the noise model to determine PN (already
indicated on the simulated ICX285 in Tab. 6.2). The residual noise plot depicts only a
small mismatch between the noise model and the detected image noise for Full-Meta and
Min-Meta. Only the nearly constant value of w/o-Meta indicates that it has not learned
to detect any residual noises. From this residual noise estimation of Full-Meta (and
later addressed observations that Full-Meta is able to quantify residual noise correctly),
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Figure 6.4: Noise source estimation with and without unexpected noise (dataset: Cellar,
camera: ICX285). Top row: Estimation on the uncorrupted dataset. Middle row: Image
noise increased by random Gaussian noise N (µ = 0, σ = 5 DN). Bottom row: Model noise
increased by doubling camera parameter thermal white noise.

we assume for Cellar that

ξM/I ≈ 0 (4.3)=⇒ σModel ≈ σImage. (6.3)

In the total noise inspection (Fig. 6.5), we consider only Full-Meta as the overall best
of our proposed methods. We see from both plots that Full-Meta produces similar
estimations as the reference methods. Hence, we consider its results as plausible.

Summary
In summary, the results agree with those of the synthetic noise experiments, meaning
that our model is applicable to an actual real-world robotic platform. The more metadata
are available, the better the noise source estimation of all noise types (with Full-Meta
as the best method).

6.3.2 Unexpected Noise (σModel ̸= σImage)

Here we evaluate three scenarios where we synthetically increase image noise or model
noise to reach ξM/I < 0 (i.e., σModel < σImage) or ξM/I > 0 (i.e., σModel > σImage),
respectively. We investigate these scenarios on the basis of the raw Cellar dataset for
that we assume that the applied noise model follows the actual image noise (i.e., (6.3):
ξM/I ≈ 0).

One scenario of the form σModel < σImage

In our first scenario we increase the image noise by adding randomly sampled Gaussian
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Figure 6.5: Total noise estimation (datasets: Cellar and Parking Lot, camera: ICX285).
The left plot complements Fig. 6.4.

noise from N (µ = 0, σN = 5 DN) to the raw Cellar images. Note that this Gaussian
noise is statistically independent from the other image noise sources and so its noise
level adds in quadrature to the new total image noise level σImage+N (cf. (4.2)). We
calculated the resulting ground truth ξM/I as

ξM/I
(4.3)= σModel − σImage+N

(4.2)= σModel −
√︂

σ2
Image + σ2

N
(6.3)
≈ σModel −

√︂
σ2

Model + σ2
Gauss.

(6.4)

The middle row of Fig. 6.4 illustrates the results. We expect only a reduction of ξM/I

and unchanged values otherwise, with respect to the first row. It can be seen that
only Full-Meta captures the unexpected noise (note the initial error of ≈ 0.5 DN is
propagated), whereas w/o-Meta remains unchanged (cf. Sec. 6.3.1) and Min-Meta
incorrectly estimate increased values. Furthermore, w/o-Meta and Min-Meta split σN

among the other noise sources (especially Min-Meta increases σ̂RN significantly). Only
Full-Meta maintains its noise source estimated values.

Two scenarios of the form σModel > σImage

In this second test we increase the model noise by doubling the metadata thermal white
noise. This parameter only affects Full-Meta. The new pseudo ground truth noise levels
are calculated using the noise model. In a third test, we prepared an example with
a doubled metadata sensor temperature, however, without new findings. Thus, it is
treated in App. B.10.

The results are shown in the bottom row of Fig. 6.4. In this case, we expect an
increasing σ̂RN in accordance to the increased thermal white noise, an increasing ξ̂M/I

(which indicates the unexpected higher model noise) and unchanged values otherwise.
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Number of raw images for averaging

Method 1 2 4 8 16

C
el

la
r

Raw 34.75 / 0.7730 37.61 / 0.8703 40.42 / 0.9322 43.21 / 0.9680 46.13 / 0.9872
DRNEcust. + BM3D 43.01 / 0.9803 44.47 / 0.9853 45.53 / 0.9886 46.49 / 0.9913 47.59 / 0.9932
w/o-Meta + BM3D 41.42 / 0.9671 43.83 / 0.9817 45.01 / 0.9861 46.26 / 0.9905 47.56 / 0.9930
Min-Meta + BM3D 43.30 / 0.9818 44.72 / 0.9864 45.67 / 0.9899 46.49 / 0.9912 47.32 / 0.9922
Full-Meta + BM3D 43.74 / 0.9839 45.00 / 0.9875 45.99 / 0.9901 46.68 / 0.9916 47.63 / 0.9934
DRNEcust. + NLM 42.46 / 0.9793 43.91 / 0.9841 45.05 / 0.9874 46.09 / 0.9902 47.32 / 0.9925
w/o-Meta + NLM 41.08 / 0.9701 43.33 / 0.9812 44.66 / 0.9322 45.94 / 0.9897 47.28 / 0.9924
Min-Meta + NLM 42.77 / 0.9809 44.18 / 0.9852 45.18 / 0.9879 46.09 / 0.9902 46.92 / 0.9911
Full-Meta + NLM 43.19 / 0.9828 44.47 / 0.9863 45.50 / 0.9889 46.26 / 0.9905 47.35 / 0.9927
FBI-Denoiser 41.69 / 0.9830 42.07 / 0.9851 42.29 / 0.9865 42.41 / 0.9871 42.62 / 0.9880
Blind2Unblind 43.02 / 0.9515 43.67 / 0.9574 44.10 / 0.9616 44.41 / 0.9643 44.77 / 0.9660

Pa
rk

in
g

Lo
t

Raw 31.09 / 0.7890 32.34 / 0.8780 33.29 / 0.9330 34.07 / 0.9625 35.24 / 0.9786
DRNEcust. + BM3D 33.39 / 0.9546 33.78 / 0.9639 34.11 / 0.9713 34.51 / 0.9770 35.39 / 0.9820
w/o-Meta + BM3D 33.04 / 0.9394 33.70 / 0.9612 34.07 / 0.9705 34.50 / 0.9770 35.37 / 0.9817
Min-Meta + BM3D 33.47 / 0.9573 33.83 / 0.9651 34.11 / 0.9710 34.44 / 0.9749 35.20 / 0.9780
Full-Meta + BM3D 33.40 / 0.9553 33.81 / 0.9648 34.11 / 0.9715 34.51 / 0.9771 35.40 / 0.9823
DRNEcust. + NLM 33.14 / 0.9464 33.56 / 0.9567 33.92 / 0.9655 34.36 / 0.9731 35.29 / 0.9799
w/o-Meta + NLM 32.93 / 0.7890 33.52 / 0.9559 33.91 / 0.9657 34.37 / 0.9738 35.26 / 0.9794
Min-Meta + NLM 33.11 / 0.9447 33.52 / 0.9547 33.84 / 0.9622 34.17 / 0.9670 34.88 / 0.9709
Full-Meta + NLM 33.14 / 0.9468 33.56 / 0.9566 33.92 / 0.9657 34.37 / 0.9734 35.31 / 0.9804
FBI-Denoiser 32.52 / 0.9450 32.67 / 0.9522 32.76 / 0.9573 32.87 / 0.9604 33.05 / 0.9630
Blind2Unblind 33.61 / 0.9156 33.86 / 0.9282 34.05 / 0.9379 34.27 / 0.9441 34.74 / 0.9488

Table 6.3: Denoising performance for real-world images (camera: ICX 285). Best PSNR
(dB ↑) and SSIM (↑) scores per dataset, noise level, and metric are highlighted in bold,
the second best are underlined (in the case of equal numbers, the decision is made on the
basis of further decimal places).

We can see that Full-Meta meets these expectations (note the initial propagated error
here as well).

Summary
We conclude that unexpected noise in either images or from metadata could only be
reliably quantified with the full set of variable camera metadata.

6.4 Experiments on Real-World Image Denoising

The availability of camera metadata can improve the total image noise estimation (see
Tabs. 6.1 and 6.2), which could also be beneficial for further downstream tasks besides
camera readjustment, such as image denoising2.

We investigate the effect of more accurate total noise level estimation on denoising on the
example of two traditional denoisers that input expected noise levels (BM3D [Dab+07]
and non-local means alias NLM [BCM05]) and compare results to two state-of-the-
art learning-based denoisers (FBI-Denoiser [BCM21] and Blind2Unblind [Wan+22a]).
BM3D and NLM both assume Gaussian noise, the FBI denoiser internally uses PGE-Net
for Poisson-Gaussian noise estimation, and Blind2Unblind does not use explicit noise level

2Although we use the symptom-fighting application of denoising as a rationale for noise source
estimation, denoising is the most studied application for noise level estimation in the literature and
therefore best suited to assess the effects of estimating total noise more accurately.
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representations, nor does it assume specific noise distributions. We apply all denoisers
with default values and pre-trained weights provided by the respective authors (we select
respective weights for real-noise images that lead to the best results for our datasets, i.e.,
“DND”-weights for FBI-Denoiser and “raw RGB”-weights for Blind2Unblind). For a fair
comparison, all denoisers are applied to whole images. Denoising results are compared
using peak signal-to-noise ratio (PSNR [dB]) and structural similarity index measure
(SSIM) [Wan+04].

Table 6.3 presents quantitative results. For Cellar , Full-Meta + BM3D leads to the
best results in all cases, followed by Min-Meta + BM3D for cases of higher noise, and
DRNE cust. + BM3D for lower noise cases. We observe similar results in combination
with the NLM denoiser. This is in accordance with the results from Tab. 6.1 that
DRNE cust. and Full-Meta perform best and in accordance with Tab. 6.2 that Min-Meta
is not far off, but it counteracts the non-intuitive results from Tab. 6.2 that w/o-Meta
occasionally leads to more accurate total noise estimations. The denoising results rather
underpin the intuition that the more metadata available for the noise source estimators,
the better the total noise estimation (with the exception of the second best DRNE cust.

in lower noise cases). The learning-based denoisers perform less accurate than BM3D,
which differs from the results reported in their respective original studies, as these
denoisers were neither trained on large and diverse real-world datasets (with the weights
we employ) nor fine-tuned to our datasets. The performance gap between the traditional
and the learning-based denoisers increase with decreasing noise level (i.e., with increasing
number of raw images used for averaging).

We note similar results for the Parking Lot dataset with the difference that Blind2Unblind
and Min-Meta both perform best in the two highest noise cases (with respect to PSNR
or SSIM, respectively). However, the better performance of Min-Meta compared to
Full-Meta may be specific to BM3D, as Full-Meta is relatively more accurate when
combined with NLM. Experiments with the EV76C661 camera produce similar results
and can be found in App. B.2.4.

Figure 6.6 illustrates qualitative results for both datasets using four averaged images
as an example. It can be seen that the FullMeta+BM3D combination is the best at
visually removing noise while preserving image detail, closely followed by DRNE+BM3D
(e.g., FullMeta+BM3D restores the edges of the shadows less pixelated in the first row
of Fig. 6.6). In contrast, FBI-Denoiser and Blind2Unblind visually remove noise best
overall, but smooth the entire image (both, see especially bottom rows in Fig. 6.6) and
introduce square artifacts (Blind2Unblind). NLM tends to generally retain noise at
edges (e.g., around the door handle in the first row and around the silver frame in the
third row of Fig. 6.6).
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DRNE+BM3D
(42.71/0.9884)

Noisy
(39.45/0.9331)

FullMeta+BM3D
(42.90/0.9897)

DRNE+NLM
(42.45/0.9870)

FullMeta+NLM
(42.66/0.9885)

FBI-Denoiser
(40.54/0.9857)

Blind2Unblind
(42.80/0.9475)

Noisy
(26.18/0.9082)

DRNE+BM3D
(26.26/0.9477)

FullMeta+BM3D
(26.27/0.9499)

DRNE+NLM
(26.25/0.9437)

FullMeta+NLM
(26.26/0.9445)

FBI-Denoiser
(26.57/0.9402)

Blind2Unblind
(27.90/0.9095)

Figure 6.6: Exemplary denoising results for real-world noised images (four averaged
images, top rows: Cellar, bottom rows: Parking Lot). Brightness and contrast are adapted
for better visualization. FullMeta+BM3D best removes the noise while preserving image
details. In contrast, FBI-Denoiser and Blind2Unblind remove noise best visually, but
smooth the entire image (both) and introduce square artifacts (Blind2Unblind). NLM
tends to retain noise at edges.

Summary
In summary, Full-Meta in combination with the traditional BM3D denoiser leads to the
best denoising results in most cases. This supports previous findings that Full-Meta
generally estimates the total noise level best and that noise estimation can benefit from
camera metadata.

6.5 Camera Metadata Sensitivity Analysis

In this section, we investigate the individual influence of camera metadata on total
noise level estimations. Building upon previous results, we focus only on Full-Meta and
compare it to the theoretical noise model.

Let us first detail the experiment. We conduct a black box analysis by uniformly
sampling different input values from their parameter spaces and observing respective
outputs (i.e., the noise estimations). One input parameter is sampled at a time and
other parameters are fixed to their respective maximum value (to aim for sufficiently
high noise levels). Note that the only image feature the noise model depends on is the
image intensity, while Full-Meta has learned to employ more image features (at least
image noise). As we focus on the influence of camera metadata only, we only input
uncorrupted homogeneous images with uniform intensities.
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Uniform samples of parameter value ranges

Min 1 2 3 4 5 6 7 8 Max
N

oi
se

M
od

el
Mean Img Intensity 5.54 9.87 9.94 10.0 10.1 10.1 10.2 10.2 10.3 6.1

Minimal Metadata
Camera Gain 0.82 1.86 2.88 3.92 4.94 5.96 6.99 8.02 9.02 10.1
Exposure Time 4.02 5.06 5.93 6.67 7.35 7.96 8.53 9.08 9.60 10.1
Sensor Temperature 3.69 3.76 3.86 4.03 4.31 4.77 5.49 6.56 8.05 10.1

Full Metadata
Dark Signal FoM 3.96 5.02 5.89 6.65 7.34 7.95 8.53 9.06 9.57 10.1
Full Well Capacity 118.4 69.6 41.4 28.6 21.8 17.6 14.8 12.8 11.3 10.1
Pixel Clock Rate⋆ 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33
Sense Node (SN) Gain 12.9 11.7 11.1 10.8 10.6 10.4 10.3 10.2 10.1 10.1
SN Reset Factor 9.56 9.56 9.58 9.59 9.67 9.71 9.76 9.85 9.95 10.1
Sensor Pixel Size 4.05 4.34 4.80 5.38 6.05 6.79 7.57 8.39 9.21 10.1
Thermal Wh. Noise⋆⋆ 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.1 10.1

N
oi

se
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Es
tim
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a) Mean Img Intensity 7.05 9.57 9.87 9.98 10.1 10.1 10.1 9.95 9.56 8.52

Minimal Metadata
Camera Gain 0.90 1.70 2.56 3.53 4.15 5.11 6.61 7.84 8.86 10.1
Exposure Time 5.31 6.07 6.70 7.24 7.77 8.26 8.67 9.03 9.39 10.1
Sensor Temperature 4.34 4.49 4.71 4.98 5.34 5.85 6.36 7.23 8.48 10.1

Full Metadata
Dark Signal FoM 4.76 6.17 6.47 7.20 7.71 8.19 8.68 9.19 9.78 10.1
Full Well Capacity 167.2 62.7 34.4 27.7 21.4 16.3 14.7 13.03 11.5 10.1
Pixel Clock Rate⋆ 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22
Sense Node (SN) Gain 13.5 12.8 12.1 11.4 10.8 10.6 10.5 10.4 10.2 10.1
SN Reset Factor 8.23 8.44 8.64 8.77 8.85 8.94 9.07 9.38 9.72 10.1
Sensor Pixel Size 4.88 5.22 5.56 6.01 6.51 7.05 7.72 8.39 9.08 10.1
Thermal Wh. Noise⋆⋆ 9.46 9.54 9.71 9.87 10.0 10.1 10.1 10.1 10.1 10.1

Table 6.4: Input-output sensitivity analysis of Full-Meta (bottom) compared to the noise
model (top). Input: One input parameter is sampled at a time while the rest are fixed
to respective maximum values (worst case analysis) and the (uncorrupted) mean image
intensity to 128 DN (to avoid saturation). Parameter value ranges are provided in Tab. 4.1
and concrete sampled values in Tab. B.3. Output: Estimated total noise level (table cells,
in DN) per input parameter configuration. ⋆ : The influence of the pixel clock rate highly
depends on metadata that we fixed during the experiments, such as the correlated double
sampling dominant time constant. ⋆⋆ : Simulated CCD sensor (CMOS sensor otherwise).

In the case of Full-Meta, we further omit the residual noise estimation ξM/I to calculate
the total noise level, as a mismatch between image noise and camera metadata is
expected. Finally, we compare the estimated noise levels of both models to quantify
the impact of each metadata and whether Full-Meta has learned the theoretical model
(we consider deviations in [1, 2] DN as minor but worth noting and those > 2 DN as
significant).

We first examine the theoretical effect of each metadata on the estimated noise level
according to the noise model. The top part of Tab. 6.4 depicts the results. For each
row, the bigger the difference between estimated noise levels in the “Min” and “Max”
columns, the more important the parameter. The table shows that the full well capacity
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is most important because it determines the photon shot noise in the noise model,
followed by the camera gain that amplifies noise. The pixel clock rate, the thermal white
noise, and the sense node reset factor, which all contribute to readout noise, have a
negligible effect on the estimated noise level. Note that these three parameters are only
insignificant for the considered set of fixed parameters in our experiments (cf. Tab. B.1).
To illustrate, for instance, the influence of the pixel clock rate on the total noise level
strongly depends on the correlated double sampling dominant time constant [KW14].

Comparing the top part with the bottom part in Tab. 6.4, the Full-Meta model has
generally learned the relations between input parameters and the noise levels, but with
some exceptions (colored values). Let us consider the two severe model deviations
first (red values). The first differences are the estimated noise levels for minimum and
maximum mean image intensities. This corresponds to the reduced noise estimation
accuracy that we observed for under- and overexposed images (see App. B.2.3). The
second deviation can be observed for full well capacities ≤ 24k electrons. These
corresponding noise levels are most different from the other noise levels learned by
Full-Meta (that range between about [0, 13] DN). The farther the noise values depart
from this range, the larger the observed model deviation. This indicates that these noise
levels are underrepresented in the training data. Minor deviations from the noise model
(orange values) are limited to small respective parameter values, with the exception of
the sensor temperature. However, we do not see a specific pattern in these deviations;
they are mostly slightly above 1 DN.

Summary
In conclusion, the Full-Meta model learned to capture the theoretical camera metadata
relations, with notable exceptions for low and high exposed images, and large noise
levels resulting from camera full well capacities ≤ 24k electrons. The full well capacity
and the camera gain could be identified as the most significant camera metadata, while
pixel clock rate, sense nose reset factor, and thermal white noise could be neglected.

6.6 Discussion

In this section, we briefly address shortcomings and potential extensions of this chapter.

Camera Systems
We analyzed the proposed noise source estimators on two real-world camera systems,
which show low noise statistics. However, we tried to investigate two more camera types
(Realsense D435i RGB [Cor23] and Huawei P30 [Hua23] cameras), but we reached the
point where camera manufacturers would only provide camera metadata for private
usage behind a non-disclosure agreement.
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Real-World Noise Extraction
The applied real-noise post-processing limits the real-world data quality because,
although the real-world noise distribution is captured, the final noise is sampled from a
rectified distribution in order to obtain unbiased noise with correct noise level labels.
In addition, the generated temperature range and thus the induced DCSN is limited
because we did not intend to damage the camera systems (we operated close to the
suggested maximum working temperatures).

It is also worth noting that noise can be identified more precisely by measuring the
currents at the respective places in the camera system processing chain (cf. for instance
[Goi+10]). But this requires a laboratory environment with specialized equipment. Both
are undesired for realistic experiments in the application domain.

Denoising Datasets
We provided datasets with 50 frames per setting, which might limit the reliability of
the results, but similar to the blur estimation datasets, we kept the size small to limit
the computation time required for traditional denoising. Future work could consider
large-scale experiments.

Abdelhamed et al. [ALB18] further addressed two common shortcomings when creating
real-world denoising datasets with ground truth data obtained by image averaging:

(i) GT images may be blurry if there is misalignment between images in the averaged
image sequence (e.g., in non-static scenes), and

(ii) GT images may be biased if the averaged noise has non-zero-mean (e.g., for clipped
pixel intensities in under- and overexposed areas).

Scene misalignment can be tackled by image registration [Zha+19]. In contrast to
static scenes, registration increases the dataset variability, but at the cost of registration
inaccuracies and thus GT data quality. Regarding the second shortcoming, we observe
overexposure for the ICX285 Parking Lot dataset (near light tubes) and for the
EV76C661 Parking Lot dataset (large image areas overexposed from illumination
outside the parking garage). Both limit the quality of the datasets, but are unavoidable
for the application of traditional cameras to real scenes with high dynamic range.

Noise Source Estimator Architecture
Runtime tests indicate that the PGE-Net’s U-Net architecture performs significantly
faster compared to a standard CNN architecture, which could be investigated to improve
the noise source estimators. Further choices for combining information from image and
metadata are detailed in Sec. 2.3.2 (e.g., encode metadata in additional image channels).
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Camera Metadata Sensitivity Analysis
We tailored our analysis to uncorrupted, homogeneous images, but the noise source
estimators could have learned useful relations between metadata and image quality
attributes. Future work could examine more attributes, such as texture or contrast
(more details on image attributes in Sec. 3.2).

According to the sensitivity analysis results in Tab. 6.4, we also propose a retraining
of the noise source estimators, when working with cameras whose full well capacities
≤ 24k electrons. Note this also holds for the camera systems we employed (cf. Tab. A.1).
However, we would like to point out that we inspected maximum noise levels in the
sensitivity analysis and that the effect of the full well capacity parameters on the noise
estimation can be expected to be smaller in most cases.

Another more common approach to analyze the sensitivity of DNN’s input data is
“SHapley Additive exPlanations” (SHAP) [LL17], but this procedure is not yet applicable
to multiple input branches with heterogeneous shapes [Joh23].

6.7 Summary

In this chapter, we evaluated the idea of noise source estimation from camera metadata
and a captured image to determine the noise contribution of different noise sources from
within a camera system. Noise source estimation is considered the second part of our
proposed condition monitoring module.

We first proposed (i) four datasets with ground truth labels and (ii) two datasets with
pseudo ground truth labels (Sec. 6.1). The former datasets (i) were augmented with
both synthetic noise generated by the theoretical noise model (using randomly sampled
camera metadata) and real-world noise extracted from two camera systems. The two
datasets with pseudo ground truth (ii) were acquired in real-world field campaigns and
include unprocessed real-world noise from the same two cameras. Multiple static image
sequences from (ii) are further selected and processed for denoising experiments.

From the quantitative results in Sec. 6.2, we found that only the model with access
to the full set of camera metadata (Full-Meta) could accurately and robustly quantify
the contribution of each noise source. Although all variants of the proposed method
can estimate total noise well, the lack of camera metadata for w/o-Meta and Min-Meta
makes it difficult to disambiguate the different noise sources. We further demonstrated
that the incorporation of metadata increases the inference time marginally.

Additional experiments on the real-world platforms (Sec. 6.3) supported the quantitative
results and further underpinned the superiority of the Full-Meta noise source estimator.
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In Sec. 6.4, we investigated a potential positive impact from the improved total noise
estimation on the downstream task of image denoising by comparing two traditional
denoisers (coupled with our noise source estimators) with two modern learning-based
denoisers on quantitative and qualitative denoising results. Combining Full-Meta with
the traditional BM3D denoiser yielded the best results and provided additional evidence
that Full-Meta estimates the noise level best among the tested noise estimators.

In a final experiment (Sec. 6.5), we analyzed the effect of each camera metadata on
noise level estimation by comparing Full-Meta with the theoretical noise model. We
found that Full-Meta learned to capture the theoretical camera metadata relations with
notable exceptions for potentially under- and overexposed images, and large noise levels
resulting from camera full well capacities ≤ 24k electrons. The full well capacity and
the camera gain were identified as the most significant camera metadata, while pixel
clock rate, sense nose reset factor, and thermal white noise were identified as the least
significant, with a negligible effect.

Lastly, we addressed shortcomings and potential extensions in Sec. 6.6. Among others,
we discussed means to improve data quality of extracted real-world noise (offset control,
noise measurement on a current level), potential improvements for noise source estimation
(U-Net architecture, other combinations of image and metadata), and further experiments
on camera metadata analysis (more image quality attributes). Moreover, we referred to
difficulties on testing additional camera systems (undisclosed metadata) and addressed
common pitfalls for creating denoising datasets from which ours are also partially affected
(under- and overexposed images lead to biased ground truth).





CHAPTER 7

Evaluation: Integrated
Self-Health-Maintenance Framework

In this chapter we evaluate the combination of online blur/ noise estimators and offline
empirical input-output performance curves (IOPCs) for the practical application to
control image quality and hence optimize the system’s performance. In Sec. 7.1, we
first determine exemplary IOPCs that relate object detection performances to blur
and noise effects of different severities. We then propose a simulated and a real-world
scenario (Sec. 7.2) on which we demonstrate the application of the IOPCs (Sec. 7.3).
Subsequently, the framework’s required computational cost on stationary and mobile
hardware is investigated in Sec. 7.4. Finally, this chapter is concluded with a discussion
(Sec. 7.5) and a summary (Sec. 7.6). This chapter is partially published in [Wis+23b].

7.1 Object Detection Sensitivity Analysis

We choose object detection as our exemplary target application and specifically examine
YOLOv4 and Faster R-CNN (cf. Sec. 4.4.1) for the object classes “car” and “pedestrian”
on Udacity data. Our focus lies on actions tackling linear motion blur (LinMB) here
because object detectors are substantially more sensitive to LinMB than to noise (Figs. 7.1
and 7.2), and there is abundant motion blur in standard datasets like Udacity (Fig. 5.6).
We also neglect photon shot noise and demonstrate the procedure with sensor noise only
(dark current shot noise plus readout noise), so that filtered photon noise does not lower
the noise level estimation of simultaneously occurring blur and noise1. Unless otherwise
stated, we apply the settings from Sec. 5.1.1 for blur and noise generation. Furthermore,
the improved blur estimation presented in Sec. 5.5 is used to ensure better estimations
in presence of high noise.

Figure 7.1 shows exemplary IOPCs for isolated and Fig. 7.2 for combined blur and
noise occurrences. It can be seen that both object detectors and object classes are each
affected differently by isolated and combined blur and noise.

1Note that photon shot noise in images can be mitigated in reality, for instance, by using a camera
with a large full well capacity and a well-illuminated scene (i.e., a strong signal in the image).
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Figure 7.1: Influence of isolated blur and noise on object detection performance. Both
input-output profiles depend on the actual estimated corruption levels. Noise levels and
MTFs (blur sizes d [px] in black) are estimated by the respective CNN methods and
the MTFs depict means for horizontal and vertical measurements at frequency f = 0.1
(averaged for four motion blur directions). Object detection performances are measured in
terms of average precision (AP).
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Figure 7.2: Influence of combined blur and noise on object detection performance.
Compare to their one-dimensional counterparts in Fig. 7.1. The red and orange arrows
demonstrate two examples of exposure time texp / ISO-gain trade-off paths (see text in
Sec. 7.3).

Moreover, the relation from the blur or noise corruptions to the detection performances
might be non-trivial and non-linear (e.g., YOLOv4 car detection in presence of LinMB),
since we do not really know what machine learning methods learn.
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7.2 Datasets

We demonstrate the framework on the example of YOLOv4 car-detection in a modified
Sim scene and in a real-world Parking Lot scene.

Sim
The following augmentation steps are applied to the uncorrupted Sim scene (cf.
Sec. 5.1.1):

(i) Linear Motion Blur and Sensor Noise Corruptions.
To generate blur, we include camera movement of a real-world trajectory (extracted
from a navigation module of a real ICX285 camera [Bör+17]) with a speed of
v ≈ 760 px/s at the distance of the car objects and set the simulated exposure
time to texp = 4 ms. This causes linear motion blur of size d = v · texp =
0.76 px/ms · 4 ms ≈ 3 px. In the simulation, the blurred image is realized by
sampling and averaging 100 frames per exposure time span (similar to [CFZ19]).

To generate noise, we apply our noise model (Sec. 3.2.2) with parameters from the
ICX285 camera (Tab. A.1), a camera temperature of T = 330 K, and raw noise
amplification to reach σ = 20 DN. As for the IOPCs, photon shot noise is omitted
(cf. Sec. 7.1).

(ii) ISO Gain Alteration.
We first estimate noise and blur statistics from the images simulated in (i) and
apply these to our YOLOv4 car-detection IOPC (left plot of Fig. 7.2). The result
is a factor α⋆ (4.7) by which we alter the simulated camera ISO gain, which is
implemented as a noise and image intensity amplification factor.

(iii) Exposure Time Compensation.
As we did not investigate the influence of image intensity on object detection
performance, we subsequently alter texp (and the simulated intensity amplification
factor) by the factor α⋆ to restore the original intensity level.

Finally, together with the uncorrupted Sim images, we obtain four Sim sub-datasets
(Fig. 7.3).

Parking Lot
This dataset depicts the same scene as the eponymous dataset from Sec. 6.1.2. The
images are recorded by navigating our camera system on the robotic platform (Fig. 5.4a)
through the low-illuminated parking garage with fixed initial texp = 8 ms, ISO = 100,
and default camera parameter values for the rest (Fig. 7.4a). To make the car-detection
performance curve applicable, we target (i) a constant linear motion blur induced by
a constant speed of the platform and (ii) a low noise level with a low initial ISO gain
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(a) Original (b) Motion Blur + Sensor Noise

(c) ISO Gain Alteration (d) Exposure Time Compensation

Figure 7.3: Self-health-maintenance framework evaluation on synthetic data (Sim). (a):
Uncorrupted Sim scene. (b): Linear motion blur and sensor noise are added to the
scene (texp = 4 ms, ISO = 400). (c) and (d): Exemplary camera ISO gain reduction
and exposure time increase that resulted from applying blur and noise estimations to
an object detection performance profile in order to maximize car detection performance
(texp = 16 ms, ISO = 100).

(a) Fixed Cam. Parameters (b) Default Cam. Control (c) Proposed Cam. Control

Figure 7.4: Self-health-maintenance framework evaluation on real-world data (Parking
Lot). Brightness and contrast are adapted for better visualization. (a): Fixed default
exposure time (texp) and ISO gain camera parameters (texp = 8 ms, ISO = 100). (b):
Parameters adjusted by default camera control (texp = 17 ms, ISO = 100). (c): Parameters
adjusted by proposed camera control (texp = 3.7 ms, ISO = 224).

to mitigate the undesired impact of photon shot noise. Analogously, the experiment
was repeated with the camera’s built-in texp / ISO gain controller [Gmb21] enabled
(Fig. 7.4b) and with our proposed parameter controller (Fig. 7.4c). The camera parameter
controllers were automatically triggered on the first image frame at t = 0 ms. Finally, we
sampled the video sequences for each configuration such that each one contains 200± 5
cars, which we manually annotated for YOLOv4 object detection.
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σ̂ = 5.0 DN ˆ︁MTF = 0.95 σ̂ = 5.0 DN ˆ︁MTF = 0.71

Figure 7.5: Maximizing object detection by trading off blur and noise (Sim). Application
of the proposed framework to detect cars using YOLOv4 on Sim data suffering from linear
motion blur and sensor noise. The original scene is first imaged with an ISO gain of 400
(leading to sensor noise of σ ≈ 20 DN) and an exposure time of 4 ms. As a result, the car
recognition performance of YOLOv4 decreases drastically (top-right image). Applying
the optimal α⋆ ≈ 0.25 (according to the performance profile from Fig. 7.2) improves car
detection (bottom-left image). Finally, we divide the exposure time by α⋆ to compensate
for the missing light, which improves overall detection slightly (bottom-right). Hence,
noise is reduced from σ ≈ 20 DN to 5 DN and blur is increased from d ≈ 3 px to 12 px
while the average detection rate increases from p̄ ≈ 0.26 to p̄ ≈ 0.49.

7.3 Optimizing Object Detection by Trading off Blur
and Noise

We first demonstrate the functionality of our framework on the Sim dataset and thereafter
evaluate the framework integrated in the ICX285 camera system on the real-world
Parking Lot dataset.

Sim
We apply this framework in the Sim environment on a concrete example of YOLOv4 car
detection with data corrupted by linear motion blur and sensor noise (Fig. 7.5). The
first image in Fig. 7.5 depicts the scene in uncorrupted conditions (without noise or
blur), for reference.
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Here the first car is detected fairly (p = 0.53) and the second one much better (p = 0.97).
While the CNN noise estimator detects a small noise level of σ̂ = 1 DN by mistake,
the MTF estimation is nearly ideal (ˆ︁MTF = 0.99). Subsequently, we applied motion
blur and sensor noise (d = 3 px and σ = 20 DN). In this situation (top-right image in
Fig. 7.5), blur and noise are estimated within the expected error ranges (d̂old ≈ 3 px and
σ̂ = 20 DN), but the cars are detected worse on average (p̄ ≈ 0.26).

In the next step, we determine α⋆: knowing the relation between motion blur sizes
and estimated MTFs (first plot in Fig. 7.1) and the estimated noise level, we target an
ˆ︁MTF ∈ [0.7, 0.8], which corresponds to approximately d̂ ∈ [11, 12] px (cf. first plot in
Fig. 7.2). We choose dtarget ≈ 12 px, hence, α⋆ = d̂old/dtarget ≈ 3 px/12 px = 0.25. We
then reduce the ISO gain by the factor α⋆ and show an intermediate image without
increasing texp (bottom-left image of Fig. 7.5). One car is now detected more confidently
while blur and noise are still estimated within the expected error ranges. Following,
we increase texp by the factor α⋆ to restore the original intensity level, producing the
bottom-right image of Fig. 7.5. In this last step, the total detection score slightly
increases (p̄ ≈ 0.49) despite the likewise motion blur amplification (d ≈ d̂ = 12 px). The
steps taken are marked with red arrows on the heat plot in Fig. 7.2.

Parking Lot
For this real-world example, we employed a mobile computer doing the real-time
calculations (CPU: Intel i7-9850H, GPU: NVIDIA MX150). With this setup, we
demonstrate another example of the non-monotonic YOLOv4–car-detection heat map
of Fig. 7.2, marked with an orange arrow. The results are shown in Fig. 7.6.

The built-in camera controller tracks a mean image intensity level of 50% and prioritizes
changing texp over ISO gain as long as texp ≤ 500 ms. Hence, the built-in controller
constantly changed texp only, did not account for the motion blur, and resulted in an
AP car detection score of 26.08%.

Our proposed framework took about 3 s to estimate (σ̂, ˆ︁MTF) = (0.1, 0.57) (longer than
in Ch. 5 due to the weaker mobile hardware, but still interactive / real-time). With
initially fixed camera parameters (i.e., while t < 3 s), YOLOv4 reached an AP score of
47.54%. The system then decided to decrease the motion blur at the expense of slightly
increasing the noise to move to higher AP detection values (brighter part of the heat
map). Inspecting the AP curves (first plot in Fig. 7.1), ˆ︁MTF = 0.57 corresponds to
d̂ = 15 px, and the system targeted ˆ︁MTF ∈ [0.8, 0.9] (high values of the heat map),
which corresponds to a smaller motion blur of d̂ ≈ 7 px. Two steps were taken: first, the
system decreased the exposure time by a factor α ≈ 15 px/7 px ≈ 2.14 to achieve the
desired MTF improvement. Then, it increased the ISO (and increased noise) by the
same factor α ≈ 2.14 to restore the intensity level for the detector. The final operating
point was (σ̂, ˆ︁MTF) ≈ (0.4, 0.9), which has a higher AP value (60.56%) than the initial
point.
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Figure 7.6: Comparison of built-in camera texp / gain control vs. our framework (Parking
Lot). Left plot: The built-in controller constantly optimized image intensity by adjusting
texp only. In contrast, our framework targets optimal object detection performance and
adjusted texp / gain once. Right plot: Precision-Recall curve that details object detection
performances for the three tested camera parameter configurations. Images: Examples
from the experiments (adapted brightness and contrast for better visualization). Blue
boxes indicate ground truth objects, and orange boxes actual detections. The overall
AP scores are: 26.08% for the built-in camera control, 47.54% for the manually chosen
fixed parameters (before automatic adjustment), and 60.56% for our framework (after
automatic adjustment).

The precision-recall curves corresponding to the measured AP scores are depicted in
Fig. 7.6, for reference – the larger the area under a curve, the better the detection
performance (cf. AP definition in Sec. A.1).
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Summary
We were able to demonstrate that an offline-learned synthetic input-output performance
profile could be applied to a simulated and a real-world scenario of the same domain
in real-time to improve car-detection accuracies on the basis of online image blur and
noise estimation.

7.4 Computational Cost

In this section, we analyze the computation time and working memory that the proposed
framework requires on stationary and mobile hardware at inference time. As stationary
system, we use an Intel Xeon W-2145 CPU with 64 GB working memory and an Nvidia
RTX Quadro 6000 GPU with 24 GB dedicated working memory, and perform actual
performance measurements. As mobile hardware, we consider an “NVidia Jetson AGX
Orin” AI-module that is equipped with an Arm Cortex-A78AE v8.2 CPU and 64 GB
shared working memory [Kar22], on which we calculate expected performances.

Pre-Considerations
The framework’s total computational cost is composed of the individual costs from its (i)
target application, (ii) image attribute (source) estimators, and (iii) decision & control
unit. We make five considerations for the following evaluation:

1. We examine the target application as part of the framework, since resources are
shared at inference time.

2. The faster and more lightweight YOLOv4 is considered as (i) target application,
and only the ML-based methods for (ii) image attribute estimation.

3. We follow the literature and express computational cost of ML-based methods in
terms of required (single-precision) floating point operations per second (FLOP/s)
[Ma+18].

4. ML-based models are executed on GPU and data pre-/ post-processing on CPU.
Computation time is determined with built-in Python functions, occupied working
memory using a memory profiler [Ped+22], and required GPU FLOP/s with the
tool of [tok20]. We provide computation times for a whole image (1280× 1024 px)
in the case of YOLOv4 and otherwise per image patch (patch size determined
by the respective method). All tests are executed three times and the results are
averaged to counteract the influence of background processes.

5. We neglect the computational cost of the (iii) decision & control policy, as it uses
an offline-calculated look-up-table at inference time that requires only memory in
the magnitude of kilobytes and a constant small access time per lookup operation.
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Stationary Hardware
Table 7.1 summarizes the results measured with the stationary system. Let us first
consider each processing stage separately. In the pre-processing, only YOLOv4 and the
blur estimator perform time-consuming image operations (e.g., image resizing and sobel
filtering, respectively). The loaded model sizes do not stand out, considering working
memory capacities in the order of GB nowadays. In the inference phase, all methods
need comparably low computation time, with YOLOv4 and the noise estimator taking
the longest. YOLOv4 requires comparably less GPU memory by having the largest
number of FLOP/s because the YOLO approach has matured over eight years since its
first version. Lastly, all methods post-process their data resource-efficiently.

When it comes to the overall computational cost, we distinguish between sequential
and concurrent execution of all components to assess overall individual performances
as well. In the sequential part, the blur estimator and YOLOv4 require the most
computation time. On the other hand, the noise and noise source estimators require
around the double amount of GPU working memory during inference. However, all
methods are, with a total runtime of 89.4 ms or 11.2 frames per second, still executable
in real-time and within the available memory limit (1.8 GB CPU and 15.8 GB GPU
working memory allocation). In the concurrent part, we observe that our proposed
framework (FW) benefits from parallel execution, which almost halves its execution time
to tFW;conc = 50.4 ms (19.8 frames per second) at the expense of more GPU memory
overhead (19.8 GB GPU working memory allocated).

Figure 7.7 illustrates the CPU and GPU loads during the concurrent framework execution.
It shows that the CUDA processing capacities could be a potential bottleneck for future
framework extensions (GPU CUDA cores load constantly at about 86%) and further
underpins that CPU data pre- and post-processings benefit from parallel execution (all
CPU cores utilized). However, the cores are not used to capacity, although pre- and
post-processing on the CPU dominate the total required runtime. This indicates that
there is still capacity for improvement in terms of parallel calculations.

Mobile Hardware
Let us now consider the mobile Orin platform. We distinguish between (i) working
memory, (ii) GPU and (iii) CPU computation capabilities:

(i) Working Memory: The Orin module provides up to 64 GB of shared random
access memory [Kar22]. We determined a total working memory requirement of
19.8 + 1.8 = 21.6 < 64 GB (Tab. 7.1).

(ii) GPU: The Orin module further theoretically enables up to 5.3T FLOP/s on CUDA
cores [Kar22]. We measured a requirement of 91.3 B < 5.3 T GPU FLOP/s in
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Process Time [ms] CPU Mem. [MB] GPU Mem. [GB] GPU FLOP/s [B]

Pre-Processing
Blur Estimator 36.1 538.4 - -
Noise Estimator 0.2 476.7 - -
Noise Source Estimator 0.2 414.8 - -
YOLOv4 15.6 375.3 - -
Inference
Blur Estimator 1.4 - 2.6 3.4
Noise Estimator 15.6 - 5.4 17.0
Noise Source Estimator 1.4 - 5.2 10.9
YOLOv4 15.7 - 2.6 60.0 [PA21]
Post-Processing
Blur Estimator - - - -
Noise Estimator 0.1 0.1 - -
Noise Source Estimator 1.1 0.6 - -
YOLOv4 10.0 3.4 - -

Overall (Sequential)
Blur Estimator 37.4 538.4 2.6 3.4
Noise Estimator 10.7 476.7 5.4 17.0
Noise Source Estimator 2.6 414.8 5.2 10.9
YOLOv4 38.7 375.3 2.6 60.0

Overall (Concurrent) 50.4 1805.2 19.8 91.3

Table 7.1: Computational cost measurements for the proposed self-health-maintenance
framework running on the stationary system. Computation times are calculated per image
(YOLOv4) or image patch (estimators). CPU and GPU memory values denote peak
allocated memory.

Figure 7.7: Total GPU and CPU loads during concurrent framework execution visualized
by the task manager of the Windows 10 operating system.

concurrent operation (Tab. 7.1), which yields up to 58 frames per second (17.23 ms
per frame).

(iii) CPU: The Orin module is also equipped with an Arm Cortex-A78AE v8.2 CPU
with 12 cores and up to a 2.2 GHz clock rate [Kar22]. To compare this CPU to
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the Intel Xeon W-2145, we perform the following steps: (a) measurement of peak
FLOP/s that the Intel CPU can execute, (b) estimation of FLOP/s needed for
the framework execution using (a), and (c) estimation of peak FLOP/s that the
Arm CPU can execute as well as its execution time for the framework using (b).

(a) From the single-precision general matrix multiply (SGEMM) benchmark
[Yin17] (with matrix size 192× 192 that matches our blur estimation patch
size), we obtain a peak FLOP/s performance of FLOP/sPeak;Intel = 158.82G
FLOP/s for the Intel CPU.

(b) On the basis of the measured framework execution time tFW;conc = 50.4 ms
in concurrent operation (Tab. 7.1), we estimate a computation time require-
ment to execute the framework of FLOPFW;Intel = FLOP/sPeak;Intel·tFW;conc

1000 =
158.82·50.4

1000 = 8G FLOP.

(c) The specification of the Arm CPU lists an execution throughput of 2
instructions per cycle for “FP arithmetic” for “AArch64 FP” and “AArch32
FP” instructions [Lim21, p. 14, pp. 27–28]. On this basis, we can now estimate
the Arm’s theoretical peak FLOP/s following [Dol15]2:

FLOP/sPeak;Arm = Max. Clock×#Cores× FLOP per Cycle
= 2.2 GHz× 12 Cores× 2 FLOP per Cycle
≈ 52.8 G FLOP/s.

(7.1)

Putting all together, the Arm CPU can theoretically execute the CPU instruc-
tions of the framework with up to tFW;Arm = FLOP/sPeak;Arm/FLOPFW;Intel =
52.8/8 = 6.6 frames per second (i.e., it requires a computation time of
approximately 151.52 ms).

All in all, the framework could be executed with a maximum of 6.6 frames per second on
the mobile Orin module. Comparing the performance statistics from (i) – (iii), the CPU
could be considered as the bottleneck, while working memory and GPU performance
are both sufficiently available.

Performance Improvement Considerations
The computational cost of the framework can still be significantly reduced:

General: The total computational cost scales with the number of used image quality
attribute (source) estimators. The more image attributes are estimated at inference
time, the larger the total resource requirements.

2We conservatively assume the values for FLOP/s
operation and operations

instructions as equal to one as “Each issue
pipeline can accept one micro-operation per cycle.” [Lim21, p. 11], which is plausible compared to
values from [Dol15]. For the sake of simplicity, these terms are therefore omitted in the equation.
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CPU time: The main bottleneck of the Orin module results from CPU computations,
i.e., blur estimator and YOLOv4 pre- and post-processings, which could be vectorized
or learned as part of the respective CNNs to run on the GPU.

GPU time and memory: Latest object detectors such as YOLOv8s [JCQ23] could be
employed, which the authors claim to perform similarly accurate and to require half
the FLOP/s of YOLOv4. There are also dedicated mobile models such as YOLOv8n
[JCQ23] that further reduce the required computational resources at the expense of
detection accuracy.

GPU time and memory: The required working memory can be reduced if network
parameters are expressed in terms of smaller data types. Currently, the estimators
use 32-bit floating point numbers that can be reduced to 16-bit ones or 8-bit integers.
Depending on the used processing unit and the data type, the computation time
capability might increase (e.g., for the NVidia Jetson AGX Orin from 5.3T FLOP/s to
up to 275T3 OPS using 8-bit integers [Kar22]). However, the respective data type must
be supported by the processing unit.

Summary
In summary, the real-time capability of the framework could be demonstrated on a
stationary system (19.8 frames per second) and calculated for a mobile AI platform
(6.6 frames per second). These numbers could be improved by using one of the latest
YOLOv8 models, 8-bit integer precision for CNN parameters, or pre- and post-processing
as part of the CNNs.

7.5 Discussion

Here we briefly discuss further details and shortcomings of the object detection
sensitivity analysis results, the practical application of the performance profile, and the
computational cost analysis of the integrated framework.

Object Detection Sensitivity Analysis
The resolution of a performance profile (i.e., its bin size) is limited by the accuracies of
the used image quality attribute estimators. Moreover, changing a bin size is a trade-off
with the amount of data to be analyzed in the sensitivity analysis. Since the sensitivity
is analyzed only once offline (and can be well parallelized) and the resolution does not
affect the profile’s inference time, maximum resolution of the performance profile should
be preferred.

3Use this number with caution. It is neither specified how this value is obtained, nor what the term
“AI performance” they use refers to.
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In the specific example of the linear motion blur and sensor noise profiles (Figs. 7.1 and
7.2), the bin resolution of the sensor noise axis could be increased to around 3 DN (cf.
results from Sec. 5.4), whereas the motion blur bin resolution is with 0.1 approximately
at its measured maximum (cf. results from Sec. 5.5).

Note that we used averaged horizontal and vertical MTF measurements at frequency
f = 0.1 lines/px as blur indicator. The use of higher frequencies (i.e., focusing on higher
image details) could be of greater importance when dealing with lower blur levels, as
it enables better separation of the blur kernels and thus increase the robustness of the
detection. In addition, the performance profile could be split for each MTF direction to
allow more specific countermeasures.

Optimizing Object Detection by Trading off Blur and Noise
We noticed a significant effect of image intensity on object detection performance (cf.
Fig. 7.5), which complements our observations of the similarly influenced image quality
attribute estimators (Secs. 5.2.2, 5.2.3, 5.3 and B.2.3). This further underpins that
future studies should investigate image intensity as a third image quality attribute.

Computational Cost Analysis
We employed the FLOP/s metric in order to quantify GPU and CPU performances.
Although the metric is independent of the used processing unit, it only correlates with
the computational cost, but does not determine it. The actual cost further depends
on the employed network architecture, processing unit architecture, processing unit
clocking, software frameworks, etc. Moreover, nowadays computer systems may have
other limiting factors, such as memory bandwidths of CPU and GPU processing or the
I/O bandwidth when reading data from a hard disk. Therefore, it might be useful to
include other performance metrics in future studies (e.g., the roofline model that further
includes peak memory bandwidth [WWP09]).

We would also like to point out that the actually available CPU FLOP/s could deviate
from the determined FLOP/s performances. Regarding the Intel CPU, the employed
SGEMM benchmark can significantly increase the FLOP/s values when using larger
matrices. For instance, we measured over 1000G FLOP/s for multiplying matrices of
size 16 k×16 k. Regarding the Arm CPU, there are indicators that the true performance
might be higher or lower than the estimated one:

(i) The performance is calculated on the basis of theoretical peak performances but
the CPU must at least handle OS processes concurrently.

(ii) Only physical CPU cores and threads are taken into account and no performance
enhancing techniques such as simultaneous multithreading [TEL95].
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(iii) The Intel and the Arm CPUs have different processor architectures, so the
processing times for the same operations could vary and therefore reduce the
comparability.

(iv) Higher FLOP/s values per clock cycle are given on the Internet (16 FLOP/s/cycle)
[Use23], but without a trustworthy source.

It is also worth noting that we refrained from analyzing the computational cost in terms
of a variable input size using the well-known Bachmann–Landau notation [Knu76], since
we rely on standard CNN models with fixed input sizes. For more information on CNN
arithmetic, the interested reader is referred to [DV16].

7.6 Summary

This chapter is dedicated to demonstrate the practical applicability of the integrated
camera self-health-maintenance framework.

We first carried out an offline sensitivity analysis to determine object detection
performances as a function of blur and noise image quality attributes for a transportation
scenario (Sec. 7.1). Specifically, we analyzed the Udacity dataset on cars and pedestrians
using the YOLOv4 and Faster R-CNN object detectors, focusing on linear motion blur
and sensor noise. As a result, we obtained profiles for isolated and combined blur
and noise corruptions. Especially the performance profiles for YOLOv4 demonstrated
that the relation between image quality attributes and detection accuracies might be
non-linear and non-trivial for ML-based methods.

In Sec. 7.2, we proposed a synthetic (Sim) and a real-world (Parking Lot) evaluation
dataset. The simulation environment belonging to Sim allowed to emulate the application
of the performance curves and the camera exposure time and ISO gain parameter changes.
In the real-world Parking Lot scenario, we applied our framework to a real-world camera
system on a robot that we navigated through a parking lot with a high exposure time
to induce motion blur.

Section 7.3 provided the evaluation results. In Sim, the framework reduced noise and
increased motion blur to improve the average car-detection rate from p̄ = 0.26 to
p̄ = 0.49. In Parking Lot, we compared (i) the camera’s default parameter control to
(ii) fixed parameters and to (iii) our proposed control. The default control (i) resulted
in a AP car-detection score of 26.08%, the fixed parameters (ii) to an AP score of
47.54%, and our control to 60.56%. In contrast to the default control that increased
exposure time and thus motion blur, our framework decided to reduce exposure time at
the expense of an increased ISO gain (and thus increased noise).
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Subsequently, we analyzed the computational cost of our framework on real-world
stationary hardware and analytically for mobile hardware (Sec. 7.4). On both platforms,
the framework could be executed in real-time (19.8 and 6.6 frames per second,
respectively) with the given working memory (19.8 GB for GPU and 1.8 GB for
CPU operations). However, the framework’s performance was limited by data pre- and
post-processing running on the CPU. Potential improvements would be to vectorize
CPU processings or to learn them as part of the CNN to run on the GPU, to employ
the latest object detector YOLOv8, and to reduce the used data types to 16-bit floats
or 8-bit integers.

Lastly, details and shortcomings of this chapter were briefly addressed in Sec. 7.5. We
discussed on the resolution limits of the performance curves, on image intensity as a
future research target of great importance, on computation cost metrics besides FLOP/s
that incorporate more potential performance bottlenecks, and on limitations for our
mobile CPU performance analysis.





CHAPTER 8

Conclusion

This chapter ends this thesis with a summary of the main findings for each research
question, including limitations and a concise conclusion. Finally, a brief outlook on
possible improvements and extensions of the framework is provided.

8.1 Summary

We designed, implemented and evaluated a general self-health-maintenance framework for
camera systems. The primary purpose of its design was the application on autonomous
mobile machines and thus to consider reliable and robust real-time operation with limited
resources. To this end, the framework was developed upon novel online camera state
estimators combining data-driven and physical-based models (Sensor AI), and offline-
trained application performance profiles. These profiles link camera configurations to the
performances of an arbitrary high-level image application allowing them to be optimized
online in response to changing environments. The system was finally demonstrated on a
real mobile machine for object detection and blur/noise effects caused by the camera.
The development of a theoretical basis, the real-time capable implementation, and the
evaluation of each framework component were guided by five research questions.

The first overarching research question focused on the framework design to meet its
requirements (Ch. 4). The framework’s core consists of a realistic imaging pipeline with
physical models, covering a wide range of camera systems, and two sub-modules: a
condition monitoring and a decision & control unit. The initial condition monitoring
unit incorporates existing learning-based MTF and noise level estimators, which we
have fitted to the proposed physical models, and which constantly estimate the state of
the images produced in real-time. On this basis, a decision & control unit was designed
that controls ISO gain and exposure time of a camera according to camera physics
to manipulate blur and noise effects in a way that is found to be optimal for object
detection. Altogether, this efficient modular design favors explainability, generality,
physical consistency, and testing of multiple components with less effort than end-to
end approaches.
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The second research question addressed the extension of noise estimation to identify and
quantify the sources of camera noise (Ch. 4). As a result, we developed a learning-based
noise source estimator that inputs camera metadata alongside a produced image to
distinguish four time-varying noise components: photon shot noise, dark current shot
noise, readout noise, and residual noise. The residual noise thereby quantifies noise
discrepancies between image and metadata, and is thus able to robustify the noise source
estimations and to detect camera defects, miscalibrations, or misconfigurations.

The third research question aimed at evaluating accuracy and robustness of each
framework component: (i) blur and noise estimation, (ii) noise source estimation, and
the (iii) decision & control unit:

(i) In the blur estimation evaluation (Ch. 5), the proposed learning-based MTF
estimator was found to be best suited for condition monitoring in terms of real-
time requirements, arbitrary small blurs, defocus, and linear motion. Traditional
blur estimators operated best for complex non-linear motion in non-real-time
scenarios. In the noise estimation evaluation (Ch. 5), our learning-based approach
showed best results in all scenarios. For the estimation of simultaneously occurring
blur and noise, we demonstrated a simple technique to re-enabled blur estimation
in the presence of strong sensor noise using an additional defocus filter. Finally,
we used temporal and/or spatial aggregation of estimates to demonstrate how to
effectively reduce estimator uncertainty during the online condition monitoring.

(ii) In the evaluation of noise source estimation (Ch. 6), only the model with access
to the full set of camera metadata could accurately and robustly quantify the
contribution of each noise source and even further improve total noise estimation.

(iii) The decision & control was successfully demonstrated in conjunction with the
other components on a real camera system on a mobile robotic platform (Ch. 7).
On the example of car detection, it could be shown that our framework accurately
readjusted the camera parameters and significantly improved detection performance
compared to fixed parameters and the built-in parameter control.

The fourth research question concerns the real-time capability of the framework on
mobile hardware (Ch. 7). We found that the framework was already running in real-time
on stationary and low-performance mobile hardware. The computation time and memory
requirements could be further improved by using (i) modern mobile hardware (which we
demonstrated analytically), (ii) vectorized or learning-based pre- and post-processings,
(iii) the latest object detectors (e.g., YOLOv8), and (iv) smaller data types (e.g., 8-bit
integers).

The last research question addresses the limits of the framework (Ch. 4). The applicability
of the framework is primarily restricted by its underlying physical models (sensor and
lens system architectures, blur and noise types). Also note that the framework targets
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the optimization of only one application at a time in this initial version. It was further
shown that overexposure in images negatively affects all estimators (Chs. 5 and 6).
Lastly, the proposed MTF estimator requires inhomogeneous image features, which
limits its fields of application.

Our research is subject to several limitations. For instance, even if Sensor AI improves
robustness and explainability of learning-based approaches, they are still black boxes
that should be turned more transparent in follow-up studies. Second, the learning-based
methods are trained on synthetic image corruptions, which are limited in realism due to
the discrepancy between simulation and reality. Finally, large-scale experiments could
complete our limited real-world datasets, and the framework could be tested on modern
mobile hardware to determine its current full potential.

Overall it can be concluded that with our proposed framework, camera systems can
autonomously adapt to internal and external influences to optimize an envisaged image
application in real-time. This thesis particularly emphasized that environmental
conditions, a camera’s configuration, and the intended quality of the results are
inextricably linked to each other. Our ready-to-use implementation covers a wide
range of camera systems and can be easily extended for many use cases of autonomous
machines. However, although Sensor AI has proven not only beneficial but also necessary
to determine the state of a camera, further improvements are needed to guarantee fully
reliable camera systems and consequently mobile machines.

8.2 Outlook

In the course of this research work, several starting points for follow-up studies have
been identified, of which the most important ones are summarized below. They all aim
to improve or extend the proposed camera self-health-maintenance framework.

A straightforward improvement to the framework is to retrain the blur and noise source
estimators. An improved blur estimation could account for intrinsic camera blur, which
cannot be avoided and currently affects estimation accuracy. A newly trained noise
source estimator could mitigate the influences of learned metadata that deviate from
the noise model. In this context, the U-Net CNN architecture could be considered as
well, which indicated to process an entire image faster at once. Both retrainings would
further enable higher resolutions of input-output performance curves.

In addition to these direct performance improvements, there are multiple aspects of the
framework that can be extended. Future studies could increase the generality by using
more extended lens and noise models to cover a wider variety of camera systems. For
instance, a real lens system is also temperature dependent, which can lead to material
stress and thus change intrinsic parameters, and the versatility of modern camera sensor
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architectures should also be represented by a corresponding noise model. Moreover,
both extensions account for real-world situations that would benefit from on-board
calibration during field operations to mitigate unforeseen complex effects.

The evaluations in this thesis have identified that image intensity is an important image
quality attribute (for all estimators and the target application of object detection) that
needs to be considered for a more reliable self-health-maintenance. Depending on the
envisaged image target application, other image quality attributes such as texture or
contrast could be relevant as well. However, each additional attribute increases the
data dimensionality for the input-output performance curve analysis. This can be
circumvented by examining for conditional independence between the attributes and by
taking advantage of the high parallelizability to perform the analyses on high-performance
computer clusters.

The images of a camera system are typically used for multiple applications at the same
time, for which the framework can be extended as described in this thesis. On the other
hand, this also increases the aforementioned data dimensionality.

Blur estimation on homogeneous image areas is another major limitation of existing
estimation methods. An extension to blur source estimation (similar to the proposed
noise source estimation) could mitigate the image feature requirement through the use
of metadata and allow the estimation of blur sources that occur in combination.

Finally, the demonstrated use of Sensor AI techniques is only one way to counteract the
black-box nature of ML-based methods, but does not solve this problem. Further studies
could investigate different Sensor AI approaches that we have addressed or focus on
other aspects (e.g., quantification and uncertainty reduction of learning-based methods,
or decision process analysis).
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A.1 Average Precision Score

Here we provide the calculation of the average precision (AP) score that complements
Sec. 4.4.1 [CVV18]:

We first omit object detections BD having an object detection confidence score p(BD) <

0.5. Next, we determine whether it can be considered a match with a ground truth
object detection BGT, i.e., whether it can be counted as true positive (TP). This holds if

∃BGT, IOU(BD, BGT) = BD ∩BGT

BD ∪BGT
> 0.5, (A.1)

using the so called intersection over union score IOU : R2×2 × R2×2 → [0, 1]1. We
then collect the results according to their confidence scores in bins 0.1, 0.2, ..., 1.0 and
accumulate the corresponding TP values.

Subsequently, the precision and recall values on the accumulated TP can be determined
using

Precision = #(TP )
NGT

,

Recall = #(TP )
ND

,

(A.2)

with the number of true positives #(TP ), the overall number of ground truth objects
NGT, and the overall number of actual object detections ND. The results can be plotted
as a precision-recall-curve PrRe : [0, 1]→ [0, 1]. The final AP score is defined as the area
under the precision-recall-curve

AP =
∫︂ 1

0
PrRe(x) dx (A.3)

and can be computed by numerical integration.

1We assume that an object detection B is represented as a bounding box using two image points.
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A.2 Camera System Parameters

Camera System All. Vis. Prosilica GC1380H
[Gmb21]

Ximea MQ013RG-E2
[Xim23]

Leica V-Lux (Typ 144)
[Lei16]

Lens System Cinegon 1.8/4.8-0902 [Gmb13] Cinegon 1.8/4.8-0902 - (default)
Focal Length [mm] 4.8 4.8 9.1 – 146.0
Aperture [F-Number] 1.8 1.8 2.8 – 4.0

Sensor System Sony ICX285 e2V EV76C661 -
Sensor Type CCD CMOS CMOS
Spatial Resolution [px] 1360 × 1024 1280 × 1024 5472 × 3648
Pixel Pitch [µm] 6.45 5.3 2.4
Full Well Capacity [e−] 14 000 8400 -
Dark Signal FoM⋆ [nA/cm2] 0.00889 0.95692 -

Table A.1: Specifications of camera systems used in this thesis. A hyphen denotes
unknown values that are not provided by the manufacturer. ⋆ : Determined in own
measurements using dark frames and the method described in [Jan07, p. 171].
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A.3 Real-World Noise Processing

Algorithm 1: Real-World Noise Processing
Data: Raw RN/DCSN image sessions.
Result: Offset/FPN corrected image sessions.

1 sfpn = 20 ▷ #imgs for FPN calculation
2 foreach sess ∈ sessions do
3 if #(sess.imgs) > sfpn then
4 imgsRN,fixed = ∅
5 imgsDCSN,fixed = ∅
6 foreach (imgRN, imgDCSN) ∈ sess.imgs do
7 µRN, σRN ← fixNoiseDistr(imgRN)
8 imgRN, fixed ← sampleNormal(µRN, σRN)
9 imgsRN, fixed.insert(imgRN, fixed)

10 µDCSN, σDCSN ← fixNoiseDistr(imgDCSN)
11 µDCSN* = µDCSN − µRN

12 σDCSN* =
√︂

σ2
DCSN − σ2

RN
13 imgDCSN, fixed ← sampleNormal(µDCSN*, σDCSN*)
14 imgsDCSN, fixed.insert(imgDCSN, fixed)
15 correctFPN(imgsRN,fixed, sfpn)
16 correctFPN(imgsDCSN*,fixed, sfpn)

17 Function fixNoiseDistr(img):
18 hist ← histogram(img)
19 xmax ← argmax(hist) where xmax

!
> 0

20 histfixed ← fixHistogram(hist, xmax)
21 µ, σ ← fitNormal(histfixed)
22 return µ, σ

23 Function fixHistogram(hist, xmax):
24 histfixed = ∅
25 foreach (bin, val) ∈ hist do
26 if bin ≥ 2xmax then
27 histfixed.insert((2xmax − bin, val))
28 histfixed.insert((bin, val))
29 return histfixed

30 Function correctFPN(imgsfixed, sfpn):
31 imgfpn ← meanImg(imgsfixed[0:sfpn])
32 foreach imgfixed ∈ imgsfixed[sfpn:] do
33 imgfixed/noFpn ← imgfixed − imgfpn
34 saveImg(imgfixed/noFpn, img.filePath)
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B.1 Blur Estimation

This section provides details for the blur estimation evaluations on synthetically corrupted
(Sec. B.1.1) and real-world corrupted (Sec. B.1.2) datasets.

B.1.1 Synthetically corrupted Datasets

Figures. B.1, B.2, and B.3 complement the blur estimation results from Sec. 5.2.1.
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Figure B.1: Defocus blur estimation on synthetically corrupted datasets. Median,
minimum and maximum blur estimations of the synthetically corrupted datasets (depicted
by sampled points with interpolation in between and the shaded areas, respectively; vertical
direction only). Details see Sec. 5.2.1.
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Figure B.2: Linear motion blur estimation on synthetically corrupted datasets. Median,
minimum and maximum blur estimations of the synthetically corrupted datasets (depicted
by sampled points with interpolation in between and the shaded areas, respectively; vertical
direction only). Details see Sec. 5.2.1.
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Figure B.3: Non-linear motion blur estimation on synthetically corrupted datasets.
Median, minimum and maximum blur estimations of the synthetically corrupted datasets
(depicted by sampled points with interpolation in between and the shaded areas,
respectively; vertical direction only). Details see Sec. 5.2.1.
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B.1.2 Real-World corrupted Datasets

The tables in Fig. B.4 contain the manually determined blur kernel sizes for the real-world
DEFCARS and MOTCARS datasets specified in Sec. 5.1.2.

Real-World Defocus Blur

Object Obj. Dist. dO [m] dPSF[px] dS.-Star[px]

Car #1 6.00 19 20
4.49 19 21
3.36 20 21
2.69 29 28–30
2.23 30 32–34
1.79 96–109 105–115

Car #2 6.00 29 30–32
4.49 30 31
3.36 32 31–33
2.69 35 32–34
2.23 36 35
1.79 103 105

Car #3 6.00 26 26
4.49 31 31–33
3.36 34 35–36
2.69 38 37–39
2.23 52 49–51
1.79 105–120 110–131

Real-World Motion Blur

texp [ms] Img. ID dPSF[px] dS.-Star[px]

10 552 2 2
553 14 14–16
566 8–10 8–10
572 14–16 15–17
573 10–12 10–12

8 32868 14 14
36268 14–16 14
37368 14–16 14
39068 18–20 20

7 163716 2 2–4
164616 8 6–8
165316 12 10–12
165716 8–10 8–10
166116 6–8 6

6 108031 14 14–16
111731 2 2
112331 18–19 17–18
117431 14–16 14
117631 14 13–15

4 219419 2 2
219619 6 6
219919 6–10 8–10
220319 4–5 4
220719 4–5 4

Figure B.4: Manually determined real-world defocus (left) and motion (right) blur kernel
sizes using diameters of the reconstructed PSF (dPSF) and the Siemens star center blur
(dS.-Star). We only keep images where both diameters differ at most 10% or 1 px (whichever
is larger). The determination procedure is described in Sec. 5.1.2.

B.2 Noise Source Estimation

The following supplementary material complements the noise source estimation
evaluation. It starts with details to the used camera metadata (Sec. B.2.1) and continues
with extended results for the quantitative and the qualitative experiments (Secs. B.2.2
and B.2.3).

B.2.1 Camera Metadata Details

Tables B.1, B.2, and B.3 complement Tab. 4.1. Table B.1 provides the fixed camera
metadata used in the adopted noise model [KW14], Tab. B.2 defines all camera
parameters used in our study, and Tab. B.3 lists the specific parameter values used in
the camera metadata sensitivity analysis.
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B.2.2 Quantitative Experiments

Tables B.4 and B.5 extend the results from Sec. 6.2. Table B.4 provides noise estimation
results on the KITTI dataset and Tab. B.5 reports real-world noise estimations for the
camera EV76C661 .

B.2.3 Experiments on Real-World Platforms

Figures B.5 to B.10 extend the results from Sec. 6.3. Figure B.5 first presents noise source
estimation from the Parking Lot dataset recorded with the camera ICX285 (cf. Sec. 6.3.1).
Subsequently, Figs. B.6 and B.7 illustrate the noise source estimation from the Cellar
and Parking Lot datasets recorded with the camera EV76C661 (cf. Sec. 6.3.1). Figures
B.8 and B.9 depict corresponding exemplary images of under- and over-exposure effects
that we observed in the Cellar and Parking Lot datasets. Lastly, Fig. B.10 illustrates the
noise source estimation results for the Cellar dataset with corrupted sensor temperature
metadata (cf. Sec. 6.3.2).

B.2.3.1 Parking Lot

The Parking Lot scenario leads to similar estimations as Cellar (compare Fig. B.5 to
Fig. 6.4). The smaller PN predictions of the noise model result from the lower scene
illumination. In particular, we noticed large under-exposed areas at timestamps where
σ̂Noise Model < 2 DN (Fig. B.8). Although this case is covered by the noise model and
considered by our training data augmentation, it still impacts Full-Meta in that the
method detects this model/image mismatch in the residual noise plot for the respective
time stamps {t|[20, 22] ∪ [46, 62] ∪ [72, 79]} s. We also observe a similar over-exposure
behavior in the Cellar dataset (Fig. B.9). We think that these use cases are still not
sufficiently represented in the training data. Note that this neither affects w/o-Meta (as
it did not learn any residual noise) nor Min-Meta (which does not correctly estimate
residual noise, cf. Sec. 6.3.2).

B.2.4 Experiments on Real-World Image Denoising

Table B.6 shows denoising results using the camera EV76C661 . Details in Sec. 6.4.
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Fixed Parameter Value

Camera Offset 0 DN
CDS Gain 1
CDS s2s Time 10−6 s
CDS Time Factor 0.5
Flicker Noise Corner Freq. 10−6 Hz
Source Foll. Current Mod. 10−8 Hz
Source Foll. Gain 1

Table B.1: Fixed camera metadata in the employed noise model.

Camera Parameter Definition

Camera Gain Amplification factor applied to the digital camera signal.
Camera Offset Offset value applied to the digital camera signal.
Correlated Double Sampling
(CDS) Gain Left over from CDS that is applied as gain to the signal.
CDS Sample-to-Sample
Time

Time period after which a video is sampled and held
within the sample-and-hold CDS circuit.

CDS Time Factor Factor to calculate the dominant time constant from
the sample-to-saple time.

Exposure Time Time period in which the sensor is illuminated for
a single image.

Flicker Noise
Corner Frequency

Frequency at which the magnitude of a device’s white noise
and flicker noise are equal.

Sensor Temperature Temperature of the camera sensor at image acquisition.
Dark Signal Figure of Merit Quantity to characterize dark signal generation performance.
Full Well Capacity Number of charge carriers a camera sensor pixel can hold.

Pixel Clock Rate Rate at which pixels are transferred to fit an entire
frame of pixels into a single refresh cycle.

Sense Node Gain Gain applied for charge to voltage conversion.
Sense Node Reset Factor Compensation factor of the sense node reset noise from CDS.
Sensor Pixel Size Height/Width of a single camera sensor pixel.
Sensor Type Construction type of the camera sensor.
Source Follower
Current Modulation Current modulation induced by burst noise.
Source Follower Gain Voltage amplification applied by the source follower.
Thermal White Noise White noise component within the source follower.

Table B.2: Camera metadata definitions.

Uniform samples of parameter value ranges

Min 1 2 3 4 5 6 7 8 Max

Mean Img Intensity [DN] 0 28 56 85 113 141 170 198 226 255

Minimal Metadata
Camera Gain⋆ 0 8.52 12.74 15.56 17.69 19.40 20.83 22.05 23.12 24.08
Exposure Time 0.001 0.02 0.05 0.07 0.09 0.11 0.13 0.16 0.18 0.2
Sensor Temperature 0.00 8.89 17.78 26.67 35.56 44.44 53.33 62.22 71.11 80.00

Full Metadata
Dark Signal FoM 0.00 0.11 0.22 0.33 0.44 0.55 0.66 0.77 0.88 1.00
Full Well Capacity [in k] 2.00 12.89 23.78 34.67 45.56 56.44 67.33 78.22 89.11 100.00
Pixel Clock Rate 8.00 23.78 39.56 55.33 71.11 86.89 102.67 118.44 134.22 150.00
Sense Node (SN) Gain 1.00 1.44 1.89 2.33 2.78 3.22 3.67 4.11 4.56 5.00
SN Reset Factor 0.00 0.11 0.22 0.33 0.44 0.55 0.66 0.77 0.88 1.00
Sensor Pixel Size 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 1.00
Thermal Wh. Noise⋆⋆ 0.10 0.76 1.41 2.07 2.72 3.38 4.03 4.69 5.34 6.00

Table B.3: Camera metadata sensitivity analysis: sampled parameter values. Parameter
units are provided in Tab. 4.1. ⋆ : Sampled from the non-dB range and converted into dB
afterwards. ⋆⋆ : Simulated CCD sensor (CMOS sensor otherwise).
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Photon Shot Noise DCSN Readout Noise Total Noise

Bias Std RMS Bias Std RMS Bias Std RMS Bias Std RMS
R

an
do

m DRNEcust. - - - - - - - - - 0.18 0.22 0.28
PGE-Net 2.03 1.16 2.33 - - - - - - 4.00 4.80 6.24
W/o-Meta 0.16 0.67 0.69 0.18 2.36 2.37 0.61 2.33 2.41 0.32 0.98 1.04
Min-Meta 0.04 0.66 0.66 0.14 1.50 1.51 0.04 1.92 1.92 0.01 0.78 0.78
Full-Meta 0.11 0.14 0.18 0.05 0.31 0.32 0.10 0.38 0.40 0.03 0.34 0.35

IC
X

28
5 DRNEcust. - - - - - - - - - 0.09 0.32 0.33

PGE-Net 2.51 1.02 2.71 - - - - - - 3.03 1.50 3.41
W/o-Meta 0.66 0.57 0.88 0.53 0.60 0.80 0.03 0.64 0.64 0.10 0.03 0.11
Min-Meta 0.83 0.19 0.85 0.69 0.78 1.05 0.02 1.27 1.27 0.12 0.31 0.34
Full-Meta 0.10 0.12 0.16 0.16 0.49 0.51 0.90 1.10 1.43 0.45 0.76 0.89

E
V

76
C

66
1 DRNEcust. - - - - - - - - - 0.05 0.23 0.23

PGE-Net 2.61 0.82 2.74 - - - - - - 3.70 1.25 3.90
W/o-Meta 0.60 0.52 0.79 0.00 1.36 1.36 0.09 1.06 1.07 0.12 0.03 0.12
Min-Meta 1.11 0.24 1.14 0.43 1.18 1.26 0.76 1.49 1.67 0.02 0.18 0.18
Full-Meta 0.25 0.13 0.28 0.78 0.89 1.19 0.43 1.73 1.78 0.21 1.03 1.05

Table B.4: Noise source estimation on synthetically corrupted (Random) and real-world
noised ( ICX285 and EV76C661) KITTI dataset. The best results per camera and method
are highlighted in bold.

Photon Shot Noise DCSN Readout Noise Total Noise

Bias Std RMS Bias Std RMS Bias Std RMS Bias Std RMS

Si
m

DRNEcust. - - - - - - - - - 0.14 0.22 0.26
PGE-Net 3.02 0.95 3.17 - - - - - - 3.65 1.13 3.82
W/o-Meta 0.47 0.55 0.73 0.08 1.29 1.29 0.32 1.15 1.19 0.28 0.22 0.26
Min-Meta 1.39 0.26 1.41 0.41 1.14 1.21 0.80 1.59 1.78 1.88 0.46 1.94
Full-Meta 0.28 0.08 0.30 0.79 0.92 1.21 0.51 1.74 1.81 0.02 0.26 0.26

Ta
m

p.
17 DRNEcust. - - - - - - - - - 0.31 0.37 0.48

PGE-Net 3.17 1.17 3.37 - - - - - - 3.39 1.64 3.77
W/o-Meta 0.38 0.62 0.73 0.09 1.37 1.37 0.69 1.30 1.47 0.02 0.52 0.52
Min-Meta 1.38 0.33 1.41 0.45 1.17 1.25 0.59 1.76 1.85 1.69 0.64 1.81
Full-Meta 0.34 0.15 0.37 0.79 0.93 1.22 0.44 1.77 1.82 0.13 0.39 0.41

U
da

ci
ty DRNEcust. - - - - - - - - - 0.10 0.42 0.43

PGE-Net 2.52 0.81 2.65 - - - - - - 3.41 0.98 3.55
W/o-Meta 0.32 0.46 0.56 0.07 1.32 1.32 0.48 1.10 1.21 0.06 0.42 0.43
Min-Meta 0.94 0.16 0.96 0.44 1.12 1.20 0.64 1.58 1.70 1.39 0.47 1.47
Full-Meta 0.13 0.10 0.17 0.72 0.93 1.18 0.37 1.71 1.75 0.28 0.29 0.40

Table B.5: Noise source estimation on real-world noise extracted from the e2V EV76C661
camera sensor. DCSN and RN with corresponding metadata were recorded from the
camera. PN was generated synthetically using the real metadata. The best results per
method and dataset are highlighted in bold.
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Figure B.5: Noise source estimation (dataset: Parking Lot, camera: ICX285). The model
Full-Meta produces anomalies in its estimates roughly at timestamps {t|[20, 22]∪ [46, 62]∪
[72, 79]} s, where we noticed large under-exposed areas in the dataset (cf. Fig. B.8).
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Figure B.6: Noise source estimation (dataset: Cellar and Parking Lot, camera:
EV76C661). Cellar: All models produce an anomaly in their estimates roughly at
timestamps {t|[11, 17] ∪ [100, 107]} s that correspond to large over-exposed areas in the
images (cf. Fig. B.9).
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Figure B.7: Total noise estimation (dataset: Cellar and Parking Lot, camera:
EV76C661). Compare to Fig. B.6. Details in Sec. 6.3.1.

Figure B.8: Exemplary Parking Lot images with under-exposed areas. Timestamps:
t = 50 s (Left) and t = 60 s (Right). Details are in Sec. 6.3.1.
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Figure B.9: Exemplary Cellar images with over-exposured areas. Timetamps: t = 13.3 s
(Left) and t = 102.8 s (Right). Compare to Fig. B.6. Details in Sec. 6.3.1.
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Figure B.10: Noise source estimation on synthetically doubled sensor temperature
metadata (dataset: Cellar, camera: ICX285). Compare to Fig. 6.4. Details in Sec. 6.3.2.

Number of raw images for averaging

Method 1 2 4 8 16

C
el

la
r

Raw 28.59 / 0.6052 30.73 / 0.7447 32.40 / 0.8517 33.80 / 0.9227 35.36 / 0.9651
DRNEcust. + BM3D 33.30 / 0.9136 33.84 / 0.9221 34.06 / 0.9280 34.30 / 0.9342 34.85 / 0.9399
w/o-Meta + BM3D 33.29 / 0.9132 33.83 / 0.9221 34.08 / 0.9298 34.27 / 0.9322 34.72 / 0.9337
Min-Meta + BM3D 33.28 / 0.9125 33.75 / 0.9192 34.05 / 0.9268 34.29 / 0.9339 34.83 / 0.9387
Full-Meta + BM3D 33.33 / 0.9151 33.83 / 0.9209 34.10 / 0.9317 34.37 / 0.9388 34.83 / 0.9386
DRNEcust. + NLM 33.22 / 0.9132 33.73 / 0.9200 33.95 / 0.9248 34.19 / 0.9296 34.71 / 0.9341
w/o-Meta + NLM 33.22 / 0.9133 33.74 / 0.9207 33.97 / 0.9263 34.17 / 0.9283 34.62 / 0.9299
Min-Meta + NLM 33.22 / 0.9131 33.69 / 0.9177 33.93 / 0.9238 34.18 / 0.9294 34.70 / 0.9332
Full-Meta + NLM 33.22 / 0.9133 33.73 / 0.9219 34.00 / 0.9285 34.24 / 0.9327 34.70 / 0.9333
FBI-Denoiser 33.18 / 0.9127 33.65 / 0.9196 33.82 / 0.9231 33.99 / 0.9251 34.42 / 0.9264
Blind2Unblind 33.14 / 0.8921 33.60 / 0.9008 33.79 / 0.9075 33.99 / 0.9122 34.34 / 0.9149

Pa
rk

in
g

Lo
t

Raw 31.06 / 0.6734 33.31 / 0.8050 35.40 / 0.8953 37.12 / 0.9499 37.78 / 0.9806
DRNEcust. + BM3D 35.94 / 0.9342 36.50 / 0.9416 37.10 / 0.9476 37.47 / 0.9537 37.33 / 0.9605
w/o-Meta + BM3D 35.42 / 0.9198 36.38 / 0.9407 37.16 / 0.9502 37.56 / 0.9566 37.46 / 0.9661
Min-Meta + BM3D 35.62 / 0.9262 36.11 / 0.9334 37.18 / 0.9519 37.57 / 0.9568 37.43 / 0.9649
Full-Meta + BM3D 35.85 / 0.9324 36.43 / 0.9415 37.19 / 0.9524 37.82 / 0.9643 37.70 / 0.9757
DRNEcust. + NLM 35.67 / 0.9312 36.24 / 0.9377 36.87 / 0.9437 37.27 / 0.9498 37.78 / 0.9560
w/o-Meta + NLM 35.52 / 0.9295 36.27 / 0.9404 36.96 / 0.9467 37.35 / 0.9522 37.30 / 0.9604
Min-Meta + NLM 35.60 / 0.9314 36.13 / 0.9376 36.99 / 0.9483 37.36 / 0.9524 37.27 / 0.9594
Full-Meta + NLM 35.67 / 0.9320 36.28 / 0.9403 37.00 / 0.9488 37.55 / 0.9581 37.52 / 0.9694
FBI-Denoiser 35.58 / 0.9287 36.02 / 0.9345 36.51 / 0.9389 36.70 / 0.9420 36.59 / 0.9446
Blind2Unblind 36.37 / 0.8109 36.86 / 0.8243 37.37 / 0.8358 37.65 / 0.8446 37.51 / 0.8511

Table B.6: Denoising performance for real-world noised images (camera: EV76C661).
Best PSNR (dB ↑) and SSIM (↑) scores per dataset, noise level, and metric are highlighted
in bold, the second best are underlined. Details see Sec. 6.4.
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