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Introduction

Among the various disciplines of classical mechanics, ”Aeroacoustics” is a comparatively young
subject area. This is mainly because of the fact that it took until 1952, when Lighthill formulated
his famous aeroacoustic wave equation and thus ”founded” the field of modern aeroacoustics.
With the help of the source terms in Lighthills equation it became possible to physically under-
stand for the first time the origin of sound produced by free turbulence. The derivation of this very
equation initiated many developments extremely important for the understanding of aeroacoustic
sound generation in general. These notes are an attempt to provide a very brief overview about
these essential aspects of the theoretical foundations of aeroacoustics, at least from the author’s
point of view. The aim is to convey to the reader the main ideas needed in order to understand
the pertinent literature. The above selection of ”key-concepts” of aeroacoustics is necessarily
non-unique, and many certainly interesting aspects had to be abandoned in order to fit the lecture
into the given restricted time frame of one semester.

Synopsis

Some examples of ”noise generated aerodynamically” in section 1 are to make the reader aware
of the variety of technical problems associated with aeroacoustics. Section 2 introduces to the
subject area ”acoustics” in general, including various important definitions. Here the acoustic
wave equation, describing the sound propagation in non-moving media is derived as a special case
of the equations governing the dynamics of small perturbations in a flow field. Some of the very
fundamental solutions of the wave equation are derived and discussed insofar as they illustrate the
physics of sound generation and radiation as well as the motivation for the solution approaches
in general cases. Then the general solution method of Green’s functions is introduced including
some essential features of the theory of generalized functions, which are extremely useful for
the mathematical handling of complex situations such as the description of the sound generation
by moving bodies of arbitrary (and variable) shape. This section also contains the description
of surface sound interaction. Moreover the Kirchhoff integral as basis for wave extrapolation
is introduced. Next, the multipole-expansion of sound sources is briefly looked at. Then, the
concept of acoustic nearfield, farfield and compactness along with the physical implications is
introduced. Section 3 is devoted to describing sound waves in moving media and the motion of
sound sources. The wave equation is generalized to account for various types of flow fields, such
as potential flow and parallel shear flow. The sound intensity is generalized for sound propagating
in a flow field. Some essential consequences on the propagation and radiation are discussed such
as the effect of flow on the propagation of sound waves in ducts, convective amplification, sound
refraction in shearlayers/temperature layers and Doppler-frequency shift. In Section 4 the various
acoustic wave equations due to Lighthill, Möhring, Lilley and Ffowcs Williams and Hawkings are
derived and their source terms are discussed in view of a physical interpretation. Finally, secion
5 concludes the course with a discussion of some technical applications.

Delfs 2023/24



CONTENTS ii

List of Symbols

f – scalar function
f – vector function (bold face)
x – spatial co-ordinates (usually position vector of observer)
ξ – spatial co-ordinates (usually position vector of source)
t – time (usually observer time)
τ – time (usually source time or retarded time)
∇· – ”divergence of”
∇ – ”gradient of”
∇× – ”curl of”
· – simple contraction
: – double contraction
∆ – Laplace operator ∇·∇
D
Dt

– total (or material) derivative w.r.t. time (following a fluid particle)
δ – total variation of a thermodynamic variable
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1. Aeroacoustic Phenomena 1

1 Aeroacoustic Phenomena

Aeroacoustics deals with the sound generated aerodynamically. Certainly, there are many coupled
problems, in which unsteady fluid loading on structures causes them to vibrate and radiate sound.
In a way, one may think of this also as ”sound generated aerodynamically”, because the loading
then is of aerodynamic origin. But what we really mean, is the noise generated in the unsteadily
moving fluid itself, and the influence of (non-vibrating, stiff) bodies on this very process. There is
a variety of applied problems where aeroacoustic phenomena are the major contributors to noise,
i.e. aircraft engine noise, propeller noise, rotor noise, noise of fans (ducted and unducted) in
whatsoever application, cavity noise, tones of wires and cylindrically shaped bodies in transverse
wind, airframe noise at aircraft, high speed trains and cars, noise in valves and nozzles, etc. In
the following we will try to explain the nature of all these phenomena theoretically employing the
well established theory of aeroacoustics, which was initiated by Lighthill in 1952 [2].

2 Basic concepts of acoustics

2.1 Definitions

2.1.1 General terms

The field of acoustics contains numerous parts of which important ones are listed below:

• physical acoustics: Dynamics of continua

- building acoustics (vibrational excitation of noise from the floor, sound transmission through
walls,...)

- room acoustics (design of concert halls, tone studios, ...)

- aero-/flow acoustics (flow induced noise)

• electro acoustics: generation, amplification, measurement

• musical acoustics: music, instruments

• physiological acoustics: functioning of the ear

• psycho acoustics: perception investigations with respect to different sound events

• technical acoustics: generic term for all acoustic issues, which are connected to technical prod-
ucts
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2.1 Definitions 2

2.1.2 Acoustic quantities

The perception of sound is the response to a physical stimulus to the ear. This stimulus is the
unsteady sound pressure

p′(t) := p(t)− p0 (1)

in Pascal. The steady part p0 of the pressure p(t) is the temporal average

p0 = p := lim
T→∞

1
T

∫ T/2

−T/2

p(t)dt (2)

and is not perceived auditively. More strictly p′(t) should be termed ”fluctuating sound pressure”
(german: ”Schallwechseldruck”). In practice the time average has to be taken using a finite
averaging period T .

p0 ≈ pT := 1
T

∫ T

0

p(t)W (t, T )dt (3)

with an appropriate weighting (”window”) function W (t, T ). Generally, if T is chosen large
enough then most of p0 is composed of ”infra sonic” components, i.e. components with frequen-
cies of the order of 16Hz or lower, which are inaudible to the human ear. If T is chosen to be e.g.
0.5 seconds, then all frequency components over 16Hz originally contained in p(t) are suppressed
by more than 96% in p0 for the simplest choice of W = 1, see appendix A. This in turn means
that the largest deviation in p′ due to the finiteness of T is less than 4% for frequency components
above 16Hz. For W = 1 + cos(2πt/T ) this suppression may for instance be enhanced to more
than 99.9%.

An appropriate measure for the strength of an acoustic signal is the root mean square or ”rms”
value (german: ”Effektivwert”) p̃ of the sound pressure

p̃ =

√
(p′)2 (4)

For instance, the rms-value of a sinusoidal sound pressure signal p′(t) = p̂ cos(ωt) due to eqn.(4)
is p̃ =

√
1/2 p̂, thus the rms-value is indeed a measure for the strength (amplitude) of a signal.

The ear is capable to resolve a tremendously wide range of orders of magnitude of the sound
pressure:

p̃min ≈ 10−5 Pa - is the smallest perceivable pressure amplitude and called threshold of hearing,
which is frequency dependent1 (german: ”Hörschwelle”)

p̃max ≈ 102 Pa - threshold of pain (german: ”Schmerzgrenze”)

Because of the large range of rms-values which are resolved by the ear one has introduced a
logarithmic scale for the most important acoustic quantities. The sound pressure level Lp or SPL
(german: ”Schalldruckpegel”) is defined as

Lp := 10 lg
(
p̃
pref

)2
dB = 20 lg

(
p̃
pref

)
dB, (5)

pref := 2 · 10−5Pa, (6)
1compare this value with the sound pressure corresponding to the Brownian motion of molecules in air, being

≈ 0.5 · 10−5 Pa, meaning that the threshold of hearing is at a physically reasonable lower limit
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2.1 Definitions 3

where the international reference pressure pref corresponds to about the threshold of hearing for
a sinusoidal signal at roughly 2 kHz. Although a level is dimensionless by definition, the sup-
plement ”dB” (decibel after Alexander Graham Bell) indicates that it is a logarithmic measure.
It is essential to get familiar with the decibel-scale. For instance a doubling of the rms-value
corresponds to an increase of the sound pressure level by ∆Lp = 6 dB, because

∆Lp = 20
[
lg
(
2
p̃
pref

)
− lg

(
p̃
pref

)]
dB = 20 lg 2dB = 6.02... dB.

An acoustically induced change in pressure is always accompanied by a local motion of the
medium. The fluid velocity v′ of this motion is called acoustic particle velocity (german:
”Schallschnelle”). It is entirely different from the ”speed of sound” (see below). In order to
illustrate this difference one may consider a sound field, produced by an hard sphere, oscillating
in the horizonal direction. The right part of figure 1 shows two moments in time of this oscilla-
tion along with the corresponding sound field. The latter is visualized by small spheres, which
represent Lagrangian fluid elements. While on the one hand these fluid elements oscillate with a
small amplitude about a fixed position the fluid compressions and dilatations, represented by the
closeness of the elements move at a much higher speed and strictly radially away from the sphere
(yellow arrows).

While the sound pressure or the acoustic particle velocity represent the acoustic signal, the speed
of sound is the propagation speed of the signal through the medium. In which way the sound
pressure and the acoustic particle velocity are linked to one another is discussed in a later section
2.4.2.3. For the moment it suffices to recognize that such motion necessarily exists. The acoustic

Figure 1: Kinematics of fluid elements induced in the neighborghood of a sphere, oscillating hor-
izontally about it’s center (motion exaggerated). Left: incompressible fluid, right: compressible
fluid.
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2.1 Definitions 4

particle velocity level (german: ”Schallschnellepegel”) is defined as:

Lv := 20 lg
( |ṽ|
vref

)
dB, (7)

vref := 5 · 10−8m/s (8)

The sound intensity I (german : ”Schallintensität” or ”Energiestromdichte”) in a stagnant
medium is derived from the sound pressure and the acoustic particle velocity like

I(x) := p′v′ (9)

The corresponding sound intensity level LI (german: ”Schallintensitätspegel”) is defined by

LI := 10 lg
( |I|
Iref

)
dB, (10)

Iref := 10−12W/m2 (11)

The sound power P (german: ”Schallleistung”) emitted by a source in a quiescent medium is
obtained by integration of the sound intensity I over a closed surfaceA enclosing the very source:

P :=

∮
A

I · n dA (12)

As can be shown, P describes the sound power of the source even if I is influenced by sound of
sources located outside A. As will be shown below, P describes the power of the sound sources
located inside A as long as dissipation is negligibly small. Then P is independent of A (as long
as the same sources stay enclosed by all surfaces A). The corresponding sound power level LW

(german: ”Schallleistungspegel”) is defined as

LW := 10 lg
(
P
Pref

)
dB, (13)

Pref := 10−12W (14)

Note: The definition of intensity and power is non-trivial in flowing media (see later).

2.1.3 Characterisation of acoustic events

A clear distinction can be made between different kinds of sound signals. Acoustic signals are
therefore categorised into classes:

pure tone (german: ”reiner Ton”) : p(t) = p̂c cos(ωt) + p̂s sin(ωt)
tone (german: ”Ton”) : p(t) =

∑∞
n=0 p̂

c
n cos(nωt) + p̂sn sin(nωt)

complex tone (german: ”Klang”) : superposition of tones (p(t) generally non-
periodic)

”pure” noise (german: ”Rauschen”) : p(t) has a continuous frequency content, the sig-
nal is permanent, stochastic

noise (german: ”Geräusch”) : superposition of complex tones and ”pure” noise
impulse (german: ”Impuls/Tonimpuls”) : short duration sound event (no rms-value defin-

able)
bang (german: ”Knall”) : alternating impulse with zero time integral (e.g.

sonic boom, N-wave).
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2.1 Definitions 5
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Figure 2: schematic of the ear

2.1.4 Physiology of the ear

The ear is divided into three main parts (see figure 2):

outer ear (german: ”Aussenohr”) : consists of outer ( i.e. visible part of the) ear (german:
”Ohrmuschel”), and the ear canal (german: ”Gehörgang”)
with a length of ≈ 2− 2.5cm. The ear canal forms a one-
sided open tube, i.e. resonances occur for wavelengths
λ/4 ≈ 2.5cm corresponding to about 3.4− 4.2 kHz. This
physiological circumstance is responsible for an enhanced
hearing sensitivity in this frequency range.

middle ear (german: ”Mittelohr”) : small bones (german: ”Gehörknöchelchen”), transmission
of the deformation of the ear drum (german: ”Trom-
melfell”) onto the oval window (german: ”ovales Fen-
ster”).

inner ear (german: ”Innenohr”) : cochlea (german: ”Schnecke”), contains 3 coiled canals
also ”scala”.

Incident sound waves are transmitted through the ear canal and cause the ear drum to move. This
movement is transmitted through three small bones (hammer, anvil and stirrup). The hammer
(german: ”Hammer”) is connected to the ear drum, while the stirrup (german: ”Steigbügel”) is
attached to the deformable oval window inside the cochlea, which is made up of very stiff bone.
The anvil (german: ”Amboss”) connects both hammer and stirrup to form a mechanical trans-
ducer adapting the impedance of the air with the considerably higher impedance of the lymphatic
fluid inside the cochlea.

The coiled cochlea contains three parallel canals (scala), namely scala vestibuli, scala media and
scala tympani. The scala vestibuli is connected to the oval window, while the scala tympani is
connected to the (deformable) round window. These two parallel coiled canals are separated by
a stiff boned thin wall with a slit alongside the canals. The slit is closed by the flexible Basilar
membrane. The flexible Reissner membrane forms the third separate canal, the scala media. Only
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2.1 Definitions 6

at the end of the canals an opening, the so called helicotrema, connects them.

For very low frequency movements of the oval window, the fluid in the cochlea is displaced along
the scala vestibuli, through the helicotrema and further along the scala tympani, at whose end it
deforms the round window correspondingly. When higher frequency excitations deform the oval
window, then the inertia of the fluid in the cochlea causes it to take a ”short cut” from oval window
to round window. This is achieved by locally deforming the Basilar membrane (see figure 3). As
can be seen in the sketch the location where this very deformation takes place is depending on
the frequency. In this way a frequency-position transformation takes place along the canal of
the cochlea. The deformation of the Basilar membrane is sensed in the so called Cortian organ,
which is sitting on the membrane. The location of the membrane’s deformation determines the
frequency of the acoustic signal and thus whether the tone is perceived as a high or low pitch.

The sensation of hearing is limited to a frequency range of

16Hz < f < 20000Hz (15)

In order to sense the (horizontal) direction out of which sound impacts the observer two ears
are required. The mechanism by which this capability of directional hearing (german: ”Rich-
tungswahrnehmung”) is achieved is frequency dependent.
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Figure 3: Deformation of the Basilar
membrane (unwound cochlea)
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2.1 Definitions 7

f > 1.5kHz → shielding effect of the head. As an obstacle the head produces a ”shadow”
region on the side opposite to the direction of incidence. This mechanism
requires the wavelength of the sound to be sufficiently small. Considerable
shielding effects occur when the wavelength is smaller than the character-
istic dimensions of the shielding body. This explains the lower frequency
limit of f = 1.5kHz, which corresponds to a wavelength of about 0.23m,
which in turn corresponds roughly to the diameter of the head.

f < 1.5kHz → temporal delay of signal at the two ears. Depending on the direction of in-
cidence the sound travels paths of different length to either ear. This leads
to a phase difference of the signal at the two ears. The same principle is
used for the localization of sound sources with the help of so called mi-
crophone arrays. Such arrays are composed of quite more than two mi-
crophones (”ears”). Typically some two hundred microphones or so are
used leading to a high resolution of localization (see lecture ”Methoden der
Aeroakustik” for reference).

It is noted that by construction the ability to detect the direction of incidence of a sound wave emit-
ted from a source located in the (vertical) symmetry plane of the head is weak. The non-circular
shape of the outer ear somewhat helps in combination with indirect effects as e.g. reflections
at shoulders, which somewhat alter the incident signal depending on whether it arrives from the
front or the back.

2.1.5 Acoustic quantities adapted to hearing

2.1.5.1 Loudness and Loudness level The sensitivity of the human ear is strongly dependent
on the frequency of the perceived sound. Therefore two pure tones with the same sound pressure
level but with different frequencies will be perceived as differently loud. The so called loudness
level (german: ”Lautstärkepegel”) is defined to account for this observation. The definition of the
loudness is restricted to pure tones with frontal incidence.

The loudness level LN of a pure tone of a fixed frequency f = ω/(2π) and given sound pressure
level Lp(f) is defined as the sound pressure level of the pure 1000Hz tone, which is perceived
”equally loud”.

Diagram 4 shows lines of constant loudness level, so called equal loudness level contours, ELLC.
The ELLC are defined in ISO226. It was determined based on data of a large group of test
persons. The units of loudness level are called phons. By definition the phon-values are equal
to the sound pressure levels in dB for fref = 1000Hz. For frequencies lower than 1000Hz the
diagram shows that the Lp-value is higher than the LN -value: Lp(f < fref) > LN(f). This is
a consequence of the decrease in hearing sensitivity in the low frequency range. For frequencies
larger than 1000Hz up to about 6kHz the Lp-value is smaller than the LN -value with a minimum
at about 4000Hz because due to the physiology of the ear, in this range the hearing sensitivity is
particularly good. Beyond about 6kHz the values of the sound pressure level become larger than
the values of the loudness again as a consequence of the reduced hearing sensitivity in the larger
frequency range. At roughly 10-12kHz a second distinct minimum in the ELLC occurs, which
may again be explained with an increased hearing sensitivity due to the length of the ear canal
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equalling 3/4 of the respective sound wavelength.

The hearing sensitivity is not only frequency dependent; there is a strong nonlinear dependence
of the perception of intensity differences. A doubling of the intensity of a tone is not perceived
”double as loud”. Typically an increase of 10 phons (or roughly 10dB), corresponding to a ten-
fold sound intensity (or mean square pressure), is perceived only ”double as loud”. In order
to account for this characteristic of hearing the so called loudness s (german: ”Lautheit”) was
introduced. The loudness is defined as

s := 2(LN−40)/10, [s] = sone (16)

and is a measure for the intensity perception. From the above defintion the loudness ratio of
two sounds with a loudness level difference of ∆LN is s2/s1 = 2(LN 2−40)/10−(LN 1−40)/10 =
2(LN 2−LN 1)/10 = 2∆LN/10. For instance an increase of a signal by 10 phons in loudness level
or (roughly 10dB in sound intensity level) corresponds to a doubling of the loudness; an increase
of 20 phons corresponds to a fourfold loudness value. Of course, given a loudness value, the
loudness level may be computed from eq.(16):

LN = 40 + 33.2 lg s . (17)

2.1.5.2 Noise weighting From the preceding notes it is obvious that on the one hand the phys-
ical sound pressure or sound intensity levels are somewhat inappropriate measures for the char-
acterization of some perceived sound. On the other hand the complex dependence of the hearing
sensitivity on a large number of influences makes it almost impossible to condense all of this into
one single value. Nevertheless in practice it is necessary to use simple measures (even sometimes
at the expense of considerable simplification). This is where the so called noise weighting (ger-
man: ”Schallbewertung”) comes into play. In order to take the hearing sensitivity into account
in a simple way the sound pressure level Lp is weighted in a frequency dependent way. For the
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moment let us assume that the underlying signal is a pure tone of frequency f , although it will
turn out later, that we may relax this restriction to general (permanent) sounds when introducing
the Fourier analysis. Very high frequency and very low frequency signals are downweighted,
while mid-frequency signals (i.e. those in the highest hearing sensitivity) are upweighted. Inter-
nationally at least 4 noise weightings were agreed (called A-, B-, C- and D-weighting), of which
the A-weighting has turned out to be most widely applicable.

Lp −→ LpA, LpB, LpC , LpD

dB −→ dB(A), dB(B), dB(C), dB(D)

where
LpA = Lp +∆LA (18)

The definitions are analogous for the B-,C-, and D-weightings. The weighting ∆LA = ∆LA(f)
was designed for low to moderately intense SPL (below 55dB). It roughly corresponds to the neg-
ative loudness level curve LN = 40 phons. It may be parametrized approximately with the poly-
nomial ∆LA ≈ −145.528+ 98.262 lg f − 19.509(lg f)2 +0.975(lg f)3. The B-(or C-)weighting
corresponds roughly to the negative loudness level curve LN =70 (or 100) phons. The B- and
C-weighting correspondingly were defined for situations when the noise is of very high intensity
(B for SPL=55-85dB, C for SPL > 85dB). The D-weighting was designed especially for aviation
noise. However, it is not widely used.

2.1.5.3 Narrow-, third octave and octave band analysis So far we have defined adapted
acoustic quantities only for pure tones. In most practical situations the signal will be quite more
general though. Usually one has to deal with general fluctuating signals, so called random pro-
cesses.

Some statistics of random processes
An example for some random process (e.g. an acoustic flyover or pass-by signal) would be like
depicted in figure 6 for a quantity h(t), representing either the pressure p or the velocity v . It
is quite obvious that it may not be appropriate for any function to use the definition eqn(2) to
define an average or a mean value. For a random function h one defines a statistical or so called
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Figure 6: Example for a ran-
domly varying function.

ensemble average

⟨h⟩(t) := lim
N→∞

1
N

N∑
n=0

hn(t), (19)

where hn(t) is called the n′th realisation (practically the n′th measurement) of the process h(t).
Analogously to (2) for h = p we define the fluctuating pressure p′ = p−⟨p⟩ and correspondingly
⟨p′⟩ = 0, while ⟨p′2⟩ ≠ 0, or the acoustic particle velocity v′ = v − ⟨v⟩ with ⟨v′⟩ = 0, while
⟨v′2⟩ ≠ 0 respectively.

A statistical measure for a random variable h′, whose utmost importance will become obvious
below, is the auto correlation Chh(t, τ) (german: ”Autokorrelation”) of h′(t) being the statistical
average of the product with itself, but shifted by an arbitrary time shift variable τ :

Chh := ⟨h′(t)h′(t+ τ)⟩ (20)

For instance, in the context of this lecture the most important physical quantity to characterize will
be the pressure h′ = p′. In analogy to the autocorrelation the correlation between two different
random variables h′ and g′ may be evaluated and is called cross correlation Chg = Cgh (german:
”Kreuzkorrelation”) of g′(t) and h′(t):

Chg := ⟨h′(t)g′(t+ τ)⟩ (21)

We already came across the sound intensity, representing the product of two different acoustic
variables namely pressure and velocity, in which the cross correlation comes into play in case
h′ = p′ and g′ = v′ exhibit a random behavior.

Many physical processes are random processes but their statistical behavior exhibits certain char-
acteristic features. Processes, which do not change their statistics with time are quite important
in applications. Such processes are called statistically stationary (german: ”statistisch stationär”)
and for the variables p′ and v′ of interest are characterized by

Cpp = ⟨p′(t)p′(t+ τ)⟩ = Cpp(τ) ̸= Cpp(t) or Cpv = ⟨p′(t)v′(t+ τ)⟩ = Cpv(τ) ̸= Cpv(t) (22)

An extremely important example for statistically stationary processes in fluid mechanics and aero-
dynamic noise are turbulent fluctuations in (non-transient) turbulent flows.

For ”reasonable” random functions, for instance the turbulence related pressure fluctuation, the
auto correlation Cpp(τ ) decays to zero for large τ , i.e. for sufficiently large time differences
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τ > ∆T the process forgets it’s past. In such case one may cut the time history of the signal
p′(t) into pieces with p′n(t) := p′(t + n∆T ) and consider them as independent realizations of
the process. Such statistically stationary processes are called ergodic process, in which case the
temporal mean as defined in eqn(2) is equal to the ensemble average p′2 = ⟨p′2⟩, or p′v′ = ⟨p′v′⟩
respectively.

In the following we will only deal with random functions describing statistically stationary pro-
cesses. In view of the preceding paragraphs on the frequency dependence of the hearing sen-
sitivity it should be extremely useful to analyse any random sound pressure signal into its fre-
quency components. The decomposition of a function h′(t) into its frequency components is
called Fourier Analysis or Fourier Transform

ĥ(ω) :=

∫ ∞

−∞
h′(t) exp(−iωt) dt (23)

where f = ω/2π is the frequency and i =
√
−1. It must be noted though, that ĥ exists as

an ordinary function only if h′(t) is square integrable, i.e.
∫∞
−∞ |h′(t)|2 dt < ∞. The inverse

transformation back to real space is

h′(t) := 1
2π

∫ ∞

−∞
ĥ(ω) exp(iωt) dω (24)

which clearly shows that h′(t) is nothing but the summation of all its frequency components ĥ(ω).

Unfortunately the Fourier-decomposition of our random function p′2(t), or p′(t)v′(t), is not easily
possible because it certainly violates the condition to be square integrable. This is the reason why
one resorts to the Fourier decomposition of the auto correlation Cpp(τ) for the pressure or the
cross correlation Cpv(τ) for the intensity rather than the random function itself.

Spectrum of sound pressure
The question we want to answer is, how to determine the frequency components of the mean
square sound pressure p̃2. For this purpose we take the auto correlation Cpp(τ) = ⟨p′(t)p′(t+τ)⟩.
We assume that Cpp(τ) decays to zero sufficiently fast in τ to be square integrable such that we
may apply the Fourier decomposition eqn (23) with τ instead of t (why not trying?) and obtain

Ĉpp(ω) =

∫ ∞

−∞
Cpp(τ) exp(−iωτ) dτ = 2

∫ ∞

0

Cpp cos(ωτ) dτ, (25)

which is called power spectral density (german: ”Leistungsdichtespektrum”)2. Note, we may
reduce the integration range to positive τ only, since the autocorrelation by definition is an even

2Practically it may not be so simple to determine the power spectral density according to its definition eqn(25). For
a statistically stationary signal we outline shortly a simple practical way to do so. First we define an auxiliary function

p̂T (ω) :=
∫ T/2

−T/2
p′(t) exp(−iωt) dt, Next, we determine the time average over p′2T as p′2

T
= T−1

∫ T/2

−T/2
p′2 dt.

Now, p′(−T/2 ≤ t ≤ T/2) = 1
2π

∫∞
−∞ p̂T (ω) exp(iωt) dω which may be used in the above expression to give

p′2
T
= (2πT )−1

∫∞
−∞ p̂T (ω)

∫ T/2

−T/2
p′(t) exp(iωt) dt dω = (2πT )−1

∫∞
−∞ p̂T (ω)p̂T (−ω) dω. We may now let

T → ∞ and obtain p′2 = p̃2 =
∫∞
−∞ limT→∞ |p̂T (ω)|2/T dω/(2π). By comparison with eqn(26) one may extract

that for a statistically stationary signal its power spectral density Ĉpp(ω) = limT→∞ |p̂T (ω)|2/T may be computed
from the Fourier transform of the fluctuation pressure p′(t) over finite observation times T in the limit T → ∞.
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function of τ . Now it is quite trivial to turn back and formally write down the inverse transfor-
mation for Cpp(τ) according to eqn(24). Since Cpp(τ = 0) = p̃2 the mean square of the sound
pressure finally appears as the integral over the signal power components contained in each fre-
quency (represented by the power spectral density):

p̃2 = Cpp(τ=0) = 1
2π

∫ ∞

−∞
Ĉpp(ω) dω = 1

π

∫ ∞

0

Ĉpp(ω) dω = 2

∫ ∞

0

Ĉpp(f) df (26)

As before, we reduced the integration range to positive ω, using the fact that the power spectral
density of any autocorrelation is real and an even function of ω, see right hand side of eqn(25).
Now, eqn (26) directly shows that for each (infinitesimal) frequency interval df there is a certain
frequency contribution to p̃. Once the power spectral density is known each frequency component
of the random signal may be considered separately (especially for the frequency weighting, see
below 2.1.5.4).

In order to evaluate the frequency contributions to the sound pressure level or the intensity level
of the overall signal, one has to integrate over finite frequency intervals instead of infinitesimal
ones. Only the integration of the power spectral density over a finite frequency range will yield (i)
a quantity with the dimension of a square pressure, needed to form the sound pressure level, and
(ii) a finite value representing the contribution of this frequency range to the overall rms-value of
our random like acoustic signals. Hence, the integral over the power spectral density eqn(26) is
divided into frequency intervals or consecutive frequency bands f l

i < f < fu
i (with fu

i = f l
i+1 and

f l
i = fu

i−1), implying that the so called energetic sum p̃2 =
∞∑

i=−∞
p̃2i is made up of the summands

(see fig.7):

p̃2i := 2

∫ fu
i

f l
i

Ĉpp(f) df ⇒ Li
p := 10 lg

(
p̃2i /p

2
ref

)
dB. (27)

On the right hand side so called band levels Li
p, were introduced, which naturally follow from

the availability of the bandwise mean square values. The bandwidth of the ith frequency band
∆fi = fu

i − f l
i is defined by its lower and upper frequency limits f l

i and fu
i respectively. The

location of the ith band on the frequency axis is characterized by its center frequency f c
i . Actual

conventions for the definition of bands are presented below.

Spectra of sound intensity (and sound power)
We obtain the spectra (frequency content) of the sound intensity I = p′v′ in a very similar way

Figure 7: Definition of frequency bands
for the determination of the band mean
square and band levels.
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as for the sound pressure in eqn (26), the only difference being that we cannot assume that its
cross spectral density Ĉpv is an even function of ω as the power spectral density of the sound
pressure was3. But we may exploit at least that by definition the cross correlation of p′ and v′ is
real. Therefore, Ĉpv(−ω) ought to be the complex conjugate of Ĉpv(ω) which again enables us to
reduce the integration range to only positive frequencies:

I = Cpv(τ = 0) = 1
π

∫ ∞

0

ℜ[Ĉpv(ω)] dω = 2

∫ ∞

0

ℜ[Ĉpv(f)] df,

where ℜ[.] explicitly underlines, that only the real part of Ĉpv is to be evaluated. The band levels
of the sound intensity and the respective intensity levels are determined analogously to the ones
derived for the sound pressure:

I i = (p′v′)i = 2

∫ fu
i

f l
i

ℜ[Ĉpv(f)] df ⇒ Li
I := 10 lg (|I i|/Iref) dB.

Naturally, the sound power Pi for each frequency band f i
c is determined as in eqn (12) to yield

the spectrum of sound power.

Narrow band spectrum
For the characterization of sounds with strong tone components (spectral peaks) so called narrow
band spectra (german: ”Schmalbandspektrum”) p̃2i (f

c
i ) are used. In this case the frequency band

∆fi = ∆f = const and f c
i = (f l

i + fu
i )/2 = f c

0 + i∆f . Note that the band level of a signal
depends on the bandwidth ∆f chosen. Since there is no international convention on the choice
of some ∆f it must always be specified together with a narrow band spectrum.

m-band spectrum
For the characterization of sounds with low intensity tone components and a relatively high
pure noise level (e.g. stochastic noise due to turbulence) so called m-band spectra (german:
”m-Bandspektrum”) p̃2i (f

c
i ) are used. In this case fu

i /f
l
i = 2m = const, and the centre fre-

quency f c
i = (f l

if
u
i )

1/2 = 2mif c
0 . The bandwidth is not constant, but proportional to the cen-

ter frequency like ∆fi = (2m/2 − 2−m/2)f c
i . The lower and upper cutoff frequency of the

band ∆fi are f l
i = 2−m/2f c

i and fu
i = 2m/2f c

i respectively. The band level is again defined
as Li

pm := 20 lg (p̃i(f
c
i )/pref). For m = 1/1 the m-band spectrum is also called octave band

spectrum (german: ”Oktavspektrum”), because each band spans a whole octave (frequency in-
crease by factor 2). The most often used m-band spectrum is the m = 1/3- or third octave band
spectrum (german: ”Terzspektrum”) though. The respective band level is denoted Lp1/3. By
international standard, the reference centre frequency is f c

0 = 1 kHz.

It should be noted, that the practically used centre frequencies of the third octave bands are not re-
ally derived from the above formula f c

i = 2i/3 ·103 Hz. Instead these frequencies are standardized
in EN ISO 266 and actually computed like f c

i = 10i/10 · 103 Hz. Moreover, these centre frequen-
cies are referred to with ”nominal” frequency (german: ”Normfrequenz”) values according to
table 1.

3In section 2.4.3, eqn (83) we will see that for an observer located far from the source of the sound field (farfield)
I ∝ p̃2, so that in the farfield the cross spectral density of intensity and the power spectral density of pressure become
proportional to another.
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nominal exact (ISO 266) third octave
frequency 10i/10 · 103 2i/3 · 103

...
...

...
400 398.1 396.9
500 501.1 500.0
630 631.0 630.0
800 794.3 793.7

1000 1000.0 1000.0
1250 1258.9 1259.9
1600 1584.9 1587.4
2000 1995.2 2000.0
2500 2511.9 2519.8
3150 3162.3 3174.8

...
...

...

Table 1: Preferred frequencies for third octave bands in Hz.

Example 1: m-band spectrum of white noise

A stochastic signal with a constant power spectral density Ĉpp(ω) = const =: P0 is called white
noise (german: ”weisses Rauschen”). The name is referring to light, which appears white when
all colors (frequencies) are represented with equal intensity. From eqn(27) one has: p̃2i /p

2
ref =

P ∗(2m/2 − 2−m/2)f c
i . where P ∗ := P0f

c
0/p

2
ref . With f c

i = 2mif c
0 the corresponding band levels

are Li
pm = 10{lg[P ∗(2m/2−2−m/2)]+ im lg 2}. This shows that the octave band level (m = 1/1)

of white noise increases linearly by 3 dB/octave and that the third octave band level (m = 1/3)
increases linearly by 1 dB/third octave. Note that trivially, the narrow band spectrum of white
noise is constant.

Example 2: m-band spectrum of pink noise

Pink noise (german: ”rosa Rauschen”) is defined as a stochastic signal with constant m-band level.
What does the power spectral density of pink noise look like? Taking the definition we have p̃2i =
2
∫ b

a
Ĉpp(f) df = const with a := f l

i = 2−m/2f c
i and b := fu

i = 2m/2f c
i . Differentiation w.r.t.

f c
i yields the determining equation for Ĉpp: ∂p̃

2
i

∂f c
i

= 0 = ∂b
∂f c

i

Ĉpp(b) − ∂a
∂f c

i

Ĉpp(a). This is equal

to Ĉpp(2
m/2f c

i )

Ĉpp(2
−m/2f c

i )
= 2−m, showing that the power spectral density has the form Ĉpp(f) = C1

f
.

The integration constant may be determined to be C1 = const/(m ln 4). White light becomes
”redish” when the power spectral density is lifted to higher values in the lower frequency range
(red light). The above result for Ĉpp shows indeed that this is the case.

Example 3: comparison of narrow band and 1/3 octave band spectrum of some noise signal

A general noise signal consisting of a superposition of broadband and tonal components is con-
sidered. Its narrow band spectrum as depicted in the left of figure 8. Up to a frequency of about
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Figure 8: left: narrow band spectrum of a general signal, right: corresponding third octave band
spectrum.

200Hz the signal displays a white noise type (i.e. constant) narrow band spectrum. Sharp peaks
at 500Hz, 1000Hz and 5000Hz indicate that tones are superimposed to the broadband spectrum.
When looking at the third octave band spectrum of the same signal (right of figure 8), one notices
that the band levels increase at constant rate below 200Hz, showing that white noise increases
with 1dB/third octave band. While the strong tone at 500Hz is clearly seen in the 500Hz band,
the other tones get buried in the wide integration bands and can no longer be identified. Third
octave band spectra generally pronounce the higher frequency range.

2.1.5.4 Loudness and A-weighting of complex signals, noisiness and perceived noise level
When considering noise from machines usually one has to deal with complex signals quite differ-
ent from sinusoidal behavior. Therefore the above introduced definition of loudness level (2.1.5.1)
is insufficient for most situations. There are several approaches to generalize the desired adapta-
tion of the sound pressure level to hearing sensitivity.

Loudness of complex signals
Now that we can determine the frequency content of complex signals in band levels it becomes
possible to generalize the defintion of loudness and loudness level as introduced for pure tone
signals in section 2.1.5.1:

i) the signal is analysed into its (third) octave band spectrum,
ii) then for the centre frequency f c

i and the corresponding band level Lp1/1(f
c
i ) (or Lp1/3(f

c
i )) of

each band a loudness value si is determined from diagram 4,
iii) finally an ”overall loudness” S is determined from

S := smax + C

[∑
bands

si − smax

]
. (28)

where C = 0.3 for octave bands and C = 0.15 for third octave bands and smax denotes the largest
loudness level among all bands. The overall loudness is used to determine the overall loudness
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level LL in phons in analogy to eqn (17):

LL := 40 + 33.2 lgS, [LL] = phon (29)

A-weighting of complex signals
A simplified and often used approach to take into account the sensitivity of hearing is the weight-
ing of the physical (also called ”linear”) spectrum Li

p of the complex signal in analogy to section
2.1.5.2. The most commonly used weighting is based on the A-curve (see figure 5). Knowing the
physical ( ”linear”) band level Li

p of each band i of our complex signal, eqn (27), the A-weighting
delta ∆LA(f

c
i ) of the band’s centre frequency f i

c is added to it, just as the weighting of tones in
(18):

Li
pA = Li

p +∆LA(f
c
i ).

In order to determine the overall A-weighted sound pressure level LpA of the complex signal the
A-weighted mean square values p̃2iA = 10L

i
pA/10 p2ref of all bands i are summed up (energetic

sum):

p̃2A =
∞∑

i=−∞

p̃2iA ⇒ LpA = 10 lg
(
p̃2A
p2ref

)
dB(A) = 10 lg

{ ∞∑
i=−∞

10(L
i
p+∆LA(fc

i ))/10
}

dB(A)

In the same way the noise weighting is done for the intensity and -more importantly- for the
sound power P → PA or rather the A-weighted sound power level LWA = 10 lg(PA/Pref)dB(A).
Typically the value of LWA is found on a label on technical devices, setting out their compliance
to respective noise certification limits.

Noisiness and Perceived Noise Level
Another quantity for the description of noise, especially aviation noise, is the so called noisiness n
(german: ”Lärmigkeit”). Analogously to the loudness (for pure tone perception) equal noisiness
curves have been generated based on tests with a large number of persons.

The noisiness of a single third octave band noise signal (of diffuse incidence) with fixed centre
frequency f c

i and given band level Lp1/3(f
c
i ) is the factor by which this signal is perceived louder

than a respective 1000 Hz third octave band noise signal of band level Lp1/3(1000Hz) = 40dB
(see diagram 9). The unit of the noisiness is called ”noy” and the value for the noisiness of the
reference third octave band signal of Lp1/3(1000Hz) = 40 dB is defined to be n = 1 noy.

In general noise does not consist of only one third octave band noise signal, but is rather a mixture
of the contribution of very many third octave bands. In fact, the third octave band spectrum tells us
about the magnitude (Lp1/3) of all these contributions. In order to arrive at a perceived noise level
for such a complex noise signal the noisiness values of all the third octave bands are determined
and integrated into one single overall noisness value N (compare with eqn (28) for the loudness):

N := nmax + 0.15

 ∑
all1/3oct.

ni − nmax

 (30)

where nmax is the largest noisiness value occuring in the signal. The overall noisiness serves to
define the so called perceived noise level LPN (or PNL), which is the analogy to the loudness
level LL (or LN ), based on the noisiness rather than on the loudness.

LPN = 40 + 33.2 lgN, [LPN ] = PNdB (31)
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Figure 9: Noisiness contours
n =const as a function of band
frequency and third octave band level.
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2.2 Basic equations

In this section we begin with deriving the governing equations of acoustic phenomena. We will
discuss simple solutions in order to explain the physical mechanisms which determine the sound
near and far from sources. Then we introduce some mathematical tools, which are very helpful
for handling acoustic problems theoretically and for the understanding of the literature. Lastly
we define the multipole expansion of acoustic sources explain the concepts behind it and end
the section with the reciprocity relation. All this will be derived for a non-moving medium,
although the derivation of the wave equation really starts with the general conservation equations
for moving media.

The dynamics of a compressible fluid is described by the Navier-Stokes equations (conservation
of mass, momentum and energy):

∂ρ
∂t

+∇·(ρv) = ṁ (32)

∂ρv
∂t

+∇·(ρvv) +∇p = ∇·τ + f + ṁv (33)

∂ρet
∂t

+∇·(ρetv) +∇·(pv) = −∇·q +∇·(τv) + ϑ̇+ f · v + ṁet (34)

Where ρ represents the fluid density, v its velocity vector, p the pressure, et = e + 1
2
v2 the

specific total energy, made up of specific internal energy e and the specific kinetic energy. τ (v, µ)
denotes the friction-related stress tensor which depends on the (usually temperature T -dependent)
dynamic viscosity µ(T ); typically for a Newtonian medium under Stokes’es hypothesis τ =
µ(∇v + t∇v − 2

3
I∇·v). The heat flux vector is denoted q(T, k) and depends on the heat

conductivity k(T ) of the medium; typically, for Fourier’s law of heat conduction q = −k∇T .

We have also introduced (given) hypothetical independent source terms for mass ṁ, external
forces f and heat ϑ̇. Since the additional mass is part of the flowing medium it has to assume its
local velocity and internal energy, such that respective contributions to the momentum (ṁv) and
the total energy (etv) are to be accounted for in the equations. Although mass cannot be created
in a setting of classical mechanics (i.e. ṁ = 0), it becomes reasonable when certain processes
cannot be resolved in actual computations, e.g. if one would like to consider the radial mass
injection of very fine jets into a long pipe system, which one desires to treat one-dimensionally.
Then the mass ocurring would be injected along a space dimension, which is not part of the
computational equations. In such a setting an appropriate modelling of this mass injection would
indeed give a non-zero ṁ. In the same way, mass and momentum injection processes in e.g. an
aero-engine may be lumped together and accounted for in a so called actuator disk. One may also
think of ṁ as of representing the fluid-displacement of a differential element of a rigid body in
the flow. Such a view is justified when considering the flow variables as generalized functions,
who allow for an explicit transfer of boundary conditions as (usually singular) source terms into
the differential equation. We will come back to such a formulation later. For current purposes we
just allow for some (given) terms on the right hand side of our equations and call them sources.

The system (32-34) along with the mentioned expressions for τ , µ, q and k is not closed yet: we
have the 7 unknowns ρ,v, et (or equivalently e), p and T but only 5 equations. In order to close
the system we further need 2 relations: the thermal and the caloric state equation for the fluid.
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For the remainder of the script we assume a fluid in thermodynamic equilibrium, i.e.

thermal: ρ = ρ(T, p) calorical: e = e(T, p) (35)

The above form of the equations is called conservative form, because the equations represent the
integrands of the conservation balance integrals. The source terms are most easily introduced
here. The injected mass occurs in the momentum equations since the fluid has to exert a force to
accelerate the mass to the ambient velocity v. The mass flux also appears in the energy equation.
Likewise the force component in or against the flow direction of the applied external force f
contributes to the power balance.

We take the above equations as reference, but in acoustics we are more interested in a simpler
formulation. Especially we like to involve the entropy s as a variable. We obtain the so called
primitive formulation in the following way: i) multiply the mass balance (32) by v and subtract
from momentum balance (33); ii) take the dot product of the momentum balance (33) with v and
subtract from energy balance (34). Also multiply (32) by e and subtract from (34). Finally we
have:

Dρ
Dt

= −ρ∇·v + ṁ (36)

ρDv
Dt

= −∇p+∇·τ + f (37)

ρDe
Dt

= −p∇·v + τ :∇v −∇·q + ϑ̇ (38)

In which D
Dt

:= ∂
∂t

+v·∇ denotes the substantial or material derivative, i.e. the temporal change
felt by the fluid element in motion, passing position x at time t. As will be seen subsequentially,
it is convenient to re-formulate the energy balance (38) into the entropy equation. Its definition is
(Gibbs)

Tδs = δe− (p/ρ2) δρ = δh− (1/ρ) δp (39)

with T the temperature and h the specific enthalpy. The symbol δ denotes here a total differential
in the sense of equilibrium thermodynamics due to which a variation of one thermodynamic
variable is completely determined in terms of the variation of two other thermodynamic variables
all taken at the same point in time and space. Is the fluid globally in thermodynamic equilibrium
(which we will further assume), then it does not matter, how the change δ comes about. Of course
the same kind of variation has to be considered for all variables, may it be due to a separate
temporal change (δ = dt · ∂/∂t) or a separate spatial change (δ = dx · ∂/∂x). If the equilibrium
is only local, i.e. only within the size of a fluid element, then this couples the temporal and spatial
variations of the variables and δ = dt· D

Dt
must be understood as a material change, i.e. according

to some D/Dt.

Now we go on in replacing the internal energy in equation (38) by use of equation (39). In the
most general case δ may be replaced by δ = dt · D

Dt
, i.e. the material change following a fluid

particle. If we do so in (39) and multiply by ρ/(Tdt) the resulting r.h.s-terms ρDe
Dt

and Dρ
Dt

can
be substituted from (36) and (38) to give the entropy equation

ρDs
Dt

= 1
T

[
τ :∇v −∇·q + ϑ̇− ṁ

p
ρ

]
(40)
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We note that the term Φ := τ :∇v is called ”dissipation function”, of which it can be shown that it
is never negative4. In other words, the effect of viscous friction is strictly to increase the entropy
in a fluid element and thus make the process irreversible. As expected, heat conduction may
increase or decrease entropy depending on the direction of the flux vector, and the heat sources
themselves directly act as to change entropy. Also the addition of mass changes the entropy.

Upon introducing the entropy as a new variable, we have eliminated the internal energy e. In order
to close our equation system we now replace the caloric equation of state (35) by a thermodynamic
relation between variables of state, in this case certainly ρ = ρ(p, s), which translates into

δρ =
(
∂ρ
∂p

)
s︸ ︷︷ ︸

=: 1/a2

δp+
(
∂ρ
∂s

)
p︸ ︷︷ ︸

=: −ρσ

δs (41)

where we have introduced the definitions

a2 :=
(
∂ρ
∂p

)−1

s
; σ := −1

ρ

(
∂ρ
∂s

)
p

(42)

Note that it is reasonable to introduce an expression a2, i.e. a strictly positive quantity because
a pressure increase ∂p > 0 will necessarily result in a compression, meaning an increase in
the density ∂ρ > 0 and vice versa. We want to use (41) to formulate an evolution equation
for the pressure. For this case we again consider the most general case of a variation δ in the
thermodynamic relation (41), i.e. we look at changes following a fluid particle and replace δ =

dt · D
Dt

. Then we divide by dt, which finally leaves our desired relation for the pressure

1
a2
Dp
Dt

=
Dρ
Dt

+ σρDs
Dt

(43)

which explicitly states that for isentropic flows (i.e. if Ds
Dt

= 0) the changes of pressure and
density along the particle paths are directly coupled by the scalar a2. Note that this does not mean
then that the entropy is constant everywhere. This would be the case, if on a surface upstream,
transverse to the flow, the entropy was constant for all times. From (43) it is seen explicitly, why
it was advantageous to consider material changes D

Dt
. The reason is, we may now insert the

entropy from (40) and the density from (36) into our pressure equation to obtain:

1
a2
Dp
Dt

= −ρ∇·v + σ
T
(τ : ∇v −∇·q + ϑ̇) + ṁ

(
1− σ

T
p
ρ

)
(44)

Note, that so far we have nothing said about the fluid, i.e. we have not specified a special thermal
equation of state. The set of equations (36, 37, 44) constitutes the governing equations for density,
velocity and pressure. Considering a2 and σ to be given properties of the fluid, then we only need
to specify the thermal equation of state ρ(T, p) which closes our equation system. In what follows,
we will often refer to perfect gases, i.e. gases with the following thermal and calorical properties:

ρ =
p
RT

(45)

4This is due to Φ = µ(∇v+ t∇v− 2
3I∇·v): ∇v = µ([∇v− 1

3I∇·v] + [t∇v− 1
3I∇·v]):(∇v− 1

3I∇·v)+
µ(∇v + t∇v − 2

3I∇·v):I 1
3∇·v. From this: Φ = 1

2µ(∇v + t∇v − 1
3I∇·v)2 + µ( 23∇·v)2 ≥ 0.
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and
de = cvdT (46)

where R denotes the specific gas constant and cv the (constant) specific heat capacity for constant
volume of the fluid. We also introduce the specific heat capacity for constant pressure cp = R+cv
and the isentropic coefficient γ = cp/cv with e.g. γ ≈ 1.4 for air. Upon using (45), (46) and (39)
we can now express everything in terms of pressure and density, i.e.

a2 = γRT = γp/ρ (47)

σ = 1/cp (48)

which closes our system (36, 37, 44). In summary, our final equation system reads

Dρ
Dt

+ ρ∇·v = ṁ

ρDv
Dt

+∇p−∇·τ = f (49)

1
a2
Dp
Dt

+ ρ∇·v − σ
T
(τ:∇v −∇·q) = σ

T
ϑ̇+

(
1− σ

p
ρT

)
ṁ (44)

For a perfect gas, T is eliminated according to the thermal equation of state (45) while a2 and σ
follow (47) and (48) respectively. For a fluid different from a perfect gas (44) is supplemented
by some properties (35) of which immediately follow a2(p, T ) and σ(p, T ). For instance, an
incompressible fluid could be characterized by ρ = ρ(T ) and thus (∂/∂p)ρ = a−2 = 0 as well
as cv = cp. Note that in this case the divergence ∇·v is determined through external heating ϑ̇
and mass sources ṁ. The distinction between incompressible and compressible behaviour of the
pressure will subsequentially play an important role when characterizing sound.

Generally, relative density gradients, i.e. compressibility effects, occur in a medium, when the
flow acceleration, i.e. the material derivative of the flow velocity becomes high compared to the
square of the speed of sound. For steady flow about some aerodynamic object this is the case
whenever the flow has high subsonic freestream speeds. If on the other hand the flow is strongly
unsteady (high frequency) then the acceleration may be dominated by the time derivative of the
speed, which may be high even at arbitrary small flow speeds. In this case one is typically dealing
with sound. The fundamental difference of compressible and incompressible behaviour at high
temporal gradients (but for small changes in space is illustrated in figure 1. The left part of
this figure shows two snapshots of the motion of an incompressible medium as a result of an
oscillating sphere. In contrast, the motion of a compressible medium, excited by the idential
motion is shown in the right part of the figure. Note, that very close to the sphere, the motion of
the surrounding particles is very similar though.
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2.3 Linear equations of gas dynamics

What is our objective? We want to predict the acoustic variable at the listener’s position. It is the
pressure fluctuation p′ deviating temporally from the mean ambient pressure p0, which we sense
with the ear (i.e. p = p0+ p′). So, our aim is certainly to derive appropriate equations, describing
the p′-field or at least a field, of which p′ is simply (algebraically) extractable at positions where
the value of the sound pressure is needed.

We need to describe small perturbations of the pressure about its mean value. More generally, we
consider all our flow variables V (x, t) = (ρ,v, p, a2, σ, . . .) as being composed of a mean steady
value V 0(x) = (ρ0,v0, p0, (a2)0, σ0, . . .) plus a small, but unsteady perturbation V ′(x, t) =
(ρ′,v′, p′, (a2)′, σ′, . . .). The smallness of the perturbation is expressed by introducing a small
number ϵ≪ 1:

(ρ,v, p, a2, σ, · · ·) = (ρ0 + ϵρ′,v0 + ϵv′, p0 + ϵp′, (a2)0 + ϵ(a2)′, σ0 + ϵσ′, . . .) (50)

We assume our mean flow satisfies the steady form of (36, 49, 44) without any sources, i.e.
ṁ0 = 0, f 0 = 0, ϑ̇0 = 0. Then

v0·∇ρ0 = −ρ0∇·v0 (51)
ρ0v0·∇v0 −∇·τ 0 = −∇p0 (52)

1
(a2)0

v0·∇p0 = −ρ0∇·v0 + σ0

T 0 (τ
0:∇v0 −∇·q0) (53)

According to standard perturbation techniques the equations, describing the dynamics of the first
order perturbations are obtained by i) inserting (50) into (36, 49, 44), ii) differentiating with
respect to ϵ and iii) letting ϵ→ 0. This gives

D0ρ′

Dt
+ ρ0∇·v′ + v′·∇ρ0 + ρ′∇·v0 = ṁ′ (54)

ρ0D
0v′

Dt
+∇p′ + ρ0v′·∇v0 + ρ′v0·∇v0 = f ′ (55)

1
(a2)0︸ ︷︷ ︸[
ρ0

γp0

]
p

(
D0p′

Dt
+ v′·∇p0

)
+ ρ0∇·v′ +

(
ρ0

(a2)′

(a2)0
+ ρ′

)
︸ ︷︷ ︸[

ρ0

p0
p′
]
p

∇·v0 = σ0

T 0 ϑ̇
′ +

(
1− σ0p0

ρ0T 0

)
ṁ′︸ ︷︷ ︸[

γ−1
γ

ρ0

p0
ϑ̇′ + 1

γ
ṁ′

]
p

(56)

=: θ̇′

where the expression D
0

Dt
:= ∂

∂t
+ v0·∇ denotes the time derivative along the streamlines of the

mean flow. In this system the perturbations of viscous stresses ∇·τ ′ in (55), viscous dissipation
and heat conduction [σ

T
(τ :∇v−∇·q)]′ in (56) have been omitted, since these are typically very

small quantities and relevant in very rare cases only. The brackets and the subscript p indicate the
specialization of (56) for a perfect gas using (47) and (48). For the special case of an incompress-
ible medium (a2)0 → ∞ the pressure equation degenerates into an equation for the divergence
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of the mass flux (ρv)′ by external mass addition and heating. The pressure equation (56) shows
explicitly that first assuming a perfect gas (see squared brackets) with (a2)0 = γp0/ρ0 and then
letting (a2)0 → ∞ would have yielded a completely different (errorneous) result.

We note that in case of resonances, excited by the sources, these linear equations are not uniformly
valid (i.e. valid only over a finite time of observation). With resonances we specifically mean so
called ”absolute” or ”global hydrodynamic instabilities”, the study of which by its own is a whole
discipline of fluid mechanics. For appropriate flow parameters, absolute instabilities occur for
instance in the wake flow behind blunt bodies. They initiate the typical von Karman vortex street,
which is a self-sustained flow oscillation. Again, we exclude such phenomena when dealing with
our equation system.

Our set of equations bears the name ”linearized gas dynamic equations” and according to our
derivation they describe small perturbations of a steady mean flow (although they would equally
be valid for a time varying mean flow). For an inviscid flow this system is exact, while for general
viscous flows it assumes the explicit neglect of the perturbations of viscous stress, dissipation and
heat conduction. More often this set of equations is called ”Linearized Euler Equations (LEE)”,
although, again, it is not only used for strictly inviscid, but also viscous mean flows. In particular,
the dynamics of sound waves propagating in the mean flow field is included. A considerable work
of aeroacousticians has been, to derive a separate equation for the acoustic pressure perturbation
or some other appropriate acoustic variable from this set of equations. Such an equation would
certainly be some sort of a wave equation, since we know that in acoustics we are dealing with
”sound waves”. The derivation of wave equations is what we will do in the following sections as
well. We will start with the simplest case, i.e. non-moving fluid and look at flow effects when
introducing some simple non-zero flow fields.

2.4 Acoustics in stagnant homogeneous media

For the beginning we consider the case v0 = 0, e.g. a medium at rest. Note, that due to (52) this
implies p0 ̸= p0(x), i.e. p0 = const =: p∞, while the density ρ0 may still be a function of space.
Let us re-write (54-56) for this case

∂ρ′

∂t
+ v′·∇ρ0 + ρ0∇·v′ = ṁ′ (57)

ρ0∂v
′

∂t
+∇p′ = f ′ (58)

1
(a2)0

∂p′

∂t
+ ρ0∇·v′ = θ̇′ (59)

2.4.1 Intensity and power

With the derivation of the perturbation equations for a non-moving medium we now have the
means to show how the sound intensity and sound power in (9) and (12) are linked with the
sources. First we multiply (58) by v′ to obtain

∂
∂t

(
ρ0 1

2
v′2)+ v′·∇p′ = v′·f ′
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Next we multiply (59) by p′/ρ0 and obtain

∂
∂t

(
1
2
p′2

ρ0(a2)0

)
+ p′∇·v′ = 1

ρ0
θ̇′p′

Upon adding these two equations we find

∂
∂t

(
ρ0 1

2
v′2 + 1

2

p′2

ρ0(a2)0︸ ︷︷ ︸
=: E

)
+∇·(p′v′) = v′·f ′ + 1

ρ0
θ̇′p′︸ ︷︷ ︸

=: Q

,

where we call E the energy density. Note that if we take the time average of this equation due to
(2) the energy density term drops out because the temporal mean of a time derivative is zero by
definition. Moreover, the expression in the divergence operator apears to be the acoustic intensity
I . One may now integrate the above equations over some control volume V , which is to contain
all the sources, i.e.∫

V

∇·(p′v′) dV =

∫
V

QdV ⇐⇒
∮
∂V

(p′v
′
)·n dA =

∫
VS

QdV

where we have used Gauss’s theorem to convert the volume integral on the left hand side into a
surface integral. Further, VS ∈ V denotes the (sub-) volume, within which the sources (f ′ or θ̇′)
are non-zero. Finally we have

0 +

∮
∂V

I·n dA

︸ ︷︷ ︸
= P

=

∫
VS

QdV.

This last relation shows that the sound power P is independent of the chosen control volume V , as
long as all sources are contained inside this volume. We need to recall though that in deriving the
above relation we have neglected dissipation and heat conduction. In order to assess these effects
we can think of e.g. f ′ as of incorporating the actual source as well as a second force contribution
due to the viscous friction ∇·τ ′. Likewise one would have incorporated the heat conduction
term in the pressure equation (σ

T
∇·q)′ in the heat source θ̇′. The source Q in the above sound

power balance would have obtained an extra term Qdiss = (∇·τ ′)·v′ + 1
ρ0

(σ
T
∇·q)′p′. Since

friction and heat conduction occurs everywhere inside V the extra contribution Qdiss would then
be non-zero everywhere inside the control volume V . In this case the sound power P would
indeed depend on the choice of the control volume and not be a conserved quantity. Note that
all signals not originating from within V give no contribution to the sound power P . This result
is quite important practically for the measurement of the noise output of an object in a noisy
environment.
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2.4.2 Acoustic wave equations

2.4.2.1 Sound field equation for pressure. We may now easily isolate a pressure equation
from the linear gas dynamic equations in the following way: i) divide the linearized momentum
equation (58) by ρ0 and take the divergence to get

∂∇·v′

∂t
= −∇·

(
1
ρ0

∇p′
)
+∇·

(
1
ρ0

f ′
)

then (ii) take the time derivate of the pressure equation (59), i.e.

1
(a2)0

∂2p′

∂t2
+ ρ0∂∇·v′

∂t
=

(
1− σ0p∞

ρ0T 0

)
∂ṁ′

∂t
+ σ0

T 0
∂ϑ̇′

∂t

It is obvious that we can now eliminate the velocity perturbations v′ from these two relations to
finally obtain

1
(a2)0

∂2p′

∂t2
− ρ0∇·

(
1
ρ0

∇p′
)

= Qp (60)

Qp =
(
1− σ0p∞

ρ0T 0

)
∂ṁ′

∂t
+ σ0

T 0
∂ϑ̇′

∂t︸ ︷︷ ︸[
γ − 1
(a2)0

∂ϑ̇′

∂t
+ 1
γ
∂ṁ′

∂t

]
pg

−ρ0∇·
(
1
ρ0

f ′
)

This is the wave equation for the pressure perturbation p′ in a stagnant medium of variable mean
density ρ0(x). The left hand side describes the wave dynamics (and is therefore called wave
operator) while the right hand side describes the given source functions, which alltogether we
call Qp, a given function. Again, we have indicated the appearance of the r.h.s.-terms with a
subscript pg in case of a perfect gas. It is noteworthy that the wave operator depends solely on ρ0

and (a2)0, i.e. these two quantities define the wave dynamics of the pressure waves. For a perfect
gas the wave equation (60) further simplifies since by (47) we have ρ0 = γp∞/(a

2)0. Therefore,
substituting ρ0 in (60) for a perfect gas gives

∂2p′

∂t2
−∇·[(a2)0∇p′] = γ−1(a2)0∂ṁ

′

∂t
+ (γ − 1)∂ϑ̇

′

∂t
−∇·[(a2)0f ′]

This equation shows the perturbation dynamics of the pressure (l.h.s.) to be completely described
by the quantity (a2)0 for a perfect gas. It is obviously of fundamental physical importance for the
understanding of sound waves.

In order to interpret (a2)0 physically, let us go back to (60) and consider the most simple case,
i.e. a constant mean density ρ0 = const =: ρ∞ of the medium and thus (a2)0 = const =: (a2)∞.
Then
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1
(a2)∞

∂2p′

∂t2
−∆p′ = Qp (61)

Qp =
(
1− σ∞p∞

ρ∞T∞

)
∂ṁ′

∂t
+ σ∞
T∞

∂ϑ̇′

∂t︸ ︷︷ ︸[
1
γ
∂ṁ′

∂t
+
γ − 1
(a2)∞

∂ϑ̇′

∂t

]
pg

−∇·f ′

where ∆ = ∇·∇ denotes the Laplacian. Before solving this equation let us have a first look at
the source term Qp.

Without actually solving the acoustic wave equation (60) for the sound pressure p′ due to the
given sources some statements about the source term Qp are in place. The mass source ṁ′, the
external force f ′ and the heat source ϑ̇′ as introduced in (36-38) all contribute to the generation
of sound. However, it is not the mass flow ṁ or the heat flow ϑ̇ which acts as a source, but their
time derivatives. Moreover volume flow and heat flow have the same source characteristics, for
they appear in the same form. In contrast the forcing f ′ enters differently. Only the divergence
of the specific force f ′/ρ0 acts like a source. This is the reason why only the irrotational part
of the forcing f ′/ρ0 is of acoustic relevance. A rotational part of whatsoever magnitude drops
out identically. Note on the other hand, that we assume f ′(x, t) (and not f ′/ρ0)! to be the
independent, prescribed forcing and that even if it were purely rotational the term f ′/ρ0 will have
an irrotational part unless ρ0 = const. Therefore we may expect an unsteady, purely rotational
force to have acoustic significance when it acts in an inhomogeneous domain (∇ρ0 ̸= 0) of
the fluid. As an outlook to aeroacoustic source processes we note that generally, unsteady local
fluid forces – even when of purely rotational character – may become acoustically significant
especially when interacting with inhomogeneities. For instance, we may think of f ′ as of some
suitable model for hydrodynamic forces due to eddies passing through a shock or -less dramatic-
eddies subject to strong local acceleration.

Below, in section 2.4.3 we will show that
√

(a2)0 represents the speed of sound. Before doing
so, it is important to show that apart from the pressure equation (60) wave equations may be
alternatively derived for other acoustic quantities as well.

2.4.2.2 Sound field equation for particle velocity. We could also have derived a wave equa-
tion for the acoustic particle velocity v′. In order to do so, we take the time derivative of the
momentum equation (58):

ρ0∂
2v′

∂t2
+∇∂p′

∂t
=
∂f ′

∂t

Next, the pressure equation (59) is multiplied by (a2)0 and the gradient is taken which yields

∇∂p′

∂t
+∇(ρ0(a2)0∇·v′) = ∇

(
(a2)0θ̇′

)
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The pressure may be eliminated from these two equations to obtain

ρ0∂
2v′

∂t2
−∇(ρ0(a2)0∇ · v′) = −∇((a2)0θ̇′) +

∂f ′

∂t

A closer look at this equation for the acoustic particle velocity reveals that i) it is as the wave
equation for the pressure (60) a second order equation in time and space, but ii) it has a some-
what different operational form. We can see the differences better when executing the gradient
operation on the second term of the above equation ∇(ρ0(a2)0∇ · v′) = ∇· v′ ∇(ρ0(a2)0) +
ρ0(a2)0∇(∇·v′) (product rule). Further, using the vector identity ∇(∇·v′) = ∆v′+∇×(∇×v′)
we arrive at

1
(a2)0

∂2v′

∂t2
−∆v′ − ∇ρ0(a2)0

ρ0(a2)0
∇· v′ −∇× (∇× v′) = 1

ρ0(a2)0

[
−∇

(
(a2)0θ̇′

)
+
∂f ′

∂t

]
Notice, that the left hand side of this equation resembles in part the wave equation for the acoustic
pressure for constant density ρ0, eqn (61). However there are two extra terms relating to the spatial
variation of the mean density and a term proportional to the vorticity ω′ = ∇× v′. If we assume
ρ0(a2)0 constant, then we see that only the potential part of v′ behaves similarly as the sound
pressure. We may also say, that if v′ is a potential field (this is defined to be the case if it is
derivable from a potential function ϕ with v′ = ∇ϕ), then it behaves similarly as the sound
pressure. This shows us, that it is the potential part of the velocity which is related to sound
while there may be an additional part (the rotational part v′−∇ϕ) which displays a non-acoustic,
namely a vortical behavior. In order to extract the potential part of the velocity one may regard the
so called dilatation (german: ”Dilatation”) ∇· v′ as the relevant acoustic quantity. An equation
for the dilatation may easily be derived when we divide the second last equation by ρ0, take the
divergence and divide by (a2)0:

1
(a2)0

∂2(∇· v′)
∂t2

− 1
(a2)0

∇·
[
1
ρ0

∇[ρ0(a2)0(∇· v′)]

]
= Qv (62)

Qv = 1
(a2)0

∇·
[
− 1
ρ0

∇
(
(a2)0θ̇′

)
+ 1
ρ0
∂f ′

∂t

]

For the most common case of a perfect gas this equation can be further simplified. According to
(47) we have ρ0(a2)0 = γp0. Since we assumed that the mean pressure p0 = p∞ is constant so is
ρ0(a2)0 which we may use in (62) to obtain:

∂2(∇· v′)
∂t2

−∇·
[
(a2)0∇(∇· v′)

]
= ∇·

[
− 1
ρ0

∇
(
(a2)0θ̇′

)
+ 1
ρ0
∂f ′

∂t

]
This is the same left hand side as we derived for the dynamics of the acoustic pressure. Therefore
the dilatation may be used alternatively to describe the acoustics.

For the most simple case of constant ρ0 = ρ∞ and (a2)0 = (a2)∞ (but not necessarily a perfect
gas) equation (62) yields
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1
(a2)∞

∂2(∇· v′)
∂t2

−∆(∇· v′) = Qv (63)

Qv = 1
ρ∞

[
−∆θ̇′ + 1

(a2)∞

∂∇· f ′

∂t

]

where θ̇′ is as defined in (56).

2.4.2.3 Velocity potential. There is a quite convenient way to describe the acoustic particle
velocity and the acoustic pressure perturbation v′, p′ based on one single function, namely the
so called ”velocity potential” ϕ. First, we decompose the velocity perturbation into a purely
rotational part v′

ω, which by definition is free of dilatation and another part v′
d, which corrects for

the dilatation in v′:
v′ =: ∇×Ψ︸ ︷︷ ︸

:= v′
ω

+ 1
ρ0

∇(ρ0 ϕ)︸ ︷︷ ︸
:= v′

d

(64)

where Ψ represents an unknown vector stream function which is to be determined along with the
unknown velocity potential ϕ. Such a decomposition is also called ”Helmholtz decomposition”;
v′
ω and v′

d are sometimes referred to as ”solenoidal” and ”potential” part of the velocity field. We
may introduce a similar decomposition of the (given) disturbance force f ′:

f ′ =: ρ0∇×
(
1
ρ0

Ψf

)
︸ ︷︷ ︸

:= f ′
ω

+ ∇ϕf︸︷︷︸
:= f ′

d

(65)

We substitute (64) and (65) into the momentum equation (58) and obtain

∇
(
ρ0
∂ϕ
∂t

+ p′ − ϕf

)
= ρ0∇×

(
− ∂Ψ

∂t
+ 1
ρ0

Ψf

)
In order to satisfy this equation we simply set the left bracket and the right bracket separately
equal to zero. The first condition provides the relation between the velocity potential and the
pressure perturbation:

p′ = −ρ0∂ϕ
∂t

+ ϕf . (66)

The second condition leaves an equation for the stream function Ψ or respectively an equation
for the rotational part of the velocity field:

∂v′
ω

∂t
= ∇×

(
1
ρ0

Ψf

)
= 1
ρ0

f ′
ω (67)

Note, that due to (66) the (acoustic) pressure is related to the velocity potential only; the stream
function, representing the rotational part of the velocity field is obviously acoustically irrelevant.

Having satisfied the momentum equation we now have to solve the pressure equation (59) as well.
Substitution of v′ due to (64) and p′ due to (66) into (59) yields

1
(a2)0

∂
∂t

[
−ρ0∂ϕ

∂t
+ ϕf

]
+ ρ0∇·

[
∇×Ψ+ 1

ρ0
∇(ρ0 ϕ)

]
= θ̇′
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again, θ̇′ is as defined in (56). Taking into account the vector identity ∇·∇× . . . = 0 and writing
θ̇′ explicitly this may be re-arranged to

1
(a2)0

∂2ϕ
∂t2

−∇·
(
1
ρ0

∇(ρ0 ϕ)
)

= Qϕ (68)

Qϕ = − 1
ρ0

(
1− σ0p∞

ρ0T 0

)
ṁ′ − σ0

ρ0T 0 ϑ̇
′︸ ︷︷ ︸

−
[
1− γ−1

p∞
ϑ̇′ + 1

γρ0
ṁ′

]
pg

+ 1
ρ0(a2)0

∂ϕf

∂t

We observe that a modified potential φ := ρ0ϕwould obey the same wave operator as the acoustic
pressure, see (60):

1
(a2)0

∂2φ
∂t2

− ρ0∇·
(
1
ρ0

∇φ
)
= −

(
1− σ0p∞

ρ0T 0

)
ṁ′ − σ0

T 0 ϑ̇+ 1
(a2)0

∂ϕf

∂t

For ρ0 = const the velocity potential ϕ, as well as φ evolve according to the same wave operator
as the acoustic pressure p′ though due to a different source.

Note that even when Ψf ≡ 0 (irrotational external force f ′) the velocity perturbation contains
vorticity ω′ = ∇× v′:

ω′ = ∇×
[
1
ρ0

∇(ρ0ϕ)

]
= − 1

ρ02
(∇ρ0 × (∇ρ0︸ ︷︷ ︸

= 0

ϕ+ρ0∇ϕ)+ 1
ρ0

∇×∇︸ ︷︷ ︸
= 0

(ρ0ϕ) = − 1
ρ0

∇ρ0×∇ϕ

which means, that a ”vorticity trace” is generated wherever the gradient of the mean density inter-
acts with the acoustic perturbation (represented by ϕ). For homogeneous Media (ρ0 = const =
ρ∞) the perturbation field is irrotational.

The wave equation for the velocity potential ϕ allows to look at several asymptotic cases which
give an insight into the physics of an acoustic problem. Let us take the simplest case of (68), i.e.,
a homogeneous density ρ0 = const = ρ∞. Then we have

1
(a2)∞

∂2ϕ
∂t2

−∆ϕ︸ ︷︷ ︸
=: L[ϕ]

= Qϕ

Let us look at this equation when there are no sources present, i.e. Qϕ = 0. Now consider three
asymptotic cases

lim
(a2)∞→∞

L[ϕ] = −∆ϕ incompressible fluid (remember (42); 1/a2 = ∂ρ/∂p)

lim
∂2/∂t2→0

L[ϕ] = −∆ϕ weak unsteadiness, i.e. slow processes

lim
r→0

L[ϕ] = −∆ϕ behavior of ϕ near a singularity at r = 0 (r - distance to singularity).
Here, ϕ locally behaves like ϕ ≃ r−n for some positive number n.
This implies, that near r = 0 in L[ϕ] the part ∂2ϕ

∂t2
≃ r−n, while

|∆ϕ| ≃ |∂2ϕ
∂r2

| ≃ r−n−2 ≫ |∂2ϕ
∂t2

|.
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In all of the three cases the wave operator L[. . .] reduces to the Laplace operator acting on the
velocity potential ∆ϕ. But we know that ∆ϕ = 0 describes incompressible potential flow. There-
fore we see that the acoustic particle velocity v′ = ∇ϕ in the immediate neighborhood of a
singularity like a point source/sink or a geometry edge behaves like an incompressible potential
flow. Note however, that this is not necessarily the case for the pressure field. Given the velocity
field for an incompressible potential flow problem one would determine the pressure according to
Bernoulli’s equation (proportional to the square of the velocity). This corresponds to the acoustic
pressure field due to (66) only in the limit of asymptotically slow flow speeds. The above rela-
tions also say that very slowly changing sound velocity fields again behave like an incompressible
fluid.

2.4.2.4 Helmholtz equation. In acoustics, transient (starting) processes are of rare practical
importance. Therefore the wave equation is often conveniently expressed in the frequency domain
ω. The transition from time to frequency of a function h′(x, t) and vice versa is defined through
the Fourier transform and its inverse, eqns(23, 24). Fourier transforming the wave equation (61)
we obtain the so-called ”reduced wave equation” or ”Helmholtz equation”

−k2p̂−∆p̂ = Q̂p , (69)

in which p̂(ω,x) is the Fourier coefficient of p′(t,x) for the circular frequency ω. We have
grouped the frequency ω and (a2)∞ together to the so called wave number

k := ω√
(a2)∞

. (70)

2.4.3 Plane-, spherical- and cylindrical free acoustic waves

In this section we consider the case of no sources present, i.e. we are not interested in how
perturbations p′ originated, but simply assume they are existing and we study their dynamics due
to the homogeneous wave equation, i.e. (61) with Qp ≡ 0. Moreover, let us for the moment look
at small perturbations to a stagnant fluid of initially constant density and pressure throughout the
unbounded space.

2.4.3.1 Plane- or one dimensional waves d’Alembert gave a very general solution to the
homogeneous wave equation (61) for homogeneous medium in one dimension (say x):

p′(x, t) = f(t− x/a∞) + g(t+ x/a∞) (71)

where f and g are arbitrary functions and with the abbreviation a∞ =
√

(a2)∞. By inserting (71)
into (61) one immediately shows that the wave equation is indeed satisfied. If the independent
space variable is not x but more generally xk := ek·x with ek an arbitrary unit vector one may
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Figure 10: Plane wave propagation of signal f(τ−).

write (71) as
p′(x, t) = f(t− x·ek/a∞︸ ︷︷ ︸

=: τ−

) + g(t+ x·ek/a∞︸ ︷︷ ︸
=: τ+

) (72)

In order to interpret d’Alembert’s solution (72) physically it is useful to first consider a fixed
function value of f , i.e.

f ∗ = f( τ ∗−︸︷︷︸
τ ∗− = t− x∗·ek/a∞ =⇒ x∗k = x∗·ek = a∞t− a∞τ

∗
−

)

The last expression is the equation for a plane in space with a normal vector ek ”Hessesche
Normalform”, i.e. the function values of f are constant on such a plane. The relation shows as
well that as time goes on, these planes are shifted along their normal direction of ek with the
speed a∞. A fixed function value of f is also called ”signal”. Since all possible function values
of f move with the same speed a∞ the shape of f(τ−) does not change (see also left of figure 11).
Since all signals are constant on planes, the solution is also called plane wave (german: ”ebene
Welle”). The situation is again shown in figure 10.

The interpretation of the g-part of d’Alembert’s solution (72) is analogous, except that here x∗k =
x∗·ek = −a∞t + a∞τ+. That means, that g describes a signal, which moves with the speed a∞
in the negative direction of ek.

Now we know how to interpret the meaning of the thermodynamic variable a2 defined in (42)
and evaluated for a perfect gas in (47): it is the square of the speed at which small pressure
perturbations travel through a homogeneous medium at rest, i.e. the speed of sound (german:
”Schallgeschwindigkeit”).

a0 =
√
(a2)0 (73)

For air as a perfect gas with γ = 1.4 and a specific gas constant ofR = 287J/kgK at T 0 = 293K
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Figure 11: Plane waves. Left: example of general solution due to d’Alembert, right: periodic
wave as solution of Helmholtz equation

we obtain for instance a0 =
√
γRT 0 = 343m/s.

We could have solved our homogeneous wave equation (61) also on the basis of a separation of
variables like p′ = C exp(iωt) exp(−ikxx) exp(−ikyy) exp(−ikzz) = C exp(iωt−ik·x), where
k = (kx, ky, kz) = kek with k := |k| is called the wave number vector and ω is called the circular
frequency all being some constant numbers. If we write this as p′ = C exp(iΦ)

Φ = ωt− k·x (74)

is called the wave phase or phase function, german: ”Wellenphase” or ”Phasenfunktion” (see
right of figure 11). Upon substitution into the homogeneous wave equation (61) we obtain the
determining equation for k, called the dispersion relation (german: ”Dispersionsrelation”):

|k|2 = ω2/(a2)∞ = ω2/a2∞ (75)

for a given frequency ω there are obviously two solutions for k, namely k = ±ω/a∞, yielding
the following expression for the pressure:

p′ = C1 exp[iω(t− x · ek/a∞)] + C2 exp[iω(t+ x · ek/a∞)]

Obviously, this time-harmonic solution (pure tone) is a special case of d’Alembert’s general so-
lution, whereby f(τ−) = C1 exp(iωτ−) and g(τ+) = C2 exp(iωτ+).

Note that the time derivative of the phase is the circular frequency ω, whereas the magnitude of
its spatial gradient represents the wave number k:

∂Φ
∂t

= ω =: 2π/T (76)

|∇Φ| = k =: 2π/λ (77)

T is called period (german:”Schwingungsdauer”) and λ is called wavelength (german:
”Wellenlänge”). Let us look at surfaces of constant phase Φ(x, t) = const, i.e. those, where
the solution p′ remains constant. These surfaces are called wave fronts (german: ”Wellenfron-
ten”). We may think of plane waves as waves originating from a source which is homogeneously
distributend in a plane (two-dimensional source).
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2.4.3.2 Spherical- or threedimensional waves Let us now look at solutions to the wave
equation in spherical co-ordinates, defined through the cartesian co-ordinates x, y, z by x =
r sinϑ cosφ, y = r sinϑ sinφ, z = r cosϑ. In these co-ordinates, the wave equation (61) reads

1
a2∞

∂2p′

∂t2
−

[
∂2p′

∂r2
+ 2
r
∂p′

∂r
+ 1
r2

(
1

sin2 ϑ
∂2p′

∂φ2 +
∂2p′

∂ϑ2 + 1
tanϑ

∂p′

∂ϑ

)]
= 0 (78)

We are interested in the simple case of a solution symmetric with respect to the point r = 0 for
which all the terms, involving φ and ϑ in (78) vanish. Upon grouping p′ and r into a new variable
p′r we may write the wave equation like

1
a2∞

∂2p′r
∂t2

− ∂2p′r
∂r2

= 0 (79)

which shows that the solution for the spherical wave p′(r, t) can be obtained from the one-
dimensional solution for the variable p′r. Only the point r = 0 is somewhat critical, since p′

becomes indefinite. We immediately use d’Alembert’s solution (72) and we find

p′(r, t) = 1
r
[f(t− r/a∞) + g(t+ r/a∞)] (80)

As for plane waves the shape of the wave does not change, it only suffers from a decrease in
magnitude like the inverse of the distance r. The function f represents a wave spreading away
from the center r = 0 (so called outgoing) while g is running towards, i.e. collapsing into the
center (so called incoming). The distinction between these two parts of the solution is rather
important as far as the role of cause and effect is concerned. This shall be shortly discussed next.

Consider the process of switching on a source in the domain r < R, ”source” being understood as
to representing the cause of an acoustic pressure signal. Before this moment the field is assumed
to be free of any signals, which translates into the fact that before a certain observation time
instant, which we denote t = 0, no pressure field can be observed: p′(r > R, t < 0) = 0.
Translated to d’Alembert’s solution (80) this may be expressed like

0 = f(t− r/a∞︸ ︷︷ ︸
τ−

) + g(t+ r/a∞︸ ︷︷ ︸
τ+

), for t < 0 and r > R

Now, f and g are independent functions and therefore cannot cancel each other for t < 0, which
implies, that f(t < 0) = 0 and g(t < 0) individually vanish. Let us first look at what this
means for f . On the one hand we know that the function values of f remain constant on lines
r∗ = a∞t− a∞τ

∗
− any time, unless the function value is modified along this line due to the action

of a source. This is not the case for all lines, for which r∗(t = 0) > R. The border line at the
outer edge of the source domain would be r∗(t) = a∞t+R and thus we know, that in the domain
r∗ > a∞t + R there can never be a non-zero signal originating from the f -part of d’Alembert’s
solution. This is illustrated in the left of figure 12. Analogous reasoning leads to the result, that
the incoming part of the solution g can exist only for a finite period of time after the source is
switched on (see right of figure 12).

One more remark here: physically, the ”g part” of d’Alembert’s solution still leaves a trace in
the field also at any time t > R/a∞. The reason results again from physics rather than mathe-
matics, namely that the radial component of the acoustic particle velocity, caused by the g-signal
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Figure 12: Left: solution domains for outgoing part of solution f , right: solution domains for
incoming part of solution g.

collapsing into the origin at r = 0, must vanish at any time. This condition can only be satisfied
by an additional ”f” part, which is generated at the origin and appears as the inverted, reflected
g−signal, traveling in positve direction r, see also example in appendix F.1.

The mentioned restrictions on f and g make sure that the signal p′ can originate only from the
source domain, but not from anywhere else. This is called causality condition. A violation of
causality would make the mathematical solution unphysical. This implies the assumption that in
open domains, no waves are coming from infinity (radiation condition). Note that for the special
(and practically very important) case of a point source, i.e. a source domain with R → 0 the
incoming part of the solution vanishes completely: g(τ+, R → 0) ≡ 0. Then p′ = f(τ−)/r from
(80) is the most general causal solution to the wave equation. The solution f automatically fulfills
the radiation condition. The satisfaction of this radiation condition has to be required explicitly,
when we compute the pressure in the frequency domain by solving the Helmholtz equation. Then
we would not have arrived at (80) but rather similarly at

p̂(r, k) = 1
r

[
f̂ exp(−ikr) + ĝ exp(ikr)

]
(81)

and in conjunction with the common time factor exp(+iωt) going together with p̂ as mentioned
in (70) only the first term represents waves running towards increasing r. As above we sort out
the ĝ-part of (81) in order to meet the radiation condition. Note that we would have arrived at the
same solution had we Fourier transformed (80).

We may think of spherical waves as waves originating from a concentrated point source (zero-
dimensional source).

The radiation condition can be formulated for general cases, not requiring spherically symmetric
solutions p′ = p′(r) but p′ = p′(r, φ, ϑ). Let us re-consider the wave equation in spherical polar
co-ordinates

1
a2∞

∂2p′r
∂t2

− ∂2p′r
∂r2

= 1
r2

(
1

sin2 ϑ
∂2p′r
∂φ2 +

∂2p′r
∂ϑ2 + 1

tanϑ
∂p′r
∂ϑ

)
We observe, that for very large distances from the origin r → ∞ the r.h.s. vanishes and although
p′ will even here be a function of the orientations φ and ϑ, the equation tells us, that for large r the
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dynamics of p′ is governed by r only. Therefore the solution for very large r will again be (80)
with the generalization, that f and g now are functions of the orientations, too. D’Alembert’s
solution (80) enabled us to conveniently sort out the waves running towards decreasing r (the
waves g(t+ r/a∞) coming from infinity). The pressure then is p′r = f(t− r/a∞, φ, ϑ).

If we eliminate f by differentiating w.r.t. r and t, respectively and transform the result to the
frequency domain we obtain the ”Sommerfeld radiation condition”

lim
r→∞

r
(
ikp̂+

∂p̂
∂r

)
= 0 (82)

Just as we have to respect causality when solving the wave equation for p′(x, t), we must make
sure that the radiation condition is satisfied when solving the Helmholtz equation for p̂(x, ω).

Let us again look at the sound field at large distances from the wave centers, i.e. r → ∞. Since
the velocity potential ϕ is governed by the same wave operator as the pressure, d’Alembert’s
solution applies also for ϕ. Moreover, for large distances just as above we find that in the general
case ϕr = f(t − r/a∞, φ, ϑ). We may therefore express p′ from (66) without sources like p′ =

−ρ∞∂ϕ∂t = −ρ∞
r

df
dτ−

and v′r =
∂ϕ
∂r

with constant ρ∞ due to (64). For large r this gives v′r =

− 1
a∞r

df
dτ−

. One may therefore eliminate f using p′, which yields

p′(r → ∞) = ρ∞a∞ v′r(r → ∞). (83)

in the farfield the pressure and acoustic particle velocity are proportional. In analogy to Ohm’s
law from electricity U = RI with the correspondences p′ = U and v′r = I the expression
z∞ := ρ∞a∞ is called wave drag or free field impedance (german: ”Wellenwiderstand” or
”Freifeldimpedanz”). Note that with (83) one may express the intensity level in terms of the
pressure level in the farfield, because I = v′rp

′ ≃ p′2/(ρ∞a∞). We finally obtain

LI ≃ Lp − 10 lg
(
z∞
zref

)
with zref =

p2ref
Iref

= 4 · 102 kg
m2s

and z∞ = ρ∞a∞ (84)

2.4.3.3 Cylindrical- or two-dimensional waves The solution of the wave equation in two
dimensions appears to be more complicated as in one and three dimensions. This is seen when
writing the wave equation in axi-symmetric co-ordinates (r, θ, z), defined through the cartesian
co-ordinates by x = r cos θ, y = r sin θ, z = z. In these co-ordinates, the wave equation (61)
without sources reads

1
a2∞

∂2p′

∂t2
−

[
1
r
∂
∂r

(
r
∂p′

∂r

)
+ 1
r2
∂2p′

∂θ2
+
∂2p′

∂z2

]
= 0 (85)

Again, looking at axi-symmetric solutions we have

1
a2∞

∂2p′

∂t2
− 1
r
∂
∂r

(
r
∂p′

∂r

)
= 0 (86)
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Figure 13: Bessel functions of first kind (left) and second kind (right).

Unfortunately there is no exact way to reduce this equation to one for a plane wave, which already
shows, that the wave form is not conserved as in one or three dimensions. Cylindrical waves
typically show a trailing wake. The equation has to be solved directly. We are separating out the
time like in (70) and now rather solve the Helmholtz equation (69) in axi-symmetric co-ordinates:

∂2p̂
∂η2

+ 1
η
∂p̂
∂η

+ p̂ = 0 (87)

where we have non-dimensionalized r like η = kr. This is Bessel’s differential equation. An
elementary solution is not available, but since the differential equation is linear and of second
order all solutions can be expressed in terms of two linearly independent universal solutions,
which are tabulated, namely the so called Bessel function of first kind, zeroth order J0 and the
Bessel function of second kind, zeroth order Y0 (also Weber’s function), see figure 13.

p̂ = AJ0(η) +BY0(η) (88)

where A and B are constants. Again, we are only interested in outgoing solutions, i.e. those,
which run towards increasing r or η respectively. For the assumed time factor exp(iωt) the only
linear combination for which this is possible is A = P and B = −iP . Therefore the cylindrical
wave solution is expressed as

p̂ = PH
(2)
0 (η) = P [(J0(η)− iY0(η)] (89)

which defines the so called Hankel function of second kind and zeroth order H(2)
0 (the one of

the first kind H(1)
0 would in combination with exp(iωt) render incoming waves). It is interesting

to see, how the solution behaves close to the origin η → 0 and for very large relative distances
η → ∞:

H
(2)
0 (η) ≃ −2i

π
ln(η) for η → 0 (90)

H
(2)
0 (η) ≃

√
2
πη

exp[−i(η − π/4)] for η → ∞ (91)
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Therefore for large distances the cylindrical wave again behaves similar to a plane wave (the wave
form does not change asymptotically anymore) with the signal decreasing like 1/

√
r. We may

think of cylindrical waves as waves originating from a source which is homogeneously distributed
along a straight line (one-dimensional source).

The Sommerfeld radiation condition for axi-symmetric waves translates to

lim
r→∞

√
r
(
ikp̂+

∂p̂
∂r

)
= 0 (92)

2.4.4 More general elementary solutions to the homogenous wave equation

New elementary solutions to the homogeneous wave equation for constant density ρ∞ may be
derived from the ones determined in the previous section. This is due to the fact that the governing
equation is linear with constant coefficients. If we take e.g. the derivative along a cartesian
direction, say x̃, of the homogeneous form of the wave equation (61), scaled by some constant c,
then we get

∂
∂x̃

{
1
a2∞

∂2cp′

∂t2
−∆(cp′)

}
= 1
a2∞

∂2p′2
∂t2

−∆p′2 = 0 with p′2 := c
∂p′

∂x̃
(93)

This result clearly shows that for constant fluid density ρ∞ and speed of sound a∞ the (spatial and
temporal) derivatives of solutions to the wave equation are again solutions to the wave equation.

2.4.5 From a source to its sound field in free space

In the previous section we have investigated some elementary solutions to the wave- and
Helmholtz equation. In this way we were able to interpret the introduced thermodynamic quantity√

(a2)0 as the speed of sound, i.e. the speed at which the phase of a small amplitude acoustic
wave travels.

Here we want to look at more general solutions and trace them back to their origin. In this way
we will find the relation between the source term Qp of (61) and the solution p′. In this section
we restrict ourselves to the free field (no obstacles present).

Let us re-examine our spherically symmetric causal solution from (80), centered not at the origin
of the system x with |x| = r, but at a general position ξ (see figure 14). The general form of the
solution may not change, i.e. the pressure is to depend exclusively on the distance

r := |x− ξ| (94)

from the field’s center. With this shift in origin we have from (80)

p′ξ(x, t, ξ) = 1
r
f(τ, ξ) (95)

τ = t− r/a∞ (96)
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ξ

r = x−ξ

x

Figure 14: Spherically symmetric sound field described
for symmetry point shifted out of origin by ξ.

Here we have introduced the variable τ , which is called ”retarded time”, because it denotes a
moment in the past. Note that our solution satisfies the homogeneous wave equation everywhere,
but at x = ξ, i.e. at r = 0, where it is not determined. Except on this point our solution describes
waves running away from x = ξ, which may let us anticipate, that they are excited here, and that
consequently ξ is a source point. In fact, the domain, where the homogeneous wave equation is
violated (i.e. the r.h.s. of (60) is non-zero) is called source domain.

In order to establish the connection between the acoustic field and its source, let us first construct
a more general pressure field solution of the homogeneous wave equation. We will then extend
this solution into the source region and obtain the desired relation. A more general solution of
the homogeneous wave equation may be obtained by superposition of several solutions (95), each
centered at different ξ. In the limit of infinitely many, continuously arranged fields superposition
means integration p′(x, t) =

∫
VS

p′ξ(x, t; ξ)dV (ξ), i.e. we assume p′ to be composed like

p′(x, t) =

∫
VS

f(τ(t, r); ξ)
r

dV (ξ) (97)

The integration volume VS is the domain, defined by the locations of the centres ξ of all partial
fields the overall field p′ is composed of. For physical realizability reasons let us assume that VS
is finite. Note that we may expect p′ to be causal since it is strictly made up of causal components.
First we need to check whether indeed (97) satisfies the homogeneous wave equation (61)

1
a2∞

∂2p′

∂t2
−∆xp

′ = 0

where we underline with the notation ∆x, that the differentiations in ∆ are to be carried out at the
point x because according to (97) we have the pressure as p′(x, t). This means that ∆x can be
taken inside the integral of p′, because the integration variable is ξ ̸= ξ(x):

1
a2∞

∂2p′

∂t2
−∆xp

′ =

∫
VS

{
1
a2∞r

∂2f(τ, ξ)
∂t2

−∆x

(
f(τ, ξ)
r

)}
dV (ξ)

?
= 0 (98)

Let us look at the second term and re-formulate ∆x(f/r) ≡ ∇x·∇x(f/r) = (1/r)∆xf +
2(∇xf)·∇x(1/r) + f∆x(1/r). The essential step is to express ∇xf in terms of the time deriva-

tive. We have ∇xf =
∂f
∂τ

∇xτ , and further ∆xf = ∇x·(∂f∂τ∇xτ) =
∂2f
∂τ 2

(∇xτ)
2 +

∂f
∂τ

∆xτ . Now
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according to (96) ∇xτ = −(1/a∞)∇xr, which we use to finally obtain

∆x

(
f(τ, ξ)
r

)
=

(1/r)∆xf︷ ︸︸ ︷
1
a2∞r

∂2f
∂τ 2

(∇xr)
2︸ ︷︷ ︸

= 1

− 1
a∞r

∂f
∂τ

∆xr︸︷︷︸
= 2/r

+

2(∇xf)·∇x(1/r)︷ ︸︸ ︷
2

a∞r
2
∂f
∂τ

(∇xr)
2︸ ︷︷ ︸

= 1

+f∆x(1/r)

Where we have indicated that ∇xr =: er is nothing but the unit vector pointing along the vector
r = x−ξ, which is seen by elementary differentiation on r defined by (94). In the same way one
verifies that ∆xr = 2/r. Note that the inner two terms in the above relation cancel each other.
Inserting our expression back into (98) gives

1
a2∞

∂2p′

∂t2
−∆xp

′ = −
∫
VS

f(τ, ξ)∆x(1/r) dV (ξ)
?
= 0 (99)

where we have used ∂f
∂t

=
∂f
∂τ

. We have to check, under which conditions the above inte-
gral is indeed zero. Otherwise the homogeneous wave equation is not satisfied. Again, the
only peculiarity we expect is certainly at postitions where r = 0. For all other points we have
∆x(1/r) = ∇x·∇x(1/r) = −∇x·(r−2∇xr) = r−2∆xr − 2r−3(∇xr)

2 = 0. Thus we have shown,
that p′ due to (97) satisfies the wave equation except at all points where r = 0. Note, that this
condition is satisfied, for all points x ̸∈ VS .

The points x ∈ VS remain to be considered, because in this case r = 0 is met, namely at
x = ξ. Let us first note, that for a given observer position x we may shrink the integration
volume VS equivalently to an infinitesimal domain Vϵ, say a sphere of radius ϵ → 0, because we
have shown the integrand to be zero outside Vϵ. We assume f(τ = t − ϵ/a∞, ξ = x − ϵer)
to be a continuous function of space. Therefore, as ϵ → 0 we have f(τ, ξ) → f(t,x) and we
may take it out of the integral (99). Then we note again that since r directly couples ξ to x we
may write ∇xr = −∇ξr and ∇x·g(r) = −∇ξ·g(r) for any function g, such that we can express
∆x(1/r) = ∇x·(−r−2∇xr) to obtain∫

Vϵ

f(τ, ξ)∆x(1/r) dV (ξ) = f(t,x)

∫
Vϵ

∇ξ·(−r−2∇ξr) dV (ξ) = −f(t,x)
∫
∂Vϵ

(−er·n)
dS(ξ)
r2︸ ︷︷ ︸

=: dΩ

where for the last expression we have used Gauss’ theorem to convert the integral over the
sphere’s volume to one over its surface, whose outward pointing local normal is denoted n. We
have also substituted ∇r = −er the unit vector pointing radially away from the center point x.
Note, that the last term in the integral identity is nothing but the definition of the space angle Ω(x)
of the surface ∂Vϵ about the point x. Since the surface is closed and x inside of it, our integral
equals 4π. Re-inserting this into (99) we have for all points x ∈ VS

1
a2∞

∂2p′

∂t2
−∆xp

′ = 4πf(t,x) ̸= 0 (100)

Let us compare this with (61), the inhomogeneous wave equation. We immediately see that the
source term Qp = 4πf(t,x). Note also that there is no restriction on Qp due to f , because
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according to d’Alembert f is an arbitrary function. Therefore we have found the general solution
of (61) with no boundaries present to be

p′(x, t) = 1
4π

∫
VS

Qp(τ(t, r), ξ)
r

dV (ξ) (101)

where again for reference τ(t, r) = t − r/a∞ and r = |x − ξ|. We may express this solution
as well in the frequency domain (23). The Fourier integral

∫
Qp(t − r/a∞) exp(−iωt)dt of the

source at the retarded time τ = t − r/a∞ is computed by changing the integration variable
from t to τ , i.e.

∫
Qp(τ) exp(−iωτ)dτ exp(−ikr) with k = ω/a∞ the wave number. The time

retardation occurs as space factor exp(−ikr). Now the free space solution (101) reads

p̂(x, ω) = 1
4π

∫
VS

Q̂p(ω, ξ) exp(−ikr)
r

dV (ξ) (102)

The general formulae (101, 102) do not tell us much about the character of the pressure field
resulting from Qp. At first glance it may seem that we essentially would have to expect some sort
of 1
r

-dependence, if r measures a characteristic distance from the source. This however is usually
true only for very large r compared with a characteristic diameter of the source volume VS . Near
the source region VS this dependence may change in character. In order to obtain a slightly better
insight into what sort of acoustic field we may expect from Qp we examine what Qp is actually
composed of. We take its definition in the case a0 = const = a∞ from (61)

Qp(t, ξ) =
∂
∂t

{(
1− σ∞p∞

ρ∞T∞

)
ṁ′(t, ξ) + σ∞

T∞
ϑ̇′(t, ξ)

}
−∇ξ·f ′(t, ξ)

The essential step, when inserting Qp(t, ξ) into the solution formula (101) is its evaluation at
the retarded time τ(t, r). So far we have assumed non-moving sources and therefore rξ is time
independent. The terms due to the externally forced mass flux density ṁ′ and heat flux density ϑ̇′

are easy to evaluate at the retarded time, because for our non-moving sources ∂
∂t

= ∂
∂τ

such that
here we may simply replace t by τ , i.e.[

∂
∂t

{(
1− σ∞p∞

ρ∞T∞

)
ṁ′(t, ξ) + σ∞

T∞
ϑ̇′(t, ξ)

}]
τ

= ∂
∂τ

{(
1− σ∞p∞

ρ∞T∞

)
ṁ′(τ, ξ) + σ∞

T∞
ϑ̇′(τ, ξ)

}
Taking ∇ξ·f ′(t, ξ) at the retarded time is not so straight forward because

[∇ξ·f ′(t, ξ)]τ ̸= ∇ξ·f ′(τ, ξ)

Why is that? The difficulty is, that when we simply replace t by τ = τ(t, r) then through r
we introduce a new dependency on ξ and the divergence operator ∇ξ· would not just act on the
explicit dependence of f ′(τ = t − r/a∞, ξ) on ξ (as the source term tells us), but also on its
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implicit dependence on ξ through r or τ respectively. But we may correct this appropriately
when applying the chain-rule

∇ξ·f ′(τ, ξ) =
(
∂f ′

∂τ
·∇ξτ

)
ξ
+

(
∇ξ·f ′

)
τ︸ ︷︷ ︸

[∇ξ·f ′(t, ξ)]τ

where the subscript ξ means ”differentiation while keeping ξ fixed” and subscript τ means ”dif-
ferentiation while keeping τ fixed”. We may now write the ∇ξ·f ′-part of Qp in the integral (101)
as

∫
VS

[∇ξ·f ′]τ
r

dV (ξ) =

∫
VS

1
r
∇ξ·f ′(τ, ξ)︷ ︸︸ ︷(

∇ξ·(r−1f ′) + r−2f ′·∇ξr
)
dV (ξ)−

∫
VS

1
r
∂f ′

∂τ
·∇ξτdV (ξ)

where the first integrand vanishes when we use Gauss’ theorem for an infinitesimally enlarged
integration volume on whose surface by definition f ′ ≡ 0. Finally, with ∇ξτ = −a−1

∞ ∇ξr we
can write our solution (101) equivalently as

p′(x, t) = 1
4π

{∫
VS

1
r
∂
∂t

[(
1− σ∞p∞

ρ∞T∞

)
ṁ′ + σ∞

T∞
ϑ̇′ +

f ′
r

a∞

]
τ
dV (ξ) +

∫
VS

[f ′
r]τ
r2

dV (ξ)

}
(103)

where f ′
r = −f ′·∇ξr denotes the component of the local force vector f ′(τ, ξ) in the direction

of the observer. The respective solution in the frequency domain reads (note, ∂
∂t

translates to a
multiplication by iω)

p̂(x, ω) = 1
4π

{∫
VS

iω exp(−ikrξ)
r

[(
1−σ∞p∞

ρ∞T∞

)
ˆ̇m+σ∞

T∞

ˆ̇ϑ+
f̂r
a∞

]
dV (ξ)+

∫
VS

f̂r exp(−ikr)
r2

dV (ξ)

}
(104)

This formulation of the solution indicates that there are components of the solution slowly (∼ 1/r)
and rapidly (∼ 1/r2) decaying with distance. Note that the slowly decaying part of the forcing
f ′
r vanishes for incompressible fluids, because it is pre-multiplied by a−1

∞ . It occured in the above
derivation solely due to the fact that the retarded time is (through a∞) a function of the source
point position. Moreover, through f ′

r we observe an explicit dependence of the pressure field on
the orientation er = −∇ξr of the observer w.r.t. to the source, a so called ”directivity”.

There is yet another way in which this solution can be written, in fact the most commonly used
form. It is obtained upon exchanging ∇ξ with ∇x through the relation ∇ξ r = −∇x r. When we
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consider

∇x·
∫
VS

f ′(τ, ξ)
r

dV (ξ) =

∫
VS

− 1
ra∞

[
∂f ′

∂τ
·∇x r

]
τ︸ ︷︷ ︸

=
∂[f ′

r]τ
∂τ

− 1
r2

[f ′·∇x r]τ︸ ︷︷ ︸
[f ′

r]τ

dV (ξ)

we retrieve the respective r.h.s.-terms in (103) which upon substitution yields equivalently

p′(x, t) = 1
4π

{
∂
∂t

∫
VS

1
r

[(
1− σ∞p∞

ρ∞T∞

)
ṁ′ + σ∞

T∞
ϑ̇′
]
τ
dV (ξ)−∇x·

∫
VS

f ′(τ, ξ)
r

dV (ξ)

}
(105)

2.5 Mathematical tools

When considering more complicated source distributions, especially moving sources, it will be-
come somewhat difficult to keep an overview about the mathematical manipulations. The use
of generalized function theory will then prove to be an extremely helpful tool. Also the Green’s
function method for the solution of linear partial differential equations is an everyday’s working
tool for acousticians and will be introduced as well. The spatial expansion of sources into so
called multipoles will help to classify and characterize different types of acoustic sources. In
the aeroacoustic context we will be able to identify volume- and surface sources. Finally, we
will introduce the reciprocity relation, which may conceptually be very helpful in reducing the
complexity of acoustic sources.

2.5.1 Useful relations from generalized functions theory

We will not give a mathematical introduction into the theory of generalized functions. Here we
give only a selection of the most often needed relations in the context of acoustic applications.
A short introduction to generalized functions can be found e.g. in [1]. Generalized functions
are functions which are defined by integral properties. They are not necessarily defined at each
possible argument.

We begin our list of most commonly used generalized functions with the unit step function or so
called ”Heaviside function” H(x)

H(x) =

{
0 x < 0

for
1 x > 0

(106)

Note, that the Heaviside function is not defined at x = 0. It appears that we will not need this
function value. The most important generalized function is certainly the ”Dirac function” or
”Delta function” δ(x). We may define it through H(x) by

δ(x) = dH
dx

(107)
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The Delta function is zero everywhere except at x = 0, where it is δ(0) = ∞, such that
∞∫

−∞
δ(x) dx = 1. When the product of δ and some ”good” function g(x) (a function in the

ordinary sense) is integrated over an interval containing the position x0, where the Delta function
is non-zero, it acts as to ”cut out” the value of g at the position x0:∫ ∞

−∞
g(x) δ(x− x0) dx = g(x0)

{
=

∫ >x0

<x0

g(x) δ(x− x0) dx

}
(108)

which may as well serve as the definition of the Delta function. In order to decide whether or not
the Delta function is odd or even, we may test the outcome of integral (108) upon changing the
sign of the argument of δ(x − x0) −→ δ(x0 − x). But a co-ordinate transform to x = −x then
shows, that again the result is g(x0), which shows that δ(x) is an even function. As a consequence∫ x0

<x0
g(x) δ(x− x0) dx =

∫ >x0

x0
g(x) δ(x− x0) dx = g(x0)/2. Another consequence of (108) is

g(x) δ(x− x0) = g(x0) δ(x− x0) (109)

and if we specifically choose g(x) = x and x0 = 0 we have

x δ(x) = 0 · δ(x) = 0 (110)

One may use this relation to determine the derivatives of δ, i.e.

xn d
nδ
dxn

= (−1)nn! δ(x) (111)

Note that (110) is also the reason why in the frame of generalized functions the inversion of a
multiplication process is unique only up to a delta function:

x f(x) = 1 =⇒ f(x) = x−1 + Cδ(x) (112)

with C an arbitrary constant.

Another interesting property of the delta function is

δ(αx) = 1
|α|δ(x) (113)

which follows from the fact that δ is even, i.e. δ(αx) = δ(−αx) = δ(|α|x) and the definitions
(106, 107). Call x := |α|x. Then δ(x) = dH(x)/d(x). But due to (106) H(x) = H(x), while
d(x) = |α|dx, i.e. δ(x) = |α|−1dH/dx and thus (113).

A consequence of (113) is∫ ∞

−∞
g(x) δ(h(x)) dx =

∑
xi(h=0)

g(xi)
∣∣∣dh
dx

∣∣∣−1

xi

for
(
dh
dx

)
xi

̸= 0 (114)

=
∑

xi(h=0)

∫ ∞

−∞
g(x)

∣∣∣dh
dx

∣∣∣−1

xi

δ(x− xi) dx

=⇒ δ(h(x)) =
∑

xi(h=0)

∣∣∣dh
dx

∣∣∣−1

xi

δ(x− xi)
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where the summation is meant over all zeros xi of h(x). This is immediately seen when consid-
ering the good function h(x) near its zero xi. Provided the first derivative of h at xi is non-zero

the Taylor expansion about xi is h(x) ≃
(
dh
dx

)
xi

(x− xi) + · · · and the identification of
(
dh
dx

)
xi

with α in (113) while appreciating (108) immediately yields the above relation.

Higher dimensional Delta functions are defined in an obvious way:

δ(x) = δ(x)δ(y)δ(z) (115)

in three dimensions. If δ(z) is replaced by 1 the two dimensional Delta function follows. We have
the obvious generalization of (108)∫

V∞

g(x) δ(x− x0) dV (x) = g(x0) (116)

where V∞ denotes all space. A direct extension of (114) to more-dimensional (in fact also more
than three-dimensional) integration yields the relation∫

V∞

g(x) δ(h(x)) dV =
∑

Si(h=0)

∫
Si

g(xS)
1

|∇h|xS

dS (117)

where h is some good scalar function, Si is the i’th level surface h = 0 and xS ∈ Si, i.e.
h(xS) ≡ 0. The relation is obtained when considering h(x) in the vicinity of h(xS) = 0. A
Taylor expansion gives h(x) ≃ 0+(∇h)xS

·(x−xS)+ · · · Since the gradient of a scalar function
is orthogonal to its level surfaces we find the unit normal vector to the level surface h = 0 at
point xS as n := (∇h)xS

/|∇h|xS
. This may be used in the above Taylor expansion to yield

h(x) ≃ |∇h|xS
(n·x − n·xS) + · · · = |∇h|xS

(xn − xnS) + · · ·, where xn obviously is the
coordinate locally orthogonal to the level surface. Inserting h into the Delta function then gives
δ(h) = δ(|∇h|xi

(xn − xni)) = δ(xn − xni)/|∇h|xi
according to (113). The volume element dV

in (117) may be expressed as dV = dxn dS, where dS is a surface element on the considered
level surface. The integration over dxn can now be carried out explicitly and it follows (117).

2.5.2 Green’s function method

The Green’s function method is to solve linear partial differential equations like our wave equation
(61) in a very simple and formal way. In order to show the way in which this is done we first
restrict ourselves to the free field problem. We want to solve the linear differential equation

L[p′] = Qp(x, t) , with L = L(∇x,
∂
∂t
, parameters) (118)

valid in the space V = V∞, which is all space. L is a differential expression in time and space.

For our wave equation we have e.g. L = a−2
0
∂2

∂t2
−∆x.

Before solving (118) we solve the simplified problem

L[G] = δ(x− ξ)δ(t− τ) (119)
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where δ is the Delta function introduced above. Note that equation (119) describes the field p′,
or rather G(x, t; ξ, τ), due to a unit point source at x = ξ, ”firing” a needle pulse at t = τ . G is
called ”Green’s function” and it establishes the physical relation between two points x and ξ in
space and in time t and τ . Upon multiplying (119) by Qp(ξ, τ) and integrating over all time and
space V∞ we have∫

V∞

∫ t+

−∞
L[G] Qp(ξ, τ) dτ dV (ξ) =

∫
V∞

∫ t+

−∞
δ(x− ξ)δ(τ − t)Qp(ξ, τ) dτ dV (ξ) (120)

Why would we not integrate over all times
∫∞
−∞ dτ? For reasons of causality we want to make

sure, that any quantity at the observer time t depends only on the past up to the present, in fact fully
including the observer point in time, allowing t+ = lim

ε→0
t(1 + ε), ε > 0. Looking again at (120)

we recognize, that on the left there are some operations acting on the sources while according to
the definition of the Delta function (108, 116) the right hand side represents the source Qp(x, t)
itself (even if we had integrated over all times). The source cannot anticipate its future and thus
whatever operations we are performing on it, they must exclude terms, evaluated at t > t+.
We cannot automatically expect from a Green’s function G to guarantee this important physical
circumstance. Satisfaction of causality (G(τ > t+) = 0) is not intrinsic to them, even though this
may very well be. Therefore it is in any case more ”save” to extend the time integration at most
over the past up to the present observer time, i.e.

∫ t+

−∞ dτ . Next observe that due to (118) L is
acting in x and t instead of ξ and τ , such that it can be taken outside of the integral on the left
hand side. Moreover, in view of the definition of the Delta function (108, 116) the right hand side
integrations yield nothing but Qp(x, t), such that we obtain

L
[ ∫
V∞

∫ t+

−∞
G(x, t; ξ, τ) Qp(ξ, τ) dτ dV (ξ)

︸ ︷︷ ︸
= p′(x, t) see (118)

]
= Qp(x, t) (121)

This means, that if the Green’s function G to a problem is known (the solution due to a point-
pulse source) the general solution p′ due to some given source distribution Qp(x, t) is obtained
by explicit integration (convolution of the source with G). From (121) it is seen as well, that for a
causal Green’s function, which by definition satisfies G(x, t; ξ, τ) ≡ 0 for τ > t, the upper limit
of the time integration in (121) could have been equivalently extended to ∞, still garantueeing p′

to be causal.

We recall that we have already solved the wave equation (61), where L = a−2
∞
∂2

∂t2
− ∆x, under

free field conditions (no bodies present), see (101). We may extract the corresponding Green’s
function for the wave equation from it. This Green’s function is then called ”free field Green’s
function” G0 (not tailored to specific boundary conditions). We re-write the free field pressure
solution p′ from (101) in the following way

p′(x, t) = 1
4π

∫
VS

Qp(t− r/a∞, ξ)
r

dV (ξ) =

∫
V∞

∫ ∞

−∞

δ(τ − t+ |x− ξ|/a∞)
4π|x− ξ| Qp(τ, ξ) dτ dV (ξ)
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where we have simply used (108) in order to replace Qp(t − rξ/a∞) by
∫∞
−∞Qp(τ)δ(τ − t +

rξ/a∞)dτ which in turn equals
∫ t+

−∞Qp(τ)δ(τ−t+rξ/a∞)dτ because our Delta function satisfies
causality δ(τ > t) = 0. Also we have taken the liberty to extend the spatial integration to all space
V∞ because Qp is zero outside VS ∈ V∞ anyways. A direct comparison with (121) now yields
the free field Green’s function for the wave equation (61) to be:

G0(x, t; ξ, τ) = G0(x− ξ, τ − t) =
δ(τ − t+ |x− ξ|/a∞)

4π|x− ξ| (122)

For obvious reasons our Green’s function due to (122) satisfies G0 ≡ 0 for τ > t, such that the
pressure field p′ computed by convolving G0 with a given source Qp according to

p′(x, t) =

∫
V∞

∫ ∞

−∞
G0Qp(τ, ξ) dτ dV (ξ) = 1

4π

∫
VS

Qp(t− r/a∞, ξ)
r

dV (ξ) (123)

will satisfy the causality condition.

In the same way as we deduced the free field Green’s function G0 for the wave equation we
may deduce the corresponding Green’s function Ĝ0 for the Helmholtz equation. It satisfies by
definition the equation ∆Ĝ0 + k2Ĝ0 = δ(x− ξ). We extract Ĝ0 from (102)

Ĝ0(x− ξ, ω) =
exp(−ik|x− ξ|)

4π|x− ξ| (124)

(For the free field Green’s function in other dimensions and for other equations see table B.1).
Note that Ĝ0 satisfies the requirement of outgoing waves radiation condition (82), being the ana-
logue of the causality condition on G0 in real space.

2.6 Acoustics in stagnant homogeneous media – part 2 –

After having introduced some mathematical tools, we proceed with concepts which have become
common in acoustics. Their brief discussion is important as below we want to use these concepts
also in the context of aeroacoustics.

2.6.1 Pressure field in the presence of obstacles

In the preceeding sections we have not explicitly taken into account the presence of objects (bod-
ies) in the pressure field p′. Before doing so a first notion of the influence of a boundary may be
obtained when simply appreciating the following. First, a source region VS is defined by the fact,
that the pressure p′ at a source point x ∈ VS does not satisfy the homogeneous wave equation
(61) with Qp = 0, describing the source-free wave propagation. In exactly the same way we
may say that at a boundary we require some boundary condition for the pressure p′ instead of
the satisfaction of the homogeneous wave equation, which for that matter will be violated just
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Figure 15: Sound field with
obstacles.

as on a source point. Therefore formally a boundary may be regarded as nothing but a source
concentrated on ∂VB, i.e. some singular source distribution. We will make this more explicit
in the following section. Thereafter we introduce the concept of tailored Green’s functions and
finally define acoustic surface properties in order to include them into the solution.

We include the presence of obstacles by applying the tools of generalized function theory. First
we identify a body occupying the volume VB by some function f(x, t), whose zero-contour line
is identical with the body boundary for all times t (see figure 15):

f(x, t) < 0 x ∈ VB
f(x, t) = 0 for x ∈ ∂VB
f(x, t) > 0 x ∈ V∞\{VB ∪ ∂VB}

(125)

where V∞ is again all of space. Now we account for the presence of the body simply by introduc-
ing the new pressure variable

p′ := H(f)p′ (126)

and from the definition of the Heaviside function H it is clear, that in the field x ∈ V∞\VB our
new variable corresponds to the pressure p′ := p′, while inside the body p′ ≡ 0, requiring it
to jump in value at the boundary. The very essential step here is, that while p′ is defined only
outside the body and on its boundaries, p′ is defined in all space V∞. This effectively reduces
the boundary value problem to the free field problem, whose Green’s function G0 for the wave

equation we know already (122). Let us now apply the wave operator L = a−2
∞
∂2

∂t2
− ∇·∇ on

the left and right of (126). Certainly we have to apply the product rule on the r.h.s. and the
chain rule on the Heaviside function ∇H = dH

df
∇f = δ(f)∇f and ∂H

∂t
= dH

df
∂f
∂t

= δ(f)
∂f
∂t

successively to obtain

L[p′] = H(f)L[p′]︸ ︷︷ ︸
H(f)Qp

+ 1
a2∞

{
∂
∂t

[
p′δ(f)

∂f
∂t

]
+ δ(f)

∂p′

∂t
∂f
∂t

}
−∇·

[
p′δ(f)∇f

]
− δ(f)∇p′·∇f

(127)
The above equation equals our wave equation (61) except the four extra terms, which are zero
except on the boundary at f = 0. Next we need to express the time and space derivative of f .
Due to its derivation our wave equation is governing the dynamics of small perturbations p′ about
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a constant mean value p0. This restricts the motion of the object f = 0 to stay in the frame of
small perturbations as well, since for large velocities it would necessarily generate large pressure
fluctuations. Therefore we may only allow for small perturbations εf ′(x, t) in the boundary

shape f 0(x), i.e. f = f 0+εf ′. The time derivative of f in (127) is consequently ∂f
∂t

= ε
∂f ′

∂t
and

vanishes as ε→ 0 according to the linear approximation. The gradient is ∇f = ∇f 0+ε∇f ′, i.e.
lim
ε→0

∇f = ∇f 0, which is nothing but a vector pointing normal to the contour lines and increasing

values of the scalar function f 0 at point x. Therefore n := (∇f/|∇f |)f=0 represents the unit
outward normal to the boundary.

Let us now solve (127) for p′ by making use of the general Green’s function solution procedure
for free field problems: i) multiply by G and ii) integrate over all space V∞ and time:

p′(x, t) =

∫ ∞

−∞

∫
V∞

{
H(f 0)Qp−∇ξ·

[
p′δ(f 0)∇ξf

0
]
− δ(f 0)∇ξ p

′·∇ξf
0
}
G︸ ︷︷ ︸

=: I

dV (ξ) dτ

Of this, the last two terms can be written more explicitly:

I = −∇ξ·
[
p′δ(f 0)∇ξf

0G
]
+ p′δ(f 0)∇ξf

0·∇ξ G− δ(f 0)(∇ξ p
′·∇ξf

0)G︸ ︷︷ ︸
δ(f 0)|∇ξf

0| (p′n0·∇ξG−Gn0·∇ξ p
′)

When I is integrated over the space V∞ the first (divergence) part vanishes upon transforming it
to a surface integral over the bounding surface of V∞, where δ(f 0) ≡ 0 (we assume the body to
be of finite extent). The second part is -as shown in the underbrace- proportional to δ(f 0)|∇ξf

0|
and use of the relation (117) transfers the space integration to the surface(s) S, defined by f 0 = 0.
These manipulations finally yield the pressure solution in the presence of surfaces:

p′(x, t) = H(f 0) p′(x, t) =

∫ ∞

−∞

{∫
VS

H(f 0)QpG dV (ξ) +

∫
∂VB :f0=0

(
p′∂G
∂n

−G
∂p′

∂n

)
dS(ξ)

}
dτ

(128)
where ∂

∂n
:= n0·∇ denotes the normal derivative on ∂VB (or f 0 = 0), directed outside of VB.

Also, since the source Qp is different from zero only in the finite volume VS we replaced V∞.
Note that we have to assume a causal Green’s function which e.g. would be ensured by G0 from
(122). Upon Fourier transforming (128) to the frequency domain the solution reads

p̂(x, ω) = H(f 0) p̂(x, ω) =

∫
VS

H(f 0) Q̂p Ĝ dV (ξ) +

∫
∂VB :f0=0

(
p̂∂Ĝ
∂n

− Ĝ
∂p̂
∂n

)
dS(ξ) (129)

where Ĝ could be taken from (124). Note that in this case we do not have to worry about the
physical requirement of outgoing waves, because p̂ was obtained from the causal solution p′ (not
allowing for waves coming from infinity). Alternatively we may also say that Ĝ0 from (124)
satisfies the outgoing wave (or radiation) condition.

A still more explicit form of the solution is obtained by inserting the explicit expression for
the free field Green’s function into (128) as listed in table (B.1) for the 1D, 2D and 3D case.
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In 3D this is for instance G0 = δ(g)/(4πr) with g := τ − t + r/a∞. With the help of the
known expression for G0 we may actually evaluate the time integral in (128). In order to do
so, the integral

∫∞
−∞ p′∂G0

∂n
dτ is slightly re-arranged. We re-formulate p′∂G0

∂n
= p′∂G0

∂r
∂r
∂n

=

p′

4π

(
dδ
dg
∂g
∂r

1
r
− δ
r2

)
∂r
∂n

=
p′

4π

(
dδ
dτ

1
a∞r

− δ
r2

)
∂r
∂n

. Note that by definition ∂r
∂n

= n·∇ξr =

−n·∇xr = −n·er with er = r/r. Next we use the product rule to write the first term like

p′ dδ
dτ

1
a∞r

= 1
a∞r

(
∂p′δ
∂τ

− δ
∂p′

∂τ

)
. The integration over τ of the first of these two terms gives

a zero because we require that a physical signal cannot have existed for all times, i.e. p′(τ =
−∞) = 0. Now the time integrations of all other terms can be carried out, leading to their
evaluation at the retarded time

p′(x, t) = H(f 0) p′(x, t) =

=

∫
VS

H(f 0)
Qp(τ, ξ)
4πr

dV (ξ) +

∫
∂VB :f0=0

1
4πr

[(
1
a∞

∂p′

∂τ
+
p′

r

)
n·er − ∂p′

∂n

]
τ
dS(ξ) (130)

where again τ = t−r/a∞ denotes the retarded time and er the direction along the distance vector
r = x− ξ. In the spectral space this reads:

p̂(x, ω) = H(f 0) p̂(x, ω) =

=

∫
VS

H(f 0)
Q̂p exp(−ikr)

4πr
dV (ξ) +

∫
∂VB :f0=0

exp(−ikr)
4πr

[
(ikr + 1)n·er

p̂
r
− ∂p̂
∂n

]
dS(ξ) (131)

Unfortunately with (128) we have not really arrived at a true solution to the inhomogeneous wave
equation (61) in the presence of boundaries ∂VB yet, because the right hand side of our equation
still depends on the solution p′. Note, that we may choose the observer position x on the boundary
and thus obtain an integral equation for p′, but there exists a second unknown in that equation,

namely ∂p′

∂n
on the boundary, calling for an extra equation. This boundary condition needs to be

specified on ∂VB:

LB[p
′] := A[p′] +B[

∂p′

∂n
] = C(xs, t) , xs ∈ ∂VB (132)

or in the frequency domain:

LB[p̂] = Â(xs, ω)p̂+ B̂(xs, ω)
∂p̂
∂n

= Ĉ(xs, ω) , xs ∈ ∂VB (133)

The boundary condition (132) and equation (128) evaluated for x = xs represent a closed bound-
ary integral equation system for the pressure and its normal derivative on the surface. Such sys-
tems are usually solved numerically with the so called boundary element method (BEM), which
will be discussed in the second part of the lecture. Once the pressure and its normal derivative

Delfs 2023/24



2.6 Acoustics in stagnant homogeneous media – part 2 – 50

are known on the boundary, (128) allows to explicitly determine the sound pressure at any chosen
location x. In the spectral space the respective system to solve is (129) and (133) on x = xs.

The task remains to fill the formal expressions in (132) or (133) with a physical meaning, which
is done in the following section on surface properties (2.6.2). But first we look at the case when
a Green’s function can be found which by itself already satisfies the boundary conditions of the
problem.

2.6.1.1 Tailored Green’s functions. Suppose we managed to find a so called exact Green’s

function Ĝex satisfying the homogeneous version of (133), i.e. LB[Ĝex] = 0. Then ∂Ĝex

∂n
=

− Â
B̂
Ĝex or alternatively Ĝex = −B̂

Â
∂Ĝex

∂n
. Using these relations the integrand of the surface

integral in (129) may be expressed like p̂∂Ĝex

∂n
− Ĝex

∂p̂
∂n

= − Ĉ
B̂
Ĝex = Ĉ

Â
∂Ĝex

∂n
. Therefore for

an exact (causal) Green’s function the equation (129) represents explicitly the pressure field. No
boundary integral equation must be solved then.

Suppose we managed to find a Green’s function GN , satisfying ∂GN

∂n
= 0 on ∂VB. This Green’s

function will then allow us to solve the von Neumann problem (∂p
′

∂n
given on ∂VB) by explicit

integration of the r.h.s of (128), without having to solve an integral equation. For the ”acoustically

hard” surface, defined by ∂p
′

∂n
= 0, the surface integral vanishes (assuming the use of GN ).

Conversely, suppose we found a Green’s function GD, satisfying GD = 0 on ∂VB. Then we have
the explicit solution to the Dirichlet problem, i.e. the one where p′ is given on the boundary ∂VB.
Again a limiting case is the ”acoustically soft” surface or ”pressure release surface” for which
p′ = 0. Note that this case would correspond to a locally reacting wall with an impedance z = 0.

Such special Green’s functions, satisfying the boundary condition of the problem are called ”Tai-
lored Green’s functions”. They are of obvious computational advantage. If tailored Green’s func-
tions are not available as closed form analytical expression, they may be computed numerically
using e.g. the Boundary Element Method.

2.6.2 Acoustic surface properties

The acoustic property of a surface may be understood as transfer function between an external
load to the surface and its resulting dynamic behavior. Typically the (passive) surface property
is specified in the frequency domain as (frequency dependent) wall impedance ẑ(ω) (German:
”Wandimpedanz”) or as wall admittance â(ω) = 1/ẑ (German: ”Wandadmittanz”).

Re(ẑ) is called acoustic resistance (German: ”akustischer Widerstand”)
Im(ẑ) is called acoustic reactance(German: ”akustische Reaktanz”)

The impedance ẑ or admittance â relate pressure and normal velocity component v̂pn(ξS, ω) for a
given frequency ω.
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Figure 16: Surface response to an unsteady pres-
sure load p′ at surface position ξS . Top: globally
reacting wall, bottom: locally reacting wall.

p̂(ξS, ω) =: ẑ(ξS, ω) v̂
p
n(ξS, ω) (134)

v̂pn(ξS, ω) =: â(ξS, ω) p̂(ξS, ω) (135)

where ξS is a point on the boundary S(ξS) ≡ 0 and p̂ and v̂pn are the Fourier transforms of the
pressure disturbance p′ at the wall and the reaction to it, namely the wall normal velocity com-
ponent v′n. As a consequence of (134, 135) and physical realizability ẑ(iω) = ẑ∗(−iω) (asterisk
denoting complex conjugate) and â(iω) = â∗(−iω), assuming real frequencies ω. For general
cases the impedance is very difficult to determine, because it would be a function of the angle
of incidence, at which a plane sound wave hits the surface. Also a deformable wall will usually
respond with different types of global vibrational waves to incoming pressure disturbances, see
top of fig. 16. Then a true fluid/structure coupling takes place and we call the surface a globally
reacting wall (German: ”global reagierende Wand”). For the sake of simplicity we exclude such
surface behavior here. We consider only the simplest of all cases, the so called locally reacting
wall (German: ”lokal reagierende Wand”). The assumption is, that the kinematic response of
a surface element dS(ξS) at a surface point ξS is only a function of the locally applied force
p̂(ξS)dS(ξS). The impedance is then independent of the angle of incidence and may be consid-
ered a function of surface position ξS and frequency ω only. Often, porous surfaces satisfy the
assumption of a locally reacting wall.

The impedance and admittance may be expressed in the real space as well, when recognizing that
according to definition (134) and the inverse Fourier transform (24) we have

p′(ξS, t) = 1
2π

∫ ∞

−∞
ẑ(ω) v̂pn(ξS, ω) exp(+iωt) dω =

∫ ∞

−∞
z(t− τ)vpn(ξS, τ) dτ (136)

vpn(ξS, t) = 1
2π

∫ ∞

−∞
â(ω) p̂(ξS, ω) exp(+iωt) dω =

∫ ∞

−∞
a(t− τ)p′(ξS, τ) dτ (137)

where the respective last equality in (136) and (137) is due to the so called ”convolution theorem”.
Note for causality reasons the pressure p′ may only depend on the history but not the future of vpn.
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Therefore z(τ > t) = 0 is a requirement on z and a(τ > t) = 0 respectively.

We may now finally attach some physcial information to the terms of the formal boundary rela-
tions (132) and (133) for the solution of the wave equation. These relate the pressure to the wall
normal derivative of the pressure. The surface properties on the other hand relate the pressure
and the wall normal velocity component. Therefore we still need to link the wall normal pressure
derivative to the normal velocity component. This is possible thanks to the linearized momentum
equation (58), multiplied by the wall normal vector n0 leaving

∂p′

∂n
= −ρ0∂v

′
n

∂t
or ∂p̂

∂n
= −iωρ0v̂n (138)

in real or frequency domain respectively. We neglected the presence of external forces f ′ on the
boundary. Next, let us assume a quite general case, in which the surface is actively vibrating and
at the same time subject to an external acoustic field. Then v′n is composed of the given vibration
of the surface vvibn and the responding motion vpn due to an external pressure load p′:

v′n = vvibn + vpn or v̂n = v̂vibn + v̂pn

We first express the boundary conditions in the spectral space (133). Insertion of v̂n into (138)
leaves iωρ0v̂vibn + iωρ0v̂pn = −∂p̂

∂n
. Herein we substitute v̂pn = âp̂ according to (135) to finally

obtain
iωρ0â︸ ︷︷ ︸
Â

p̂+ 1︸︷︷︸
B̂

∂p̂
∂n

= −iωρ0v̂vibn︸ ︷︷ ︸
Ĉ

= LB[p̂]

Next we express the boundary conditions in the real space (132). From (138) we have ρ0∂v
vib
n

∂t
+

ρ0
∂vpn
∂t

= −∂p
′

∂n
. Now, the time change of the pressure induced velocity vpn may be determined

from (137):
∂vpn
∂t

=

∫ ∞

−∞

∂a
∂t

(t− τ ∗)p′(ξS, τ
∗) dτ ∗

This finally gives

ρ0
∫ ∞

−∞

∂a
∂t

(t− τ ∗)p′(ξS, τ
∗) dτ ∗︸ ︷︷ ︸

A[p′]

+
∂p′

∂n︸︷︷︸
B[
∂p′

∂n
]

= −ρ0∂v
vib
n

∂t︸ ︷︷ ︸
C

= LB[p
′] (139)

Let us finally mention two special, in applications often found cases of surface properties, namely

(a) acoustically hard surface (German: ”ideal schallharte Oberfläche”), for which â ≡ 0 (or
ẑ → ∞). For a passive surface C = 0. Typically the surface of an object made of concrete may

be considered an acoustically hard surface, ∂p
′

∂n
= 0 on ∂VB,

(b) pressure release surface (or acoustically soft surface) (German: ”ideal schallweiche
Oberfläche”), for which ẑ ≡ 0 (or â → ∞). For a passive surface C = 0, p′ = 0 on ∂VB.
An example for a pressure release surface is the free interface between water and air, when sound
propagating in the water hits this surface. Then the particles at the surface are free to move out
according to the incident acoustic particle velocity field.
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Figure 17: Kirchhoff integration surface ∂VH .

2.6.3 Kirchhoff integral

If the pressure and its derivatives are known on an arbitrarily shaped closed surface ∂VH (see
figure 17), enclosing all source domains VS and all objects VB, then the sound pressure field on
all locations outside ∂VH may be determined with the Kirchhoff integral.

The Kirchhoff integral may be considered a special case of the relations (130) or (131), in which
the integration surface does not only contain the objects VB, but the whole arrangement of sources
and objects. Analogously to (125) we define the domain VH inside of ∂VH with the help of the
scalar function f(x), whose zero-level surface is identical with ∂VH :

f(x) < 0 x ∈ VH
f(x) = 0 for x ∈ ∂VH
f(x) > 0 else

(140)

Evaluating (130) for VH instead of VB eliminates the volume integral over the sources Vs because
these source domains are located inside VH .

p′ = 1
4π

∫
∂VH

1
r

(
1
a∞

∂p′

∂τ
+
p′

r

)
n·er − 1

r
∂p′

∂n
dS(ξ), (141)

The Kirchhoff integral is written for a closed integration surface at rest and a medium at rest. The
observer at x is at rest as well. The normal vector n on the surface element dS(ξ) is by definition
pointing towards the exterior of the surface; the unit vector from source element to observer is
er = (x− ξ)/r. Note, that the integrals need to be evaluated at the retarded time τ = t− r/a∞.

2.6.4 Expansion of sources into multipoles

We have seen, that there are ways to solve for the acoustic pressure, once the source term Qp

is known. In order to learn more about a sound source it is worthwile to look into its structure
and try to characterize ”types of sources”. This introduces the so called ”multipole expansion”
of a source, so-to-speak, breaking it up into simple components. Moreover it will help to reduce
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sources to their dominant part and thus simplify the description considerably. The multipole
expansion rests upon a spatial Taylor expansion of the Green’s function G(x, t; ξ, τ).

Suppose we have an exact Green’s function (121) to a problem (satisfying differential equation
and boundary conditions) as sketched in figure 15. Given some source Qp we obtain the solution
through integration of Qp(ξ, τ) weighted by G(x, t; ξ, τ) over the source region and time. The
Green’s function establishes the physical (in our case acoustic) relation between the two points x,
ξ and the moments t, τ . As before we consider x and t to be observer position and reception time
respectively. The Green’s function ”acoustically maps” the source information onto the observa-
tion point. We Taylor-expand G(x, t; ξ, τ) about some position ξ0, centred inside VS(ξ), i.e. the
source volume. The terms of increasing order map different ”acoustic features” or characteristics
of the source Qp to the observer point.

G(x, t; ξ, τ)=G(x, t; ξ0, τ) + (∇ξG)0·(ξ − ξ0) +
1
2!
(∇ξ∇ξG)0 :(ξ − ξ0)(ξ − ξ0) +

1
3!

· · ·(142)

=G(x, t; ξ0, τ) +
∂G
∂ξj

∣∣∣
0
(ξj − ξ0j ) +

1
2!

∂2G
∂ξj∂ξk

∣∣∣
0
(ξj − ξ0j )(ξk − ξ0k) +

1
3!

· · ·

Due to (121) the solution p′(x, t) then appears correspondingly as

p′(x, t) =

∫ t+

−∞
G(x, t; ξ0, τ)

∫
VS

Qp(ξ, τ)dV (ξ) dτ +

+

∫ t+

−∞
(∇ξG)0·

∫
VS

(ξ − ξ0)Qp(ξ, τ)dV (ξ) dτ +

+

∫ t+

−∞
(∇ξ∇ξG)0 :

∫
VS

1
2!
(ξ − ξ0)(ξ − ξ0)Qp(ξ, τ)dV (ξ) dτ +

+ . . . (143)

which shows that the volume integrals represent a sequence of differently weighted averages of
the source function over the source domain. In this way the source region is lumped together
and reduced to the point ξ0. The first term in the above sequence is called ”monopole term”,
the second ”dipole term” the third ”quadrupole term”. In general, if m denotes the order of the
term in the Taylor expansion (first term m = 0, second term m = 1 etc.), then the corresponding
pole is called ”pole of the order 2m”. For instance the dipole term is also called pole of order 2.
We emphasize, that the appearance of say, the quadrupole term of the same source Qp may be
completely different, depending on the Green’s function used for the expansion. The quadrupole
term of a source Qp in the free field (Green’s function G0) has completely different character-
istics than the quadrupole term of the same source near, say, a sharp edge of a given geometry
(tailored Green’s function taking account of the boundary conditions). This indeed has far reach-
ing consequences in the description of aeroacoustic sources, where (see below) the aerodynamic
source function corresponds in nature to a quadrupole-type source. The noise from free turbu-
lence has most different character compared to the noise produced by the same turbulence near
e.g. a trailing edge.

Of particular interest is the multipole expansion w.r.t. the free field Green’s function G0 due
to (122), because we may do our expansion explicitly. It is now more convenient to write the
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expansion in index notation ξ = (ξ1, ξ2, ξ3) and x = (x1, x2, x3). We introduce the superscripts
i, j and k to denote the number of differentiations w.r.t. the co-ordinate directions 1, 2, and 3
respectively. The i+j+k’th expansion coefficient then contains the following ∇ξ-differentiations
of G0(|(xi − ξi)|, τ − t) at ξ = ξ0 (no summation over i, j, k):

∂i+j+kG0(|x− ξ|)
∂ξi1∂ξ

j
2∂ξ

k
3

∣∣∣
ξ0
= (−1)i+j+k ∂i+j+k

∂xi1∂x
j
2∂x

k
3

[G0(|x− ξ0|)]

As indicated, the sign-factor provides a minus whenever i+ j+ k is odd, because each single ex-
change from ξ to x is accompanied with a change in sign due to the above mentioned dependence
of G0 on |(xi − ξi)|. We may now insert G0 into the Taylor expansion of the solution

p′(x, t) =
∞∑

i,j,k=0

∫ ∞

−∞

(−1)i+j+k

i!j!k!
∂i+j+kG0(τ − t, r0)

∂xi1∂x
j
2∂x

k
3

∫
VS

(ξ1−ξ01)i(ξ2−ξ02)j(ξ3−ξ03)kQp(ξ, τ) dV (ξ) dτ

where it is emphasized that r0 = |x − ξ0| is not a function of ξ anymore. We may now use the
actual form of the free field Green’s function G0 = δ(τ − t + r0/a∞)/(4πr0) at ξ0 in order to
evaluate the time integration and we finally obtain the multipole expansion w.r.t. G0 of the source
Qp:

p′(x, t) =
∞∑

i,j,k=0

(−1)i+j+k ∂i+j+k

∂xi1∂x
j
2∂x

k
3

[
mijk(τ0)
4πr0

]
(144)

mijk(τ0) =

∫
VS

1
i!j!k!

(ξ1 − ξ01)
i(ξ2 − ξ02)

j(ξ3 − ξ03)
kQp(ξ, τ0) dV (ξ) (145)

where τ0 := t− r0/a∞ is the retarded time with respect to the (fixed) reference point ξ0 therefore
being independent of ξ and again r0 := |x − ξ0|. The abreviation mijk is called ”multipole
moment of order 2i+j+k” of the source Qp. The zeroth term m000 is called ”monopole moment”,
while all first terms m100, m010 and m001 are called ”dipole moments”. The next terms are then
termed ”quadrupole moment” (i+ j + k = 2) and ”octupole moment” (i+ j + k = 3) etc.

For very large distances r0 of the observer to the source the multipole expansion attains a more
simple form (terms proportional to second or higher power of r−1

0 neglected):

p′(x, t) ≃ 1
4πr0

∞∑
i,j,k=0

a−(i+j+k)
∞

(
∂r0
∂x1

)i( ∂r0
∂x2

)j( ∂r0
∂x3

)k

︸ ︷︷ ︸
cosiϑ1 cosjϑ2 coskϑ3

∂i+j+kmijk(τ0)

∂ti+j+k (146)

Note that the derivatives of r0 with respect to the coordinates represent nothing but direction
cosines cosϑl relative to the coordinate axes xl, i.e. for higher multipole moments we have
a spatially very complex ”hedgehog” pattern, consisting of so called radiation lobes (German:
”Abstrahlungskeulen”). Figure 18 depicts examples of various combinations of i, j, k. The dia-
grams only show the x1 − x2 section plane through the 3D characteristics; the actual monopole
characteristic is a sphere, while the dipoles represent two spheres each. According to its defini-
tion in eqn. (146), the x1 − x2-quadrupole may be generated by multiplication of the two x1 and
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Figure 18: Radiation characterisitcs of various components i, j, k of the multipole expansion;
left: monopole, center: x1- and x2-dipoles, right: x1-longitudinal and x1 − x2-quadrupole.

x2-dipoles. Although the longitudinal quadrupole seems similar to a dipole, it is fundamentally
different not only because of its ellipsoidal instead of spherical lobes, but by the fact that both
lobes represent the same phase while a diplole features oppositely phased lobes. Note also, that
only one term of the infinite sum remains for the case of an incompressible medium (a∞ → ∞),
namely the monopole part.

2.6.4.1 Expansion of source term Qp of (61) Let us again take a look at the form of the
source Qp =: Qmϑ + Qf from (61). It is composed of the time derivative of a scalar and the
divergence of a vector with

Qp =

=: Qmϑ︷ ︸︸ ︷
∂
∂t

{(
1− σ∞p∞

ρ∞T∞

)
ṁ′ + σ∞

T∞
ϑ̇′
}

︸ ︷︷ ︸
=: θ̇′

=: Qf︷ ︸︸ ︷
−∇·f ′ (147)

In a first step we determine the monopole contribution of Qp to the sound field p′. According to
(145) the monopole moment of Qmϑ is

m000[Qmϑ] =

∫
VS

Qmϑ dV (ξ) = ∂
∂t

∫
VS

θ̇′ dV (ξ)

This represents the time change of the bulk mass and heat flow over the whole source volume.
The monopole moment of Qf := −∇·f ′ is correspondingly

m000[Qf ] =

∫
VS

Qf dV (ξ) = −
∫
VS

∇ξ·f ′ dV (ξ) = −
∫

∂VS

f ′·n dS = 0

The last equality follows because the source region is a finite volume VS . There is no contribution
from the external forces to the monopole moment of Qp. The overall monopole contribution of
Qp to the pressure field p′ is therefore (144)
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p′m := p′000 =
1

4πr0
∂
∂t

∫
VS

θ̇′(ξ, τ0) dV (ξ) (148)

with r0 = |x − ξ0| being the distance of the observer to the source and τ0 := t − r0/a∞ the
respective retarded time (of course both depending on the choice of the reference point ξ0 in VS).
We summarize: The monopole moment is determined by the bulk flow of mass and heat, while
all other terms (due to f ′) vanish. Conversely one characterizes the effect of applied fluctuating
mass and heat sources as of monopole type (although this really only concerns Qp’s spatial mean,
i.e. the source strength).

The first dipole term of Qp is evaluated similarly as above yielding

m100[Qmϑ] =
∂
∂t

∫
VS

(ξ1 − ξ01)θ̇
′ dV (ξ) and m100[Qf ] =

∫
VS

f ′
1 dV (ξ)

We observe, that the dipole moment m100[Qf ] of the force contribution Qf represents the first
component of the bulk force vector exerted by the source volume on the fluid. The second/third
terms (010)/(001) follow analogously such that the overall dipole contribution of Qp to the pres-
sure field p′ according to the definition (144) is

p′d := p′100+p
′
010+p

′
001=∇x·

{
−1
4πr0

[
∂
∂t

∫
VS

(ξ−ξ0) θ̇
′(ξ, τ0) dV (ξ)+

∫
VS

f ′(ξ, τ0) dV (ξ)
]}

(149)

Note that by Gauss’ theorem we could have written the first integral equivalently as −
∫
VS
(ξ −

ξ0)(ξ−ξ0)·∇ξ θ̇
′(ξ, τ0) dV (ξ) stating explicitly, that it expresses the effects of a spatial variation

of q′mϑ over the source region. We summarize: The dipole moment is determined by the mean
force vector and the mean variation of the heat/mass flux over the source region. Apart from
such spatial variation effects the dipole contribution of the source is generically determined by
the force term. Conversely one characterizes the effect of an applied fluctuating force f ′ as of
dipole type (although this really only concerns f ′’s spatial mean, the bulk force applied).

Let us finally write down the solution p′ approximated up to the quadrupole contribution
p′2(x, t) := p′m + p′d + p′q, and compare with the form (105) of the general solution for
p′(x, t) ≃ p′2(x, t)

p′2(x, t) = 1
4π

{
∂
∂t

∫
VS

1
r0

[(
1− σ∞p∞

ρ∞T∞

)
ṁ′ + σ∞

T∞
ϑ̇′
]
τ0
dV (ξ)−∇x·

∫
VS

f ′(τ0, ξ)
r0

dV (ξ)

}

−∇x·
∫
VS

(ξ − ξ0)
4πr0

∂θ̇′(ξ, τ0)
∂t

dV (ξ) (150)

+∇x·∇x·
∫
VS

(ξ − ξ0)
4πr0

{
(ξ − ξ0)

∂θ̇′(ξ, τ0)
∂t

− f ′(τ0, ξ)
}
− f ′(τ0, ξ)(ξ − ξ0)

4πr0
dV (ξ)

The comparison with the terms of (105) shows two differences:

Delfs 2023/24



2.6 Acoustics in stagnant homogeneous media – part 2 – 58

i) although the first line of (150) resembles in shape equation (105) the integrals are evaluated
at the retarded time τ0 = t − |x − ξ0|/a∞ instead of τ = t − |x − ξ|/a∞, i.e. variations of
retarded time over the source domain are neglected,

ii) there are extra terms on the second and third line of (150). The integral on the second line
represents an additional dipole contribution and is the first order correction to the above men-
tioned neglect in retarded time variations of the mass/heat source over VS when reducing the
mass/heat source integral to a monopole. The integral on the third line is a quadrupole term. Its
first part is the second order correction to neglecting retarded time variations of the mass/heat
source. The second part of the last integral is the first order correction to the neglect of retarded
time variations on the forcing made when reducing the force integral to a dipole.

This shows that the neglect of retarded time variations over the source generates higher or-
der terms, even though the ”main characteristics” of the mass/heat source is captured by the
monopole term and the ”main characteristics” of the force is captured by the dipole term. Note
that the magnitude of all these higher order terms are through (ξ − ξ0) or its multiples directly
proportional to the size of the domain. Therefore we may conclude that the multipole expansion
series will converge faster the smaller the source domain.

2.6.4.2 Point sources. The abstraction of a point source is motivated by the multipole expan-
sion. Higher order expansion terms become smaller with the size of the domain. Without having
the difficulty of defining what we mean when distinguishing between ”large” and ”small” sources
we may consider the limiting case of sources of infinitesimally small source domain VS , located
at ξ0 with infinitely concentrated source strengths. Such ”point sources” may be expressed ex-
plicitly using the Delta function:

ṁ′(x, t) = ṁ′
p(t) δ(x− ξ0)

ϑ̇′(x, t) = ϑ̇′
p(t) δ(x− ξ0) (151)

f ′(x, t) = f ′
p(t) δ(x− ξ0)

If we insert this into (150) all the higher order correction terms vanish identically such that the
expansion up to the shown order is exact

p′(x, t) = p′2 = p′1 =
1
4π

{
1
r0

[ (
1− σ∞p∞

ρ∞T∞

)∂ṁ′
p

∂t

∣∣∣
τ0
+ σ∞
T∞

∂ϑ̇′
p

∂t

∣∣∣
τ0︸ ︷︷ ︸

= (Qmϑ)p

]
−∇x·

[f ′
p

r0

]
τ0

}
(152)

If the mass and heat sources are point sources they represent pure monopoles and a point force
appears as a pure dipole. The source strength of the point monopoles corresponds to the (con-
centrated) monopole moment, while the point source f ′

p represents the (concentrated) dipole
moment. When comparing the monopole part of the solution with our elementary, spherically
symmetric solution (95) we see that the latter was nothing but a monopole point source. More-
over the comparison of monopole and dipole terms in (152) shows that a dipole field formally
appears to be the spatial derivative of monopole fields with different source strengths for each
direction.
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2.6.4.3 A line source of finite extend. Some sources of noise are not appropriately modeled
by assuming that their spatial extension is negligible as in (2.6.4.2). Let us consider for this pur-
pose the sound radiation from a circular cylinder of diameter d and length l in a cross flow of
speed U∞. Known as von Karman vortex street, the flow past a cylinder exibits a typcial transver-
sal oscillation of its wake, with a characteristic Strouhal number (dimensionless frequency f )
Sr = fd/U∞ of Sr ≈ 0.2. The wake’s oscillation is connected with an oscillation of lift about
the value zero. Conversely, the cylinder exerts an equivalent force on the fluid. At each spanwise
location we represent the action of the cylinder on the fluid by a line force of length l pointing
perpendicular to flow and cylinder axis. The section lift of this line force may then be expressed
like:

f ′ = e2F (τ ; ξ3)δ(ξ1)δ(ξ2)H(l/2− ξ3)H(l/2 + ξ3)

where the origin of the coordinate system is located in the symmetry point of the cylinder, while
the ξ1 and ξ3 directions point along the free stream and the span respectively. For simplicity of
the presentation from now on we assume that the section lift is constant along the span of the
cylinder, i.e. F = F (τ) ̸= F (τ, ξ3).

We solve for the far field of the sound radiated by the cylinder by applying the multipole expansion
according to (146) with the source term being Qp = ∇·f ′. Since f ′ contains the ξ2 component
only, Qp =

∂f ′
2

∂ξ2
. Inserted into the expression for the multipole moment (145) and integrating by

parts we have

mijk = −F (τ0)
i!j!k!

∫
VS

∂ξi1ξ
j
2ξ

k
3

∂ξ2
δ(ξ1)δ(ξ2)H(l/2− ξ3)H(l/2 + ξ3) dξ1dξ2dξ3

= F (τ0)
1

k + 1!
( l
2
)k+1[(−1)k+1 − 1] δ0i δ1j

were δkl denotes Kronecker”s symbol, assuming unity whenever k = l and the value zero for
k ̸= l. Insertion into (146) gives

p′(x, t) ≃ 1
4πr0

∞∑
k=0

1
k + 1!

[(−1)k+1 − 1] a−(k+1)
∞ cosϑ2 coskϑ3 (

l
2
)k+1 dk+1F (τ0)

dτ k+1
0

= − 2
4πr0

cosϑ2

cosϑ3

{
( l cosϑ3

2a∞
)F ′ + 1

6
( l cosϑ3

2a∞
)3F ′′′ + 1

120
( l cosϑ3

2a∞
)5F V + . . .

}

θ
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ξ

ξ
1
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U

ξ
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Figure 19: Cylinder in cross
flow.
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Figure 20: Directivity D̃ of sound radiation from cylinder in cross flow. The Strouhal number is
assumed to be Sr = 0.2; left: M = 0.1, l/d = 5; right: M = 0.2, l/d = 20.

where ϑ2 (ϑ3) is the angle between the ξ2 (ξ3) direction and the direction defined by symmetry
point of the cylinder and observer location. In order to make the solution even more explicit let us
assume that the oscillation is purely sinusoidal and that the rms-value of the section lift coefficient
c̃l is near 0.3 or so. Then

F (τ0) =
√
2 c̃l d

1
2
ρ∞U

2
∞ sin(ωt− kr0)

with ω = Sr2πU∞/d and the wave number k = 2πSrM/d. For this sinusoidal oscillation we
find the series in the expression for p′ to represent the sine, i.e.

p′(x, t) = −
√
2

4πr0
c̃l ρ∞U

2
∞ d cosϑ2

cosϑ3
sin(π SrM cosϑ3 l/d)︸ ︷︷ ︸

:= D

cos(ωt− kr0)

The dependence of the radiation on the direction is represented in the so called directivity D;
surely, the cylinder does not radiate the same in all directions. The normalized directivity
D̃ := D/Dmax is depicted in figure 20 for two different length-to-depth ratios l/d and flow
Mach numbers. For small arguments of the sine (like the case shown for l/d = 5, M = 0.1 in
fig.20), it may be replaced by the argument itself. Then D̃ −→ cosϑ2 and the directivity becomes
dipole-like with the lobes pointing in the direction of the lift. For larger arguments of the sine,
the directivity becomes more flat in the lateral direction.

We may also determine the sound power radiated by the cylinder. From (83) we know that the
intensity in the far field is I = p′2/(ρ∞a∞) which we have to integrate according to (12) over a
closed surface, chosen to be a sphere of radius r0. In order to do so, we choose a polar coordinate
system with ξ1 = r0 cosφ sinϑ3, ξ2 = r0 sinφ sinϑ3, ξ3 = r0 cosϑ3, in which the surface element
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is dS = r20 sinϑ3 dφ dϑ3.

P =

2π∫
0

π∫
0

p′2

ρ∞a∞
r20 sinϑ3 dϑ3 dφ =

2r20
ρ∞a∞

2π∫
0

π/2∫
0

p′2 sinϑ3 dϑ3 dφ

where we used the symmetry about ϑ3 = π/2. In order to insert our solution for p′ we still
have to express the direction cosine cosϑ2 in these coordinates. Since ξ2 = r0 cosϑ2 we obtain
cosϑ2 = sinφ sinϑ3 and we get

P =
ρ∞c̃

2
lU

3
∞Md2

8π2

π︷ ︸︸ ︷
2π∫
0

sin2φ dφ

π/2∫
0

tan2ϑ3 sin
2(π SrM cosϑ3 l/d) sinϑ3 dϑ3

=
ρ∞c̃

2
lU

3
∞Md2

8π

[
1
2

(
sin(2α)
2α

− 1
)
− sin2α + α si(2α)

]
where α := π SrM l/d and si(x) :=

∫ x

0
(sin(t)/t)dt is called ”sine integral” (german: ”Inte-

gralsinus”), which is a tabulated function. For small arguments of α → 0, say, for small Mach
number or small l/d this expression can be simplified by a Taylor expansion about α = 0 (leaving
2
3
α2 for the square bracket):

P = π
12
c̃2l ρ∞ U3

∞M3Sr2l2 (153)

For very large α the last term in the square brackets dominates, leaving π
2
α since si(∞) = π/2

and we have
P = π

16
c̃2l ρ∞ U3

∞M2Sr l d (154)

The result is shown in the left diagram of Fig 21 for M = 0.3. For small l/d we see that
the general solution asymptotes to (153) and for large α to (154). Note that flow effects in the
propagation of the sound waves have been neglected so far. This may be justified for small Mach
numbers. The Mach number dependence is shown in the right diagram of Fig 21.

According to (153), i.e. when α is small, the sound power scales like the sixth power of the speed,
which is a typical result for so called ”compact” objects (see next paragraph). Note that for this
case the source could have been approximated by a point force in the center of the cylinder. Let
us estimate the critical l/d, up to which the cylinder behaves like a compact source. We simply
determine the intersection of the two asymptotics (153) and (154) being at l/d = 3

4SrM
. We

may express SrM by SrM = He d/l, where He = l/λ is called ”Helmholtz number”, which
may be interpreted as the ratio between the characteristic dimension of the object in relation to
the radiated wavelength. We may therefore say that the cylinder behaves as a compact source as
long as He < 3/4, i.e. whenever the cylinder is clearly shorter than one wavelength. This result
is very general and not only restricted to cylinders.

For considerably larger l/d the speed scaling exponent of the sound power reduces to five, a re-
duction of one in the exponent of which is a very typical result for a 2D source compared to the
3D case. The reason for the reduced increase of the sound power with the cylinder length or
Mach number in this regime is due to wave cancellations. However, for realistic flows the wake
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oscillation is not perfectly correlated in the spanwise direction as we assumed. Typical span-
wise correlation lengths are even less than 5 diameters or so. For elastically supported cylinders
though, the oscillation may trigger a coherent vortex shedding along the whole cylinder length.
Then very loud tones may occur (e.g. electric transmission lines in wind).

2.6.5 Compactness, nearfield and farfield

In this section we will show that the character of the pressure field p̂(x, ω) changes depending on
whether the point of observation is near or far away from the source. The distinction between the
different regions in the pressure field is important because it may help us in the actual solution
of an acoustic problem. Even for the most simple applied problems it usually is impossible to
obtain closed-form solutions. Then it becomes necessary to introduce simplifications and the
following distinction between near- and farfield as well as the notion of compactness should give
us a valuable and rather general guideline for simplifications.

2.6.5.1 Compactness In the characterization of sources and acoustic fields it is useful to in-
troduce the characteristic dimensionless parameter He := l/λ, which is called ”Helmholtz num-
ber” and represents the ratio of a geometrical length scale l of an object (source or body) to an
acoustic length λ (wavelength). The object is called ”acoustically compact” when He≪ 1. Oth-
erwise the object is called ”acoustically non-compact”. Note that this distinction depends on the
wavelength considered, and thus the corresponding frequency ω = 2πa∞/λ. For practical pur-
poses He ≲ 1/4 may still be a reasonable range for compactness. Introducing the characteristic
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Figure 21: Normalized sound power level L∗
W = 10 lg[P/(c̃2l ρ∞d

2M6a3∞)] as a function of di-
mensionless length l/d; left: M = 0.3 and asymptotics for l/d → 0 according to (153) and for
large l/d; right: solid curve - M = 0.1, long-dashed curve - M = 0.2, dashed curve - M = 0.3,
dotted curve - asymptotic (153).
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lengths for the source and body sizes as in figure 22

i) the maximum linear extension of the source region lS = max
ξ,ξS∈∂VS

[|ξ − ξS|] and

ii) the maximum linear extension of the body lB = max
ξ,ξS∈∂VB

[|ξ − ξS|].

we may characterize the relative geometrical size of our source by HeS = lS/λ. Whether the
body is acoustically compact or not is a matter of the value of HeB = lB/λ.

As a reference to the preceeding section we may now say that multipole expansions converge fast
for compact sources only. The limiting case of a compact source is a point source with HeS = 0.

2.6.5.2 Nearfield and farfield The existence of subdomains of different character in the pres-
sure field was already seen in the formulation (104) of the general free field solution, which ex-
plicitly showed that a certain part of the scaled pressure signal (p̂ · r) due to f ′ (dipole part of
source) survives as the distance from the source r becomes asymptotically large, while another
part dies out for r → ∞, in turn being dominant close to the source. Moreover we saw that the
part, surviving for large r was compressible (and unsteady) in nature, since for an incompressible
fluid it would vanish identically.

In order to decide, whether the pressure field at a point x is of compressible or incompressible
nature the general solution (131) is considered. The solution contains the special case of the
pressure field of an incompressible fluid given the same sources. The compressibility effect enters
entirely through the wave number k = ω/a∞ and we may simply let k → 0 in order to arrive
at the incompressible solution. We note however, that k always appears in conjunction with
r as dimensionless expression kr = ωr/a∞. Obviously for an incompressible fluid kr = 0 and
consequently those points x for which kr ≪ 1 will have a pressure field like of an incompressible
fluid, which is usually much more simple to describe.

There are two distinguished effects on the solution (131) due to finite kr: i) the phase factor
exp(ikr), which represents the retarded time and ii) the term proprotional to ikr in the surface
integral. Given an observation point x we have to evaluate the size of kr = k|x− ξ| as ξ sweeps
over the entire source region VS and the entire surface ∂VB of the body VB. It is convenient to
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Figure 22: Characteristic length scales for source and
body
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define a dimensionless parameter, Π̃ which describes the character of the pressure field at x:

Π̃ := max
ξ∈∂VS ,∂VB

|x− ξ|/λ︸ ︷︷ ︸
= kr/2π

(155)

where λ = 2π/k is the wave length of an acoustic wave of radian frequency ω = ka∞.

We may more conveniently determine an upper estimate Π of Π̃ when introducing the following
two additional characteristic length scales: (see fig. 22)

iii) the distance dS(x) = min
ξ∈∂VS

[|x− ξ|] of the observer to the source region,

iv) the distance dB(x) = min
ξ∈∂VB

[|x− ξ|] of the observer to the body (with the convention dB = 0

when no body present),

The dimensionless parameter

Π(x) :=
max[dS(x) + lS, dB(x) + lB]

λ
= max

[
dS(x)
λ

+HeS,
dB(x)
λ

+HeB

]
(156)

enables us to divide the pressure field into respective subdomains.

For Π ≪ 1 the pressure is the same as the pressure in an unsteadily moving incompressible
medium, i.e. it is of purely hydrodynamic nature and we would have obtained the same result had
we considered the incompressible conservation equations right away. Note also that the solution
becomes independent of the speed of sound. We call the domain where Π(x) ≪ 1 the acoustic
nearfield (German: ”akustisches Nahfeld”) of the pressure. It is -as mentioned- characterized by
incompressible phenomena.

Let us first assume no bodies present, i.e. a free field problem dB = 0, HeB = 0. Then, according
to (156), conditions of an acoustic nearfield are fulfilled only in cases when the acoustic wave-
length is large compared to the observer’s distance from the source dS(x) and the characteristic
extension of the source lS (compact source). As either the distance from the source or the exten-
sion of the source increases, so does the unsteady compressibility effect and (at least part of) the
pressure attains acoustic nature.

We may think of cases, where there exists no true acoustic nearfield, because from (156) we see
that even for very near the source dS → 0 it may happen, that the parameter Π ̸≪ 1, namely
when the source is non-compact. The region where the distance dS ≪ λ, while lS/λ ̸≪ 1 is then
sometimes called geometric nearfield (German: ”geometisches Nahfeld”). In this region one
may expect the solution to be influenced both by hydrodynamic and acoustic processes. Note, the
distinction between acoustic and geometric nearfield makes sense for non-compact sources only.

The region, which is dominated by unsteady, compressible processes is characterized by
dS(x)/λ ̸≪ 1, no matter the characteristic geometric extension of the source lS . This region
is called acoustic farfield (German: ”akustisches Fernfeld”).
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Yet another region can be identified, namely the so-called geometric farfield (German: ”ge-
ometrisches Fernfeld”), which is the part of the acoustic farfield, for which lS ≪ dS(x). The
distinction between acoustic and geometric farfield makes sense for non-compact sources.

The presence of a body VB is taken into account when the general definition of Π from (156) is
used. For instance a point lying in the acoustic near field of a source becomes part of the farfield
as soon as a body is placed far enough from the observer or the source. The reason is, that sound
emanating from the source interacts with the body, becomes partially reflected (or diffracted) and
reaches the observer point, at which the pressure is therefore composed not only of the direct
(incompressible) part of the source, but as well contains these acoustic components. The same is
true for a non-compact body no matter what geometric distances.
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3 Moving medium / moving source

It is very difficult to describe the propagation of sound in a general flow field uniquely. We
therefore consider certain classes of flows, for which we may derive respective (generalized)
acoustic wave equations.

3.1 Sound propagation in steady parallel flows

Let us consider a steady mean flow field

v0(x) = exu
0 (157)

which (even for compressible medium) implies (see appendix D), that u0 ̸= u0(x), i.e.

u0 = u0(y, z) = u0(h(y, z)) (158)

allowing for variation along the normal directions y, z. Constant values of the generalized normal
coordinate h represent the iso-surfaces, on which the flow is constant (see figure 23). For instance
in the case of axisymmetric parallel free jet flow h(y, z) =

√
y2 + z2 is the distance to the jet

axis. In the most simple case h(y, z) = z, which represents a plane shear layer. First we need
to check, what the accompanying pressure and the density field may look like such that ρ0,v0, p0

form a true flow field. We insert v0 into the mass balance equation (51) for the steady flow and
obtain

v0·∇ρ0 + ρ0 ∇·v0︸ ︷︷ ︸
= ∂u0

∂x
= 0

= 0

which tells us, that the gradient of the mean density field ρ0 needs to be orthogonal to the flow
direction. The variation ρ0(h) may be any function. Let us analogously check the satisfaction of
the momentum equation (52)

ρ0 v0·∇v0︸ ︷︷ ︸
= 0

+∇p0 = 0 =⇒ p0 = const = p∞

Figure 23: Co-ordinates for description of
parallel flow.
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As we did for the medium at rest we try to derive one single equation for the pressure perturbation
p′. First the perturbation equations need to be expressed for the special case of parallel flow. The
momentum equation (55) reads:

D0v′

Dt
+ 1
ρ0

∇p′ + v′·∇v0︸ ︷︷ ︸
( v′∂u

0

∂y
+ w′∂u0

∂z︸ ︷︷ ︸
v′du

0

dh
∂h
∂y

+ w′du0

dh
∂h
∂z︸ ︷︷ ︸

du0

dh
v′· ∇h

|∇h|︸ ︷︷ ︸
eh

|∇h| = du0

dh
v′h|∇h|

)ex

+

= 0︷ ︸︸ ︷
ρ′v0·∇v0 = 1

ρ0
f ′ (159)

where D
0

Dt
:= ∂

∂t
+ u0 ∂

∂x
. Next we write down the pressure equation (56):

1
a20

D0p′

Dt
+ ρ0∇·v′ = θ̇′

Note that the density perturbation ρ′ has dropped out of these two equations for p′ and v′. In order
to eliminate the velocity v′ we take the divergence of the above momentum equation

∂∇·v′

∂t
+∇·

(
u0∂v

′

∂x

)
︸ ︷︷ ︸

u0 ∂
∂x

(∇·v′) + ∂v′

∂x
·∇u0︸︷︷︸
du0

dh
∇h
|∇h| |∇h|

+du
0

dh
|∇h|∂v

′
h

∂x
+∇·

(
1
ρ0

∇p′
)
= ∇·

(
1
ρ0

f ′
)

which in summary is

D0∇·v′

Dt
+ 2|∇h|du

0

dh
∂v′h
∂x

+∇·
(
1
ρ0

∇p′
)
= ∇·

(
1
ρ0

f ′
)

If we now take the material derivative D
0

Dt
of the above pressure equation, we generate again the

expression D
0∇·v′

Dt
which may be eliminated:

1
a20

D02p′

Dt2
+ ρ0D

0∇·v′

Dt
= D0θ̇′

Dt

The combination of the last two equations finally gives:

1
a20

D02p′

Dt2
− ρ0∇·

(
1
ρ0

∇p′
)
− 2ρ0|∇h|du

0

dh
∂v′h
∂x

= D0θ̇′

Dt
− ρ0∇·

(
1
ρ0

f ′
)

(160)

Note that this equation still contains the lateral component of the velocity perturbation v′h, i.e. we
have not yet arrived at one equation for the one variable pressure p′. Before taking the next step
to eliminate v′h let us look at the special case where it drops out identically, such that no further
manipulation is required.

Delfs 2023/24



3.1 Sound propagation in steady parallel flows 68

3.1.1 Uniform flow

For uniform flow du0

dh
≡ 0 in equation (160) and we have

1
a20

D2
∞p

′

Dt2
− ρ0∇·

(
1
ρ0

∇p′
)

= Qp (161)

Qp =

= D∞θ̇
′

Dt︷ ︸︸ ︷(
1− σ0p∞

ρ0T 0

)
D∞ṁ

′

Dt
+ σ0

T 0
D∞ϑ̇

′

Dt︸ ︷︷ ︸[
γ − 1
(a2)0

D∞ϑ̇
′

Dt
+ 1
γ
D∞ṁ

′

Dt

]
pg

−ρ0∇·
(
1
ρ0

f ′
)

which is called convected wave equation (German: ”konvektive Wellengleichung”). It describes
the propagation of sound in a uniformly moving medium generally including density variations
normal to the streamlines. Note that the convected wave equation is almost identical to the wave
equation in a medium at rest (60) except that the partial time derivative is replaced by the material
time derivative following a streamline of the parallel mean flow: ∂

∂t
→ D∞

Dt
:= ∂

∂t
+ u∞

∂
∂x

.
If the mean flow is not aligned with the x−axis, but given as an arbitrary vector v∞, equation
(161) is still valid with D∞

Dt
:= ∂

∂t
+ v∞·∇. A consequence of that is, that the convected wave

equation may be transformed to the wave equation for a medium at rest simply by introducing a
new independent variable ξ = x− u∞t, whose origin is moving along with the flow.

The same replacement of the time derivatives transfers all equations which we derived for the
perturbation dynamics in a medium at rest to those in a medium in uniform motion. Particularly,
we may introduce a velocity potential ϕ according to (64) for uniformly moving medium implying
that the pressure is related like

p′ = −ρ0D∞ϕ
Dt

+ ϕf (162)

Then again, the velocity potential would be governed by equation (68) modified to a convective
wave equation by replacing the partial time derivatives by the material time derivatives.

For the special case of uniform mean density ρ0 = ρ∞ and therefore a0 = a∞ the convected wave
equation (161) reduces to

1
a2∞

D2
∞p

′

Dt2
−∆p′ = Qp, (163)

which upon Fourier transformation (23) yields the convective Helmholtz equation

−(k − iM ·∇)2 p̂−∆p̂ = Q̂p, (164)

where M := v∞/a∞ is called ”acoustic Mach number”, while the hat denotes the Fourier trans-
form (23) of the respective quantity.

Delfs 2023/24



3.1 Sound propagation in steady parallel flows 69

Figure 24: Pulse propagating in a uniform flow field.

3.1.1.1 Green’s function for uniformly moving medium For the solution of the convected
wave equation for any given source distribution it is very helpful to know the respective Green’s
function. We restrict ourselves to media with constant ρ0 = ρ∞ and a0 = a∞. The Green’s
function satisfies by definition:

1
a2∞

D2
∞G

f
0

Dt2
−∆Gf

0 = δ(x− ξ)δ(t− τ) (165)

We try to reduce the problem of finding Gf
0 to the Green’s function for a medium at rest. Figure

24 shows a spherical pulse which was sent out at τ at ξ. After a period of t− τ it has spread to a
radius R. The propagation of the signal takes place in a medium moving at v0 =: v∞ = u∞ex.
Therefore the origin of the spherical wave has moved by v∞(t− τ). The observer at x cannot
distinguish whether the sound pulse arriving at his position came from the (fixed) source point
ξ in the moving medium or from a virtual source point at ξ + v∞(t − τ) in a medium at rest.
Therefore formally we may immediately write down the Green’s function as we know it from a
sound propagation problem in a medium at rest. We only have to replace the distance between
source and observer r by the distance between the virtual source and the observer R:

Gf
0 =

δ(

:= g︷ ︸︸ ︷
τ − t+R/a∞)

4πR
(166)

where now in contrast to the case of a medium at rest the distance

R = |x− ξ︸ ︷︷ ︸
= r

−v∞(t− τ)| (167)

is time dependent. Clearly, only those situations are of interest, where the argument of the Green’s
function g = τ − t + R/a∞ vanishes. The implicit dependence of g on the propagation period
t− τ through R can be expressed explicitly thanks to (114)

δ(g(τ)) =
∑

τi(g=0)

δ(τ − τi)∣∣∣dg
dτ

∣∣∣
τi

, τi - i’th zero of g(τ)
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which leads to expressing Gf
0 as

Gf
0 =

∑
τi(g=0)

δ(τ − t+R(τi)/a∞)

4πR(τi)
∣∣∣dg
dτ

∣∣∣
τi

(168)

It is therefore necessary to determine τi with

g = τi − t+R(τi)/a∞ = 0 (169)

Introducing the acoustic Mach number vector M = v∞/a∞ and its magnitude M = |M | this is
equivalent to

(t− τi)
2 + 2r·v∞

a2∞(1−M2)
(t− τi)− r2

a2∞(1−M2)
= 0

Finally we obtain formally two zeros, i.e. two contributions to the sum in (168):

τ1/2 = t− 1
a∞

(
− r·M

(1−M2)
±

√
(r·M )2 + (1−M2)r2

(1−M2)

)
(170)

which we may equivalently express in terms of the angle θ between er = r/r (line of sight
between observer and source) and flow direction eM = M/M (see figure 24):

τ1/2 = t− 1
a∞

(
−M cos θ ±

√
1−M2 sin2 θ)

)
r

(1−M2)
(171)

For convenience we now introduce a new distance variable

r± := R(τ1/2) = − r·M
(1−M2)

±
√

(r·M )2 + (1−M2)r2

(1−M2)
(172)

=
(
−M cos θ ±

√
1−M2 sin2 θ

)
r

(1−M2)

Finally we have to determine dg
dτ

in (168). From the definition g = τ − t+R/a∞ we have

dg
dτ

= 1 + 1
a∞

∂R
∂τ︸︷︷︸
r·v∞ − (t− τ)u2∞

R

Evaluated at the zeros τ1/2 as required in (168) we have

dg
dτ

∣∣∣
τ1/2

=
R(τ1/2) +

1
a∞

(
r·v∞ − (t− τ1/2)u

2
∞

)
R(τ1/2)

=
r±(1−M2) + r·M

r±

=⇒
∣∣∣dg
dτ

∣∣∣
τ1/2

=

√
(r·M)2 + (1−M2)r2

r±

If we use this in (168) while remembering that R(τ1/2) = r± we end up with

Gf
0 =

δ(τ − t+ r+/a∞) + δ(τ − t+ r−/a∞)

4π
√

(r·M )2 + (1−M2)r2
=
δ(τ − t+ r+/a∞) + δ(τ − t+ r−/a∞)

4πr
√
(M2 cos2 θ + (1−M2)

(173)
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This is the Green’s function for the convected wave equation. Note that causality needs to be
checked on the Green’s function. This means, that the observation of a signal always takes place
later than its sending: t− τ > 0. Since t− τ = r±/a∞ this in turn is equivalent to requiring that
r± > 0. In order to make this requirement more explicit it is convenient to distinguish between
subsonic (M < 1) and supersonic (M > 1) flows.

Subsonic flows.

Since (1−M2) > 0 the root in (172) is strictly of larger magnitude compared to r·M , which on
the one hand ensures that r+ > 0, but which on the other hand shows that r− < 0. Therefore,
only the r+- (or τ+) solution provides a causal component and we have to abandon the r−-part of
the solution:

Gsub
0 =

δ(τ − t+ r+/a∞)

4π
√

(r·M)2 + (1−M2)r2
=

δ(τ − t+ r+/a∞)

4πr
√
(M2 cos2 θ + (1−M2)

(174)

is the Green’s function for the subsonic convected wave equation. Compared to the free field
Green’s function for a medium at rest (M = 0) Gsub

0 displays a directionally dependent factor
D(θ) in the denominator:

D(θ) = 1√
(M2 cos2 θ + (1−M2)

= 1√
1−M2 sin2 θ

≥ 1 (175)

which (for M < 1) is the equation for an ellipsoid. Correspondingly one calls the subsonic
convected wave equation of elliptic type (German: ”elliptischer Typ”). Compared to a medium
at rest the presence of the flow generates a directionally dependent amplification of the sound
radiation from any source. In particular, there is no amplification in or against the flow direction
D(θ = 0, π) = 1, while the maximum amplification is observed in the lateral direction D(θ =
±π/2) = (1−M2)−1/2, see figure 25.

Knowing the 3D Green’s function G0(x − ξ, y − η, z − ζ, t − τ) for the convective wave equa-
tion, it is now quite easy to obtain the corresponding 2D Green’s function. Upon integrating the

θ

M =0.75
0

0.5
0.25

 0.5

 0.5

 1
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 0

Figure 25: Directivity D(θ) of subsonic
Green’s function Gsub

0 for various Mach
numbers.

Delfs 2023/24



3.1 Sound propagation in steady parallel flows 72

convective wave equation (165) along a direction, say z, perpendicular to the flow direction, i.e.∫∞
−∞ . . . dζ we convert the 3D problem to a 2D problem. Correspondingly G(2D)

0 =
∫∞
−∞G0dζ ,

which results in (see appendix B for details)

G
(2D)
0 =

H

(
t− τ + r

a∞

Mr −
√

1−M2 +M2
r

1−M2

)
2π

√
1−M2

√[
t− τ + r

a∞
Mr

1−M2

]2
− r2

a2∞

(1−M2 +M2
r )

(1−M2)2

(B.7)

whereMr := M · r/r while r = (x−ξ)ex+(y−η)ey with r = |r| andH denotes the Heaviside
function.

The 1D Green’s function is similarly derived from the 3D Green’s function by integration over
the plane x = 0 perpendicular to the flow direction, i.e. G

(1D)
0 =

∫ 2π

0

∫∞
0
G0 RdRdφ with

R2 = (y − η)2 + (z − ζ)2 and φ the circumferential direction around the x-axis (details see
appendix B):

G
(1D)
0 = a∞

2
H

(
t− τ − r

a∞
1

1 +Mr

)
(B.9)

where r = (x− ξ)ex.

Supersonic flows.

Since (1 −M2) < 0 the root in (172) is strictly of smaller magnitude compared to the one of
r·M , such that r± > 0, but only downstream of the source (i.e. r·M > 0). This in turn means,
the contributions of r+ as well as r− are both not causal upstream but causal downstream. But
even then, the value of r± needs to be a real number. Let us check, under what conditions this is
the case. From (172) we find that a real solution is possible only for

1−M2 sin2 θ > 0 ⇐⇒ sin θ < 1
M

or sin θ > − 1
M

This condition is valid for both contributions to the supersonic Green’s function Gsuper
0 . Having

sorted out any upstream signals already above, there exists no solution (complete silence) exterior

Figure 26: Mach cone, no solution outside cone, 2 solutions inside cone.

Delfs 2023/24



3.1 Sound propagation in steady parallel flows 73

Figure 27: Two signals from one pulse at supersonic flow. Left: two signals from
different source times received simultaneous at receiver position, Right: two signals
received at different reception times from one source pulse.

to the cone defined by −θM < θ < θM with θM = arcsin(M−1); inside this cone there are
two separate contributions to the solution. This cone is called Mach cone (German ”Machscher
Kegel”) and the angle θM is called Mach angle (German: ”Machscher Winkel”), see figure 26.
Again, inside the cone there exist two contributions at any reception point. Either two pulses fired
at different points in time reach the reception point simultaneaously (see left of figure 27), or a
pulse fired at one point in time results in two pulses received at different times at the reception
point (see right of figure 27). Note, that the left part of figure27 corresponds to the case of a point
source traveling through quiescent air from right to left with a the same Mach number. The two
circles would correspond to pulses emitted when the source passed through the respective centers
of the circles. This means that a stationary observer would first receive the boom at arrival time
of the Mach cone followed by a signal simultaneously composed of sound radiated by the source
in forward and rearward direction.

For the Green’s function we have (173). As for the subsonic Greens function we observe a
distinct directivity D(θ) given in (175), which represents hyperbolae for M > 1 (see figure
28). Correspondingly the supersonic convected wave equation is called to be of hyperbolic type
(German ”hyperbolischer Typ”).

3.1.1.2 Sound field of point sources

Sound field of a point mass or heat source in subsonic flow

The convected wave equation for the sound pressure (161) shows the acoustic source terms of
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Figure 28: Directivity D(θ) of supersonic
Green’s function Gsuper

0 for various Mach
numbers.

mass- and heat sources θ̇′ to take the form Qp = D∞θ̇
′

Dt
. We assume uniform speed of sound

a0 = a∞ (and uniform density ρ0 = ρ∞) of the medium. Our non-moving source θ̇′ is assumed
to be concentrated at point ξ0. We may therefore describe it as θ̇′(ξ, τ) = δ(ξ − ξ0)θp(τ),
where θp(τ) denotes the temporal dependence of the source. The sound field as solution to the
convected wave equation is written down immediately according to the Green’s function method:
Multiplication of the source by the Green’s function of the problem and integration over space
and time:

p′(x, t) =

∞∫
−∞

∫
V∞

Gf
0

(
∂
∂τ

+ u∞
∂
∂ξ

)
[δ(ξ − ξ0)θp(τ)] dV (ξ)dτ

We split the integral into the part pa containing the local time derivate and pb containing the
convective derivative and substitute the expression for the Green’s function to obtain

p′(x, t) =

∞∫
−∞

∂θp
∂τ

δ(τ − t+ r+0 /a∞)

4πr0
√

1−M2 sin2 θ0
dτ

︸ ︷︷ ︸
=: pa

+

∫
V∞

u∞
∂
∂ξ

[δ(ξ − ξ0)]
θp(t− r+/a∞)

4πr
√
1−M2 sin2 θ

dV (ξ)

︸ ︷︷ ︸
=: pb

with sin2 θ = 1−(r·M)2/(rM)2 and r = |x−ξ| and r+ according to (172). The volume integral
in pa and the time integral in pb are trivial and have been carried out already. The quanties with
subscript zero are meant to be evaluated at ξ = ξ0, e.g. r0 = |x− ξ0|.

The first integral is solved by writing

pa =
1

4πr0
√

1−M2 sin2 θ0

[ ∞∫
−∞

∂
∂τ

(
θpδ(τ − t+ r+0 /a∞)

)
dτ −

∞∫
−∞

θp(τ)
∂δ
∂τ︸︷︷︸
−∂δ
∂t

dτ

]
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The first of these two time integrals can be carried out explicitly and yields zero. In the second
integral advantage is taken of the fact that the delta function depends on τ in the same way as on
t. Therefore it is possible to replace ∂δ

∂τ
by −∂δ

∂t
and drag the time derivative before the integral,

which gives

pa =
1

4πr0
√
1−M2 sin2 θ0

∂
∂t

∞∫
−∞

θp(τ)δ(τ−t+r+0 /a∞)dτ = 1

4πr0
√

1−M2 sin2 θ0

∂θp
∂t

∣∣∣
t−r+0 /a∞

For the solution for pb we first replace u∞ ∂
∂ξ

equivalently by v∞·∇ξ and express the integral by

use of the product rule in the integrand like

pb = 1
4π

∫
V∞

∇ξ·
[
v∞δ(ξ − ξ0)

θp(t− r+/a∞)√
(1−M2)r2 +M2(x− ξ)2

]
dV (ξ)

− 1
4π

∫
V∞

δ(ξ − ξ0)∇ξ·
[
v∞

θp(t− r+/a∞)√
(1−M2)r2 +M2(x− ξ)2

]
︸ ︷︷ ︸

−∇x·[. . .]

dV (ξ)

Again, the first integral vanishes, while in the second integral the ∇x operation may be dragged
before the integral. Furthermore v∞ -being a constant- may be taken out of the integral and we
may again replace v∞·∇x = u∞

∂
∂x

, leaving:

pb =
u∞
4π

∂
∂x

∫
V∞

δ(ξ−ξ0)
θp(t− r+/a∞)√

(1−M2)r2 +M2(x− ξ)2
dV (ξ) = u∞

4π
∂
∂x

 θp(t− r+0 /a∞)√
(1−M2)r20 +M2(x− ξ0)2


Next, the actual differentiation with respect to x has to be executed, i.e.

pb =
u∞

4π
√

(1−M2)r20 +M2(x− ξ0)2

∂θp
∂x︸︷︷︸

∂θp
∂t

(
− 1
a∞

)
∂r+0
∂x

−u∞θp
4π

x− ξ0√
(1−M2)r20 +M2(x− ξ0)2

3

which gives:

pb = − M

4πr0(1−M2)
√

1−M2 sin2 θ0

[
cos θ0√

1−M2 sin2 θ0
−M

]
∂θp
∂t

∣∣∣
t−r+0 /a∞

− a∞M cos θ0

4πr20
√
1−M2 sin2 θ0

3 θp|t−r+0 /a∞

Finally p′ = pa + pb yields

p′(x, t) = − a∞M cos θ0

4πr20
√

1−M2 sin2 θ0
3 θp|t−r+0 /a∞

+

+ 1
4πr0

1

(1−M2)
√

1−M2 sin2 θ0

[
1− M cos θ0√

1−M2 sin2 θ0

]
︸ ︷︷ ︸

=: D

∂θp
∂t

∣∣∣
t−r+0 /a∞

(176)
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If this result is compared to the sound field of a mass- and heat source in a non-moving medium,

i.e. p′(M = 0) = 1
4πr0

∂θp
∂t

, one observes that

(a) the flow generates a directed (θ-dependent) near field, represented by the first term in (176),
which decays fast like r−2

0

(b) the flow generates a directivity (German ”Richtwirkung”)D on the farfield (the term decaying
slowly like r−1

0 ). The directivity D is plotted in the left diagram of fig.29 for various flow Mach
numbers.
For an observer on a streamline through the source point ξ0, who is located downstream of the
source, i.e. θ0 = 0, the amplitude of the sound signal is reduced by D(θ0 = 0) = (1 +M)−1.
An observer located on that streamline but upstream (θ0 = π) senses a signal whose strength is
increased by D(θ0 = π) = (1−M)−1. This flow effect is therefore commonly called convective
amplification (German ”konvektive Verstärkung”).

We could have arrived at our pressure field (176) as well by means of a velocity potential accord-
ing to (162). The corresponding velocity potential of the point source in uniform flow of constant
density ρ0 = ρ∞ is

ϕ(x, t) = −
θp|t−r+0 /a∞

4πρ∞r0
√

1−M2 sin2 θ0
(177)

The advantage of knowing the potential is of course that now we have direct access to the acoustic
particle velocity v′ = ∇ϕ. The velocity of the point source in constant mean flow according to
(177) is given by (C.1) in appendix C for reference.

The acoustic field for a point mass or heat source in subsonic flow in 1D and 2D is listed in the
appendix C in equations (C.3) and (C.2) respectively.

Contour plots of the instantaneous sound pressure distribution of a sinusoidal mass- or heat source

Figure 29: Left: directivity D of a mass- or heat point source in uniform mean flow, centre:
directivity |Dx| and right: directivity |Dh| of point force in uniform flow.
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Figure 30: Sound pressure field of a sinusoidal mass- or heat point source in uniform mean flow,
left: M = 0.5, right: M = 1.5. Quasi-logarithmic presentation by consecutive doubling of
colormap increments.

in a flow field is depicted in figure 30. The left part of the figure shows a subsonic flow (M = 0.5)
from left to right, the right part shows a supersonic case (M = 1.5). The subsonic situation
clearly shows the contraction of the wavelengths upstream and a respective stretching down-
stream. Moreover, the intensity of the contour colors appears increased upstream compared to
downstream, indicating the convective amplication effects discussed before. The most striking
observation in the supersonic situation (figure 30 right) is the fact that a sound field exists only
inside of the Mach cone. Here we see a complicated interference pattern of superimposed waves
since there are two waves sent out at different times impacting simultaneously at each given re-
ception point.

Sound field of a point force in subsonic flow

The convected wave equation for the sound pressure (161) shows the acoustic source term due to
external forces f ′ to take the form Qp = −∇·f ′. We assume uniform speed of sound a0 = a∞
(and uniform density ρ0 = ρ∞) of the medium. Our non-moving force f ′ is assumed to be
concentrated at point ξ0. We may therefore describe it as f ′(ξ, τ) = δ(ξ−ξ0)f p(τ), where f p(τ)
denotes the temporal dependence of the source. The sound field as solution to the convected wave
equation is written down immediately according to the Green’s function method: Multiplication
of the source by the Green’s function of the problem and integration over space and time:

p′(x, t) = −
∞∫

−∞

∫
V∞

Gf
0∇ξ·

[
δ(ξ − ξ0)f p(τ)

]
dV (ξ)dτ

Analogously as in the previous example we may re-write this integral applying the product rule
to the integrand:

p′(x, t) = −
∞∫

−∞

∫
V∞

∇ξ·
[
Gf

0δ(ξ − ξ0)f p(τ)
]
− δ(ξ − ξ0)f p(τ)·∇ξG

f
0dV (ξ)dτ
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Applying Gauss’ theorem one can see that the first integral vanishes. The evaluation of the second
integral is straight forward and we finally arrive at

p′(x, t) = 1

4πr20
√

1−M2 sin2 θ0
3

[
M2 cos θ0eM + (1−M2)er

]
·f p|t−r+0 /a∞

+

+ 1
4πa∞r0

1

(1−M2)
√

1−M2 sin2 θ0

[
M2 cos θ0eM + (1−M2)er√

1−M2 sin2 θ0
−MeM

]
·∂f p

∂t

∣∣∣
t−r+0 /a∞

(178)

As for the mass- or heat source we recognize the first term to be the near field part of the pressure
perturbation, which decays fast with r−2

0 , while the second term represents the farfield part,
decaying slowly like r−1

0 .

We are mostly interested in the farfield part of the solution. In order to still interpret the solution
(178) better, we represent the force vector f p by its streamwise component fpM and its lateral
component fph, i.e.

f p = fpMeM + fpheh

and insert it into the farfield part of (178). Respecting eM ·er = cos θ0 and eM · eh = 0 and
eh·er = sin θ0 we obtain for the farfield due to the point force

p′(x, t) = 1
4πa∞r0

1

(1−M2)
√

1−M2 sin2 θ0

[
cos θ0√

1−M2 sin2 θ0
−M

]
︸ ︷︷ ︸

=: DM

∂fpM
∂t

∣∣∣
t−r+0 /a∞

+

+ 1
4πa∞r0

sin θ0
1−M2 sin2 θ0︸ ︷︷ ︸

=: Dh

∂fph
∂t

∣∣∣
t−r+0 /a∞

We recognize different directivities depending on whether the force is acting in the streamwise di-
rection or the lateral direction. The directivities DM and Dh are plotted in the two right diagrams
of fig.29 for various flow Mach numbers.

3.1.1.3 Wave propagation through duct flows We consider the sound propagation of a sound
wave along an infinitely long duct of constant rectangular cross section of height dz and width
dy (see figure 31). The medium of constant density ρ0 = ρ∞ and speed of sound a0 = a∞ in
the duct is moving uniformly with v0 = v∞ = u∞ex along the duct axis ex. The duct surfaces
are assumed acoustically hard, implying that the wall-normal component of the particle velocity
must vanish: n·v′ = 0, where n denotes the normal wall vector. For technical flows of this type
it may be quite important to describe the behavior of sound waves traveling in the duct, especially
the way in which sound is transmitted through the duct.

The sound propagation is described by the homogeneous form (Qp = 0) of the convected wave
equation (161), in this case with constant speed of sound a0 and constant density ρ0:

1
a2∞

(
∂
∂t

+ u∞
∂
∂x

)2

p′ −∆p′ = 0
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u0

x

y

z

dy

z

hard wall

d

Figure 31: Definition of a
duct geometry.

The boundary condition of vanishing normal wall component of the velocity perturbation may be
translated into an equivalent condition on the pressure perturbation when multiplying (159) by
the unit normal wall vector n. This leaves the same condition as in the medium at rest, namely
∂p′

∂n
= 0 at the walls.

The problem is homogeneous in the direction x and t, i.e. the boundary conditions are not a
function of x or t. Therefore we may separate out the solution dependence on x and t (separation
ansatz) and we may further assume an exponential form in t:

p′(t, x, y, z) = pt(t)px(x)pyz(y, z), with pt(t) = exp(iωt) (179)

for a given frequency ω. Upon substitution into the convected wave equation and re-arrangement
such that purely x-dependent terms appear on the left hand side while the y, z-dependent terms
appear on the right hand side we have

1
px

[(
i ω
a∞

+M d
dx

)2

− d2

dx2

]
px = 1

pyz

(
∂2

∂y2
+ ∂2

∂z2

)
pyz =: −C2 (180)

Where we have introduced the separation constant C, which is to be determined later when satis-
fying the boundary conditions. From (180) we may extract two separate equations for px and pyz,
which are coupled to one another through C:[(

ω
a∞

)2

− C2
]
px − 2i ω

a∞
M
dpx

dx
+ (1−M2)

d2px

dx2
= 0 (181)

∂2pyz

∂y2
+
∂2pyz

∂z2
+ C2pyz = 0 (182)

This last may again be solved using a separation between the y-and z-dependence:

pyz(y, z) = py(y)pz(z) (183)

by substitution into (182) and subsequent re-arrangement we have

1
py
d2py

dy2︸ ︷︷ ︸
=: −C2

y

+ 1
pz
d2pz

dz2︸ ︷︷ ︸
=: −C2

z

= −C2 (184)
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The reason for introducing the new constants Cy and Cz is due to the fact, that the left hand side
of equation (184) can only be equal to a constant if the re-grouped y-dependent terms themselves
as well as the re-grouped z-dependent terms themselves form constants. The equations for py and
pz are trivial to solve and give:

py = Ay sin(Cyy) +By cos(Cyy) (185)
pz = Az sin(Czz) +Bz cos(Czz)

The various constants are determined such that the boundary condition of a hard wall

dpy

dy
(y = 0, dy) = 0,

dpz

dz
(z = 0, dz) = 0 (186)

are satisfied. For the y-direction:

dpy

dy
(y = 0) = CyA

y = 0 =⇒ Ay = 0

dpy

dy
(y = dy) = −CyB

y sin(Cydy) = 0 =⇒ Cy = mπ/dy m = 1, 2, 3, . . .

This shows, that there are infinitely many solutions for py which we denote pym =
By

m cos(ymπ/dy). Analogously we obtain

Az = 0, Cz = nπ/dz n = 1, 2, 3, . . .

or pzn = Bz
n cos(znπ/dz) respectively. Having determined Cy(m) and Cz(n) the separation con-

stant C2 = C2
y + C2

z is
C2

nm = π2(m2/d2y + n2/d2z) (187)

Combining the two constants By
m and Bz

n to a new constant Pmn = By
mB

z
n the function pyz reads:

pyzmn = Pmn cos
(
m π
dy
y
)
cos

(
n π
dz
z
)

(188)

The function characterized by the selection of a specific m and n is called mode (German:
”Mode”). We now come to determine px from (181) to describe the x-dependence of the so-
lution. We have to solve an ordinary linear differential equation in x with constant coefficients
which is done by using an exponential ansatz px = exp(−iαx), which turns (181) into[(

ω
a∞

)2

− π2
(
m2

d2y
+ n2

d2z

)]
− 2 ω

a∞
Mα− (1−M2)α2 = 0 (189)

being the dispersion relation of the problem which establishes the relation between the wavenum-
ber x-component α and the frequency ω. Solving for α we get

α±
mn = 1

1−M2

{
− ω
a∞

M ±
√
ω2

a2∞
− π2

(
m2

d2y
+ n2

d2z

)
(1−M2)

}
(190)
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where the indices m,n denote the dependence of α on the choice of the mode numbers. Eqn
(190) shows that for each mode number there exist two solutions. Finally we may put together
the overall pressure field to be

p′ =
∞∑

m,n=0

P±
mn exp(iωt− iα±

mnx) cos
(
m π
dy
y
)
cos

(
n π
dz
z
)

(191)

Behavior for M = 0:

In this case (190) gives

α±
mn = ±

√
ω2

a2∞
− π2

(
m2

d2y
+ n2

d2z

)
(192)

For a chosen mode m,n and according to (191) we thus obtain for large enough fixed ω a right
running (+) and a left running mode wave (−) with the same wavelength. It is important to notice
that for a given frequency wave propagation ceases to exist when the mode numbers exceed a
certain critical value. This happens when the term under the root becomes negative, i.e.

fmn
c = ωc/2π <

a∞
2

√
m2

d2y
+ n2

d2z
(193)

fmn
c is called cut-off frequency of mode m,n. A mode changes its character from propagational

to non-propagational when the considered frequency is below the cut-off frequency. In order to
qualify this change to exponential behavior it may be shown, that the pressure along the duct axis
x is strictly decaying away from the location where the signal was generated. From (193) it may
be seen that them,n = 0, 0 mode (plane wave), is always propagational. The lowest of the higher
order modes (either m,n = 1, 0 or m,n = 0, 1) becomes cut-off for a frequency

fcrit = ωcrit/2π = a∞
2min(dy, dz)

(194)

below which none of the infinitely many higher order modes may be transmitted through the
duct. This critical frequency is a property of the duct geometry. Figure 32 shows the result of
a numerical simulation of the sound signals generated by a diaphragm in a turbulent 2D duct
flow. The diaphragm acts as source of broadband noise. The microphones upstream receive a
signal, strongly affected by the cut-on behavior of the duct. Below 1700Hz only plane waves
are radiated from the source. The pressure levels show a significant increase beyond the critical
cut-on frequencies. This increase occurs because more ”acoustic degrees of freedom” are excited
by the source. Note, that due to the shape of mode n = 1 the centre microphone does not see the
contributions of this mode to the spectrum.

The same cut-off phenomena as in rectangular ducts are observed in circular ducts and the cut-off
criterion is used extensively in the design of aeroengines. The rotating fan produces no plane
waves in the duct of the engine’s nacelle. Therefore one can choose e.g. the fan blade and stator
blade numbers such that the frequencies produced in the turbo engine relative to the dimensions
of the nacelle are cut-off. In this way a very effective noise reduction is achieved. We come to
discuss these issues in detail in the subsequent lecture.
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Figure 32: Propagation of a broadband signal, generated by a diaphragm in a plane (2D) duct
with turbulent flow (M ≈ 0). Influence of cut-on effects on spectral shape, cut-on frequencies
according to (193) with m = 0, a∞ = 340m/s.

Behavior for M ̸= 0:

According to (190) the cut-off frequency is now

fmn
c = ωc/2π <

a∞
2

√
m2

d2y
+ n2

d2z

√
1−M2 (195)

For subsonic flows M < 1 this clearly shows that the influence of the mean flow through the duct
is to reduce the cut-off frequency when compared to the no-flow case. This means that for given
frequency more modes are transmitted through the duct.

The plane wave mode (0, 0-mode) shows most easily the effect of the flow on the wavenumber.
We have

α+
00 =

1
1 +M

ω
a∞

and α−
00 = − 1

1−M
ω
a∞

(196)

This means that α+ represents a wave running along the flow direction while α− characterizes
a wave running against the flow direction. The wavelength λ = 2π/α of the upstream running
wave is compressed by a factor 1−M , while the wavelength of the downstream running wave is
stretched by a factor 1 +M .

3.1.2 Kirchhoff integral for uniform flow

Having the instrument of the free field Green’s function for uniform flow available, we are now
able to generalize the Kirchhoff integral (141) for the case that the acoustic medium is in uniform
motion. As for the no-flow case the Kirchhoff integral determines the sound pressure field outside
a closed surface ∂VH (see figure 33), including all source domains Vs and objects VB, assuming
the field is known on the surface. The derivation is analogous to the one in 2.6.3.

Again, we define the domain VH inside of ∂VH with the help of the scalar indicator function
f(x) in (140) whose zero-level surface is identical with ∂VH , and with the normalization that
|∇f |f=0 = 1. As before we introduce a new pressure variable p′ = H(f)p′ now applying the
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Figure 33: Fixed Kirchhoff integration surface ∂VH in uniform flow.

convected wave operator 1
a2∞

D2
∞

Dt2
−∆ on the right and left hand sides of this definition equation.

After elementary application of the product and chain rules of differentiation we obtain

1
a2∞

D2
∞p

′

Dt2
−∆p′ =

= 0︷︸︸︷
HQp−∇·(p′δ(f)∇f)− δ(f)∇f ·∇p′+

+ 1
a2∞

[
2δ(f)v∞·∇f

∂p′

∂t
+ v∞v∞:

(
∇(p′δ(f)∇f) + δ(f)∇f∇p′

)]
in which the second line of the right hand side is new when compared to the respective no-flow
equation. We solve the above convective wave equation by the Green’s function method, i.e.
multiply by the 3D free field convective Green’s function Gf

0 according to (174) and integrate
over all space V∞ and all time:

p′ =

∞∫
−∞

∫
V∞

−[∇ξ·(p′δ(f)n) + δ(f)n·∇ξp
′]Gf

0 +

+ 1
a2∞

[
2δ(f)v∞·n∂p

′

∂τ
+ v∞v∞:(∇ξ(p

′δ(f)n) + δ(f)n∇ξp
′)
]
Gf

0 dV (ξ) dτ,

where we have used the fact that ∇ξf = n is the unit normal vector pointing outside of ∂VH .
Next we form divergence expressions in order to obtain δ(f) outside of the derivatives for the
solution of the volume integral:

p′ =

∞∫
−∞

∫
V∞

1
a∞

[
2δ(f)M ·∇ξf

(
∂Gf

0p
′

∂τ
− p′

∂Gf
0

∂τ

)
+

+∇ξ·
[
MMδ(f)p′Gf

0n
]
− δ(f)p′M ·nM ·∇ξG

f
0 + δ(f)Gf

0MM :(n∇ξp
′)−

−∇ξ·[δ(f)p′Gf
0n] + δ(f)p′n·∇ξG

f
0 − δ(f)Gf

0n·∇ξp
′ dV (ξ) dτ.

Since Gf
0 = Gf

0(t − τ) we replace its τ -derivative by the negative t-derivative in the first line of
the right hand side. The two leading divergence expressions in the second and third line of the
right hand side integrate to zero by the Gauss-theorem and the assumption that one will not let the
Kirchhoff surface extend to infinity. Exchanging time and volume integration for the first term in
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the first line yields again zero. The volume integral may then be taken for all terms to give

p′ = ∂
∂t

∞∫
−∞

∫
∂VH

2
a∞

M ·n p′Gf
0 dS(ξ) dτ +

+

∞∫
−∞

∫
∂VH

p′(−M ·nM ·+ n·)∇ξG
f
0 +Gf

0(MM :(n∇ξp
′)− n·∇ξp

′) dS(ξ) dτ.

Now the actual expression of the convective Green’s function Gf
0 from (174), i.e.

Gf
0 =

δ(τ − t+ r+/a∞)
4πr∗

, r∗ =
√
(M ·r)2 + (1−M2)r2, r+ = −r·M + r∗

1−M2

along with it’s spatial derivative

∇ξG
f
0 = 1

4πa∞r
∗(1−M2)

{
M − (r·M)M + (1−M2)r

r∗

}
∂δ
∂τ

+
(r·M )M + (1−M2)r

4πr∗3
δ

are substituted into the solution to finally arrive at the convected Kirchhoff integral

p′ = 1
4π

∫
∂VH

1
a∞r

∗

(
Mn +

r·n
r∗

)
∂p′

∂t
+

(1−M2)r·n
r∗3

p′ + Mn

r∗
M ·∇ξp

′ − 1
r∗
∂p′

∂n
dS(ξ), (197)

where Mn := n·M denotes the surface normal component of the (assumed subsonic) acoustic
Mach number of the uniformly moving medium. The Kirchhoff integral is written for a closed
integration surface at rest. The observer at x is at rest as well. The normal vector n on the surface
element dS(ξ) is by definition pointing towards the exterior of the surface. The integrals need to
be evaluated at the retarded time τ = t − r+/a∞. Note that the only convection effect linear in
the Mach number M enters through the time derivative of the pressure on the Kirchhoff surface;
all other convection effects are quadratic in M , which become important only at high subsonic
flow speeds. Note also that in contrast to the no-flow Kirchhoff integral, now not only the normal
derivative of the pressure on the surface is needed but also the derivative along the flow M ·∇ξp

′.

3.1.3 Parallel shear flows

In our derivation of an equation for the pressure perturbation for a general parallel mean flow with
shear we arrived at relation (160). For flows with non-zero shear this equation still contains the
lateral component of the velocity perturbation v′h, which still needs to be eliminated. Although an
expression for v′h is not available, we may find one for its material time derivative. We multiply
the momentum equation (159) by the lateral unit vector eh = ∇h/|∇h|, which is independent of
t and x:

D0v′h
Dt

= 1
ρ0

(
− eh·∇p′︸ ︷︷ ︸

∂p′

∂h

+ eh·f ′︸ ︷︷ ︸
f ′
h

)
(198)
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Now we take the material time derivative D0/Dt of (160) yielding

D0

Dt

[
1
a20

D02p′

Dt2
− ρ0∇·

(
1
ρ0

∇p′
)]

− 2ρ0|∇h|du
0

dh
∂
∂x

(
D0v′h
Dt

)
= D02θ̇′

Dt2
− ρ0D

0

Dt

[
∇·

(
1
ρ0

f ′
)]

Now we substitute our above expression for D0v′h/Dt and obtain the pressure perturbation equa-
tion for parallel shear flows

D0

Dt

[
1
a20

D02p′

Dt2
− ρ0∇·

(
1
ρ0

∇p′
)]

+2|∇h|du
0

dh
∂2p′

∂h∂x
= Qps (199)

Qps=
D02θ̇′

Dt2
+ 2|∇h|du

0

dh
∂f ′

h

∂x
− ρ0D

0

Dt

[
∇·

(
1
ρ0

f ′
)]

There are three characteristics to mention about this equation:

1. Contrary to the 2nd order wave equations which we derived previously (199) is of 3rd order.
The consequence is that this equation not only contains acoustic degrees of freedom, but
additionally a vortical degree of freedom. Although we cannot express this perturbation
vortex dynamics explicitly this indicates a form of pressure which is not linked to the com-
pressibility like the acoustic pressure and which would exist for a perfectly incompressible
fluid as well. Moreover for many shear flows (especially those with a turning point in their
velocity profile) the non-acoustic pressure perturbations tend to get amplified exponentially
with time. Such flows are called hydrodynamically unstable. This means that the vortical
degrees of freedom may represent instabilities. Even without excitation Qps = 0 there may
exist non-trivial solutions for p′ which do not decay in time. In fact, (199) is nothing but a
special form of the so called Rayleigh equation known in hydrodynamic stability analysis.
In that context it is used to identify inviscid hydrodynamic instabilities.

2. The shear of the mean flow profile plays a role in the sound generation (see term

2|∇h|du
0

dh
∂f ′

h

∂x
)

3. For uniform flow (or even zero flow) equation (199) does not reduce to the convected (or
simple) wave equation (161) or (60) respectively.

3.1.3.1 Propagation of a plane sound wave through a plane parallel shear layer We con-
sider a plane, free shear layer as in the left part of figure 34. The shear (and temperature) layer’s
extension in the lateral direction z is −δ < z < δ. A plane harmonic sound of wavelength λ−∞
approaches the shearlayer from far below (z ≈ −∞) under an angle of incidence ϑi (see sketch
on the right of figure 34). An observer at a position z ≪ −δ far from the shear layer detects a
change of phase (frequency f = ω/(2π)). Only the component of the wave motion normal to the
phase line (front) contributes to the generation of a phase change:

(a0−∞ + u0−∞ cosϑi) = λ−∞f (200)

Delfs 2023/24



3.1 Sound propagation in steady parallel flows 86

−T
08

−
u0

+

8u0
+

8T
0

(z) (z)

z z

x

Tu0 0

−δ

8

δ

Figure 34: Left: definition of a parallel shear- and temperature layer, right: plane harmonic sound
wave incident from below the shearlayer.

We express this relation in terms of the wavenumber k−∞ = 2π/λ−∞ and ω:

ω
a0−∞k−∞

= 1 +M−∞ cosϑi, M−∞ :=
u0−∞
a0−∞

(201)

In order to describe the propagation of the sound wave through the shearlayer we employ equation
(199). Since we have a plane shear layer h(y, z) = z and therefore ∇h = ez and |∇h| = 1. We
are only interested in the propagation of the sound wave, i.e. Qps = 0. Then we have from (199)

D0

Dt

[
1
a20

D02p′

Dt2
− γp0

a20︸︷︷︸
ρ0

∇·
(

a20
γp0︸︷︷︸

(ρ0)−1

∇p′
)]

+ 2du
0

dz
∂2p′

∂z∂x
= 0

where we have substituted ρ0 using the equation of state of a perfect gas. Note that γp0 is constant
and cancels. Finally we obtain

1
a20

D0

Dt

[
D02p′

Dt2
−∇·

(
a20∇p′

)]
+ 2du

0

dz
∂2p′

∂z∂x
= 0 (202)

Since the problem’s boundary and initial conditions do not depend on t and x we may again solve
the equation with an exponential ansatz

p′ = p̂(z) exp(iωt− iαx), α = k−∞ cosϑi (203)

where α and ω are given numbers. Substitution into (202) yields:

d2p̂
dz2

+ 2
(
1
a0
da0
dz

+ α
ω − αu0

du0

dz

)
dp̂
dz

+
([

ω
a0

− αM0
]2

− α2
)
p̂ = 0 (204)

This is a second order linear differential equation with non-constant coefficients and needs to be
solved numerically. Note, that (204) very much resembles the equation of motion of a damped
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Figure 35: Description of a plane wave af-
ter transmission through the shearlayer

harmonic oscillator when we identify z with time t. We know that for such an oscillator the factor
before the first derivative is to be understood as damping coefficient. This indicates that the shear
and the temperature gradient (here expressed as da0/dz) tend to decrease or increase the wave’s
amplitude p̂ depending on the sign of their gradient.

Let us look at the asymptotic forms of the equations for z −→ ±∞ and the respective solutions.

For z ≪ −δ we have from (204) which is easily solved to yield

d2p̂−

dz2
+
( [

ω
a0−∞

− αM−∞

]2
− α2︸ ︷︷ ︸

(k−∞ sinϑi)
2

)
p̂− = 0 (205)

p̂− = pi exp(−i|k−∞ sinϑi|z) + pr exp(i|k−∞ sinϑi|z) (206)

Obviously we get two solutions. Their physical behavior can be seen from (203). The common
time factor is exp(iωt), i.e. (for assumed ω > 0) the first term in (206) represents a wave traveling
towards increasing z (towards the shearlayer). This is obviously the incident wave which we
consider given. The second term on the other hand represents a wave traveling from the layer
towards z = −∞. This shows that the equation allows for wave components which are not
transmitted through the shearlayer, but get reflected.

Further note that for supersonic flows M−∞ > 1 the frequency ω could not always be cho-
sen as some positive number. In this case there exists some critical incidence angle ϑc

i :=
arccos(−1/M−∞) beyond which ω would have to be negative according to (201). This criti-
cal angle corresponds again to the Mach cone angle plus 90o. What wave propagation would a
negative ω describe according to (203) and (206)? The incident part going with pi in (206) would
now describe a wave propagating not in the direction ϑi > ϑc

i , but in the respective anti-direction,
i.e. coming from the shearlayer. This shows that there cannot exist any incident sound wave for
incidence angles beyond ϑc

i .

In z > δ we expect to find the transmitted sound wave. For z ≫ δ we have from (204)

d2p̂+

dz2
+
([

ω
a0+∞

− αM+∞

]2
− α2

)
p̂+ = 0 (207)
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Equation (207) is easily solved and has the form

p̂+ = pt exp(−iβz) + p∞ exp(iβz) (208)

where β due to (207),may be expressed explicitly substituting ω from (201) and α from (203):

β = k−∞

√[a0−∞
a0+∞

(1 +M−∞ cosϑi)−M+∞ cosϑi

]2
− cos2 ϑi (209)

Whether the solution (208) really represents a wave in z > 0 depends on β. In order to discuss
the type of solution more explicitly, we re-write (209) as

β = k−∞{H(σ)− i(1−H(σ))}
√

|σ| = −ik−∞
√
−σ (210)

σ =
[a0−∞
a0+∞

(1 +M−∞ cosϑi)−M+∞ cosϑi

]2
− cos2 ϑi (211)

withH the Heaviside function. The character of the solution in z > 0 changes from an oscillatory
type for real β (i.e. in combination with the assumed time factor in (203) a wave-like solution) to
a monotonous type for imaginary β. Note that for given Mach numbers and temperatures of the
mean flow the behavior of the pressure signal depends on the angle under which the sound wave
hits the layer ϑi. We will come back to this dependence in detail later.

imaginary β:

What, if the mean flow and angle of incidence to the shear layer ϑi in (210) are such that σ < 0?
Then the component pt exp(−k−∞

√
σz) in (208) represents an amplitude decreasing exponen-

tially with distance z from the shearlayer. The second component p∞ of the solution in z > 0
goes with a function exponentially increasing with the distance from the shearlayer. A pressure
signal with an infinitely large amplitude at infinity would be unphysical, i.e. p∞ = 0. In summary,
for σ < 0 an incident sound wave is not transmitted through the shear layer at all; the pressure
signal dies out for z > 0. There occurs a perfect reflexion (German: ”Totalreflexion”) of the
incident sound wave at the layer.

real β:

Let us now assume β to be real, i.e. σ > 0 and β = k−∞
√

|σ|. Clearly in this case a sound
wave exists in z > 0. There can be only the transmitted wave pt in (208) which travels towards
increasing z. The solution component p∞ describes a sound wave incident from z = +∞ which
we exclude since we are only interested in the transmission problem, i.e. as before p∞ = 0.

Having made sure that a wave-like solution is found in z > 0 we may describe the solution for
large z according to the nomenclature shown in figure 35. We relate the solutions on both sides
of the shearlayer to one another using two quantities, which are conserved across the layer. Since
the medium is flowing steadily, the only unsteadiness is given by ω:

ω = (1 +M−∞ cosϑi)a
0
−∞k−∞ = (1 +M+∞ cosϑt)a

0
+∞k+∞︸ ︷︷ ︸

Further the wavenumber x-component α is by definition constant for all z:

α = k−∞ cosϑi = k+∞ cosϑt︸ ︷︷ ︸
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Figure 36: Relation between orientations of
incident and transmitted sound wave front
for different flow Mach numbers M .

From these two relations we find

k+∞ =
(u0−∞ − u0+∞) cosϑi + a0−∞

a0+∞
k−∞ (212)

cosϑt =
a0+∞

(u0−∞ − u0+∞) cosϑi + a0−∞
cosϑi (213)

We observe that the wavelength λ = 2π/k changes at the shearlayer. The change of the radiation
direction ϑi −→ ϑt as result of the temperature- or shearlayer is called refraction (German:
”Brechung” or ”Refraktion”). Figure 36 shows the relation (213) for a0−∞ = a0+∞ and u0+∞ = 0.

Perfect or specular reflection. (German: ”Totalreflexion”) If the sound wave is bent at the
shearlayer in such a way that the transmission direction comes to lie parallel to the flow direction
ϑt → 0◦ or ϑt → 180◦, then no actual transmission takes place. The incident sound is reflected
perfectly. The transmission angle ϑt = 0◦ denotes the limiting case of a wave travelling in the
flow direction; the corresponding incidence angle ϑi follows from relation (213):

cosϑtot
i (ϑt = 0◦) =

a0−∞
u0+∞ − u0−∞ + a0+∞

(214)

Incident waves with an orientation 0 < ϑi < ϑtot
i are reflected and not transmitted through the

layer. For constant temperature, a0+∞ = a0−∞ =: a0 we have cosϑtot
i = (M+∞ −M−∞ + 1)−1.

Since the magnitude of the cosine may not exceed 1, we find that for an incident wave with a
downstream directed propagation orientation the condition M+∞ > M−∞ must be satisfied in
order that perfect reflection would occur.

As mentioned above, the other limiting case of perfect reflection is indicated for ϑt = 180o, i.e.

cosϑtot
i (ϑt = 180◦) =

a0−∞
u0+∞ − u0−∞ − a0+∞

(215)
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Incident waves with an orientation ϑtot
i < ϑi < 180◦ are as well reflected and not transmitted

through the layer. For constant temperature, a0+∞ = a0−∞ =: a0 we have cosϑtot
i = (M+∞ −

M−∞ − 1)−1. Since the magnitude of the cosine may not exceed 1, we find that for an incident
wave with an upstream directed propagation orientation the condition M+∞ < M−∞ must be
satisfied in order that perfect reflection would occur. Such a case is seen in figure 36. The
diagram shows that for incidence angles larger than ∼ 145o the M−∞=0.25 shearlayer transmits
no sound waves; there exist no corresponding ϑt.

For constant flow u0+∞ = u0−∞ relations (214) and (215) give cosϑtot
i = ±a−∞/a+∞. This

tells us, that a−∞ < a+∞ is the condition for which perfect reflection takes place. This is true,
when the temperature distribution is such that the incident wave is traveling towards the higher
temperature domain.

Zone of silence. (German: ”Schallschatten”) As a limiting case, the smallest angle under which
an incident wave may hit the shearlayer is ϑi = 0◦; the largest possible angle of incidence is
ϑi = 180◦. The corresponding transmission angles ϑs

t determine sectors into which the shearlayer
does not transmit any sound. These angle sectors are called zone of silence. We determine the
angle of the zone of silence of an incident wave running in the flow direction by requiring that
ϑi = 0◦. Then relation (213) gives

cosϑs
t(ϑi = 0o) =

a0+∞
u0−∞ − u0+∞ + a0−∞

(216)

The angle sector 0 < ϑt < ϑs
t is free of sound, because any incidence angle > 0◦ would render

a ϑt > ϑs
t ; the refraction mechanism does not allow for sound to enter into the zone of silence.

For constant temperature, a0+∞ = a0−∞ =: a0 we have cosϑs
t = (M−∞ −M+∞ + 1)−1. Since the

magnitude of the cosine may not exceed 1, we find that for an incident wave with a downstream
directed propagation orientation the conditionM+∞ < M−∞ must be satisfied in order that a zone
of silence would occur. Such a case is seen in figure 36. The diagram shows that for incidence
angle ϑi = 0◦ the transmission angle is ϑs

t ∼ 35◦ for the M−∞=0.25 shearlayer. This is the
smallest possible transmission angle in the diagram and thus determines the zone of silence. The
zone of silence grows with the Mach number of the flow.

As mentioned above, the other limiting case of a zone of silence is indicated for an incidence
angle ϑi = 180◦, i.e.

cosϑs
t(ϑi = 180◦) =

a0+∞
u0−∞ − u0+∞ − a0−∞

(217)

The angle sector ϑs
t < ϑt < 180◦ is free of sound, because any incidence angle < 180o would

render a ϑt < ϑs
t . For constant temperature, a0+∞ = a0−∞ =: a0 we have cosϑs

t = (M−∞ −
M+∞ − 1)−1. Since the magnitude of the cosine may not exceed 1, we find that for an incident
wave with an upstream directed propagation orientation the condition M+∞ > M−∞ must be
satisfied in order that a zone of silence would occur.

For constant flow u0+∞ = u0−∞ relations (216) and (217) give cosϑs
t = ±a+∞/a−∞. This tells

us, that a−∞ > a+∞ is the condition for which a zone of silence occurs. This is true, when the
temperature distribution is such that the incident wave is traveling towards the lower temperature
domain.
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Change in amplitude. Let us estimate the change in amplitude the wave experiences when it
travels across the shear layer, i.e. we have to relate pt to pi. We make the simplifying assumption
that the shearlayer thickness becomes infinitely small: δ −→ 0. Then we do have to match
p̂−(z = −ϵ) from (206) to p̂+(z = +ϵ) from (208) for 0 < ϵ → 0. At the interface the pressure
must be continous; it cannot jump because there is no external force acting:

p̂−(z = 0) = p̂+(z = 0) ⇐⇒ pi + pr = pt (218)

Further it must be guaranteed that the medium adjacent from above and from below would nei-
ther intrude into itself nor form voids across the interface, represented by the layer. To arrive at a
respective condition at the interface we first describe its position. We may denote the vertical de-
flection of our (plane) shearlayer by h(x, t). Therefore the location of the layer may be described

as f(x, z, t) := z−h(t, x) ≡ 0. The substantial derivative is then Df
Dt

= −∂h
∂t

+v·(ez−∇h) ≡ 0.

From this it follows that vz = ∂h
∂t

+ v·∇h. We assume small deflections h = h0 + ϵh′(t, x) with

h0 = 0 the unperturbed shearlayer at z = 0. Linearization gives v′z = ∂h′

∂t
+ u0∂h

′

∂x
=: D

0h′

Dt
.

The deflection h′ has to be the same for the medium just below or just above the shearlayer;
thus v′+z = ∂h′

∂t
+ u0+∞

∂h′

∂x
or v′−z = ∂h′

∂t
+ u0−∞

∂h′

∂x
. Eliminating h′ finally yield the following

condition at z = 0: (
∂
∂t

+ u0+∞
∂
∂x

)
v′−z =

(
∂
∂t

+ u0−∞
∂
∂x

)
v′+z

Writing v′±z = v̂±z exp(iωt− iαx) the momentum equation (198) helps us to express v̂±z in terms
of the pressure:

v̂±z = 1
ρ0±∞

i
(ω − αa0±∞M±∞)

∂p̂±

∂z

Upon using (201) at z = 0 the above two relations give

1
ρ0−∞

ik−∞ sinϑi

(ω − a0−∞αM−∞)2
(−pi + pr) = 1

ρ0+∞

−β
(ω − a0+∞αM+∞)2

pt (219)

Eliminating the reflected wave component pr from (218) and (219) and substituting ω from (201)
as well as α from (203) finally yields the amplitude of the transmitted wave in relation to the
amplitude of the incident wave:

pt

pi
=

2 sinϑi

[
a0−∞ +

(
u0−∞ − u0+∞

)
cosϑi

]2
sinϑi

[
a0−∞ +

(
u0−∞ − u0+∞

)
cosϑi

]2
+ [H(σ)− i(1−H(σ))]

√
|σ|(a0+∞)2

(220)

with σ from (211). Note, that for σ < 0 the constant |pt| represents only the amplitude of the
pressure signal at the shear layer position z = 0. For increasing values of z the amplitude dies
out. On the other hand for σ > 0 the amplitude is |pt| for all z > 0. For σ = 0 the amplitude of
the transmitted wave according to (220) is |pt| = 2|pi|. The angle ϑ0

i , at which the change of the
type of solution takes place corresponds to the angle of perfect reflection (214).

As an example let us consider a shear layer with M−∞ = M , M+∞ = 0, a0+∞ = a0−∞. The
amplitude ratio of transmitted to incident wave along with the phase jump occuring for angles
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Figure 37: Amplitude ratio and phase jump of transmitted and incident plane wave at shearlayers
of different Mach numberM−∞ due to (220). Curves for ϑi > ϑ0

i (= ϑi(|pt|/|pi| = 2)) correspond
to pressure signal with exponential decay for z > 0. The phase difference φt/i of transmitted to
incident wave at shearlayer z = 0 corresponds to pt/|pt|=exp(iφt/i) p

i/|pi|.

above the critical angle of perfect reflection for various Mach numbers M is shown in figure 37.
For no flow we would of course obtain a constant |pt/pi| = 1, since no refraction would occur in
this case. Already at small flow Mach numbers (see curve for M = 0.1) strong refraction effects
are seen for waves hitting the interface at shallow angles. Note that for the wave defining the
zone of silence (ϑi = 0) the amplitude of the transmitted wave is zero and increases gradually for
increasing angles of incidence ϑi = 0. For supersonic flows the amplitide ratio was set equal to
zero whenever the incidence angle ϑi > ϑc

i = arccos(−1/M) because for theses angles waves
cannot propagate against the flow (note this angle correponds to the Mach cone angle!).

Let us have a look at the reflected part of the wave. This is easily determined using (218) and
(220).

pr

pi
=

sinϑi[a
0
−∞ + (u0−∞ − u0+∞) cosϑi]

2 − [H(σ)− i(1−H(σ))]
√
|σ|(a0+∞)2

sinϑi[a
0
−∞ + (u0−∞ − u0+∞) cosϑi]

2 + [H(σ)− i(1−H(σ))]
√

|σ|(a0+∞)2
(221)

Clearly, at perfect reflection (σ = 0) the incident and the reflected wave have the same ampli-
tude. But what happens for angles beyond perfect reflection? Then σ < 0 and numerator and
denominator become conjugate complex. Since the magnitude of conjugate complex numbers is
the same this means that |pr/pi| still stays equal to one. However, pr and pi are no longer in phase
and there occurs a phase shift at the interface. This phase shift happens to be exactly twice the
phase jump from the incident signal pi and the transmitted signal pt displayed in the lower part of
fig. 37.

Finally let us have a look at the apperance of the pressure field at M = 0.5 for the considered

Delfs 2023/24



3.1 Sound propagation in steady parallel flows 93

Figure 38: Vizualisation of instantaneous pressure field of plane wave at different incidence an-
gles, M = 0.5. Note, for incidence angles beyond angle of specular reflexion, the pressure am-
plitude is decaying exponentially with distance from shearlayer and the pressure signal is moving
with a speed below speed of sound (nearfield).

arrangement of the shearlayer at M = 0.5. For illustrational purpose, the complete pressure field
is shown on a finite strip of the plane wave only.

Note, how the pressure field above the shearlayer decays exponentially for incidence angles be-
yond ϑtot

i . Here the pressure signal moves slower than the speed of sound and therefore is by
nature no sound but a nearfield.

If we are only interested in the lower part of the solution (z ≤ 0) then it is useful to determine the
impedance z−∞ of the shearlayer. Since we had expressed the normal particle velocity v̂−z already
in the expression before (219) we obtain:

z−∞ :=
p̂−(z = 0)
v̂−z (z = 0)

=

[
a0−∞ +

(
u0−∞ − u0+∞

)
cosϑi

]2
√
σ(a0+∞)2

z0−∞ , z0−∞ = ρ0−∞a
0
−∞ (222)

Let us again consider the case of perfect reflection at σ = 0. This obviously corresponds to an
infinite impedance, just as for the case of an acoustically hard wall! Note that whenever the speed
of sound is different below and above the shearlayer, a reflection occurs, even at normal incidence
(ϑi = 90◦).

3.1.3.2 Refraction effects In this section we give some practical examples of sound refraction
phenomena.

(a) Aft noise of a jet engine. The jet of a typical turbofan aeroengine is usually hot and at the
edge of the jet a shearlayer forms as indicated in the sketch 39. According to the refraction
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mechanisms discussed in the previous section, the temperature and the shear layer are arranged as
to support the occurence of zones of silence, which here is rather a ”cone of silence” downstream
of the engine. The noise, which is either generated inside the turboengine (and radiated out of
the nozzle exit) or the jet noise itself (which is generated aft of the nozzle exit) has to cross the

p’2

θ

a

θ

0 0u

Figure 39: Refraction effect for aft jet
engine noise radiation. Occurence of a
cone of silence.

shear- and temperature layers of the jet. The refraction leads to a distinct zone of silence for small
angles ϑ as shown in the figure. Therefore the observer experiences almost no noise when situated
right behind the engines, while at an aft-sideline position the noise is maximum (see sketch of
directivity plot in figure 39).

(b) Intake flow of an turbofan aeroengine. The fan of an aeroengine is ducted by a nacelle. The

M

0u
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Figure 40: Refraction of turbomachinery noise
at intake boundary layer gradients.

noise generated by the rotating fan and the other components of the turbomachinery is propagated
against the intake flow. Obviously boundary layers form at the duct surface of the nacelle. Ac-
cording to the discussion in the previous section the flow speed gradients of these boundary layers
tend to refract the sound away from the surfaces (see fig 40). This effect is unfavorable since the
sound which otherwise could be absorbed by surface mounted liners, tends to get re-directed
towards the centreline of the duct. As a consequence the effectivity of liners is reduced.

(c) Bypass- and core duct flow of aeroengine. The turbomachinery noise, generated inside an
aeroengine is partly propagated through the exit ducts. Contrary to the effect in the engine intake
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the boundary layers act as to refract the sound towards the surface of the duct. Noise absorption
by wall mounted liners is here potentially very effective because the turbomachinery sound is

M

0u
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���������������������� Figure 41: Refraction of turbomachinery noise at exit

duct boundary layer gradients.

refracted towards these liners (see fig 41). The technological difficulty consists in the operation
of such liners in a hot stream.

(d) Atmospheric sound propagation at inversion. In stable conditions the temperature of the air in
the atmosphere decreases with height. Under certain metereological conditions a so called inver-
sion situation may occur. In such a case at some distinct height there exists a temperature layer
within which the temperature rises with height. In such case the environment appears to be more

0
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������������������������������
������������������������������
������������������������������

T

z

Figure 42: Sound propagation in at-
mospheric inversion conditions.

noisy as in stable atmospheric conditions. The reason is a perfect reflection at the temperature
layer of all the noise generated near the ground. As can be seen from sketch 42 part of the sound
which under normal conditions would be radiated up into the sky gets reflected at the layer and is
thrown back onto the ground.

(e) Sound propagation in wind. Under appropriate metereological wind conditions noise may
be propagated much farther as it would be expected with no wind. Such an increase in noise is
experienced when the sound sources are located upstream of the observer. For a source located
downstream of the observer, the sound intensity appear strongly reduced or may even disappear
completely. The phenomena involved are not primarily connected with the presence of the wind
itself, but the gradient in the planetary boundary layer profile. As discussed in the previous
section such flow gradients change the propagation characteristics of sound considerably. For
the observer located downstream of a source, say a motorway, part of the noise radiated towards
the sky is reflected at the boundary layer gradient and re-directed towards the ground (see fig
43). In this way a so called wave guide (German: ”Wellenleiter”) is formed, which allows for
extremely increased noise propagation distances when compared to no-wind conditions. Due to
the conditions upstream of the source the observer experiences a zone of silence and noise levels
appear highly reduced.
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waveguide
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Figure 43: Sound propaga-
tion under wind conditions.

3.2 Sound propagation in steady potential flows

In some sense the ”opposite” of parallel shear flows are potential flows as the non trivial extension
to a uniform flow field. Since a large set of applied problems in aerodynamics is dealing with
attached flows, it has been common to describe such flows as a combination of potential (vorticity
free) flows and the (quasi-parallel) viscous layers (e.g. bounday layers). Therefore it is resonable
to look at acoustic quantities and sound wave dynamics in potential flows.

3.2.1 Generalization of sound intensity for potential flows

For a medium at rest we were able to define a practically most important conservation quantity for
sound, namely the sound power (12). The sound power is determined from the sound intensity,
which therefore represents the quantity of main interest. As we saw in section 2.4.1, the sound
power is indeed a conservation quantity which is therefore useful to characterize sources or to set
up balances. In this section we derive the sound intensity for potential flows.

We start with the linearized momentum balance (56).

∂v′

∂t
+ v0·∇v′ + v′·∇v0 + 1

ρ0
∇p′ +

ρ′

ρ0
v0·∇v0︸ ︷︷ ︸

(52) := − 1
ρ0

∇p0

= 0

The potential mean flow is adiabatic, i.e. p0/(ρ0)γ = const. Therefore we may replace

− 1
ρ0

∇p0 = −a
2
0

ρ0
∇ρ0. Next, we may simplify the expression v0·∇v′ + v′·∇v0 for vortic-

ity free flow and perturbations. For this purpose we consider the vector identity v·∇v =
1
2
∇v2+(∇×v)×v. Linearized about the mean flow this gives v0·∇v′+v′·∇v0 = (v·∇v)′ =

(1
2
∇v2 + (∇ × v) × v)′. Since we have zero curl of the flow and the particle velocity the only

term remaining of the last expression is 1
2
(∇v2)′ = ∇(v0·v′). We end up with the following

form of the perturbation momentum equation for potential flow:

∂v′

∂t
+∇(v0·v′) + 1

ρ0
∇p′ − a20∇ρ0

(ρ0)2
ρ′ = 0

We construct an expression for the perturbation kinetic energy upon forming the dot product of
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this equation with (ρ0v′ + ρ′v0).

∂ 1
2
ρ0v′2

∂t
+
∂ρ′v0v′

∂t

∇·[ρ0v0·v′(v′ +
ρ′

ρ0
v0)]︷ ︸︸ ︷

−v0v′ ∂ρ
′

∂t︸︷︷︸
(55): = −∇·(ρ′v0 + ρ0v′)

+(ρ0v′ + ρ′v0)·∇(v0·v′)+(v′+
ρ′

ρ0
v0)·∇p′−a

2
0∇ρ0

ρ0
(v′+

ρ′

ρ0
v0)ρ′ = 0

Next we multiply the mass balance equation (54) by p′/ρ0 while respecting isentropy for the
perturbation (i.e. ρ′ = p′/a20) to get

∂
∂t

(
p′2

2ρ0a20

)
+ p′∇·

(
v′ +

ρ′

ρ0
v0
)
+
a20
ρ0
ρ′
(
v′ +

ρ′

ρ0
v0
)
·∇ρ0 = 0

The addition of these two last equations finally yields:

∂
∂t

(
ρ0

2
v′2 + ρ′v0·v′ +

p′2

2ρ0a20

)
+∇·

(
(v′ +

ρ′

ρ0
v0)(p′ + ρ0v0·v′)

)
= 0

Upon time averaging this equation the first term vanishes and we have

∇·
(
(v′ +

ρ′

ρ0
v0)(p′ + ρ0v0·v′)

)
= 0 (223)

Had we taken into account mass, momentum and heat sources we would have obtained Q =

(v0·v′ + p′/ρ0)θ̇′ + (v′ + v0ρ′/ρ0)·f ′ instead of zero on the right hand side. In analogy to the
reasoning in section 2.4.1 we conclude that the sound intensity for a potential flow is:

I := (v′ +
ρ′

ρ0
v0)(p′ + ρ0v0·v′) = (v′ +

p′

ρ0a20
v0)(p′ + ρ0v0·v′) (224)

This result was derived by Myers. For a non-moving medium this definition reduces to the classi-
cal definition of sound intensity (9). Even for the trivial case of a uniform flow the expression of
the sound intensity does not simplify. The sound power of sound sources in a potential flow is as
in the classical definition the integration of the sound intensity over a closed surface surrounding
the sources (12). Note that we assumed that mean flow and perturbation are free of vorticity. This
means that we have made no statement about the conservation of an acoustic quantity in general
flow fields. Sound power (and intensity) could get lost in a shear flow due to the conversion of
sound into vortices. Likewise, sound power could be generated when sound waves interact with
a vortical flow. The same is true for entropic flows.

3.2.2 Acoustic wave equation in potential flow

The starting point for the description of acoustics in a potential flow field is the identification of
a relevant quantity. The stagnation enthalpy B represents such a very important quantity for the
characterization of compressible potential flows:

B := et +
p
ρ
= h+ 1

2
v2 (225)

Delfs 2023/24



3.2 Sound propagation in steady potential flows 98

Note that B represents ”Bernoulli’s constant” in 1D compressible flow theory. Therefore it may
be interesting to derive an equation, which describes the dynamics of B. In order to obtain such
an evolution equation for B we first take the energy balance (34) and subtract the mass balance
(32), pre-multiplied with et to obtain:

ρDet
Dt

+∇·(pv) = ϑ̇+ v · f (226)

In order to compose B like in (225) we now need to form an equation for p/ρ. On the one hand
we rewrite (32), multiplied by p like

p
Dρ−1

Dt
=
p
ρ
∇·v − p

ρ2
ṁ (227)

On the other hand we multiply (44) by a2/ρ and have

1
ρ
Dp
Dt

= −a2∇·v +
(
1− σ

p
ρT

)
a2

ρ
ṁ+ σa2

ρT
ϑ̇ (228)

The addition of (227) and (228) then leaves

ρ
Dp/ρ
Dt

= (p− ρa2)∇·v − 1
ρ

(
p− ρa2 + σ

pa2

T

)
ṁ+ σa2

T
ϑ̇ (229)

Further adding this equation and (226) gives:

ρDB
Dt

+ ∇·(pv)− (p− ρa2)∇·v︸ ︷︷ ︸
v · ∇p+ ρa2∇ · v (44)

= −∂p
∂t

+ a2
(
1− σp

ρT

)
ṁ+ σa2

T
ϑ̇

= −1
ρ

(
p− ρa2 + σ

pa2

T

)
ṁ+

(
1 + σa2

T

)
ϑ̇+ v · f (230)

Substituting the underbraced expression yields the following simple relation between the pressure
and the stagnation enthalpy:

ρDB
Dt

− ∂p
∂t

= −p
ρ
ṁ+ ϑ̇+ v · f (231)

Here the time derivative of the pressure may again be substituted by use of equation (41) with
δ = dt ∂/∂t (global thermodynamic equilibrium assumed), in which case we have

1
a2
∂p
∂t

=
∂ρ
∂t

+ σρ∂s
∂t

(32)
= −∇·(ρv) + ṁ+ σρ∂s

∂t
(232)

Executing the substitution of the pressure in (231) then yields

ρDB
Dt

+∇·(ρv)− σρ∂s
∂t

=
(
1− p

ρa2

)
ṁ+ 1

a2
ϑ̇+ 1

a2
v · f (233)

Next, we have to eliminate the term ρv in this relation and relate it again to B. This is ac-
complished by reference to to Crocco’s form of the momentum equations (37). Using the vec-
tor identity v·∇v = ∇(1

2
v2) + (∇ × v) × v and –see (39)– replacing the pressure gradient
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ρ−1∇p = ∇h−T∇s Crocco obtains (note that a homogeneous fluid in thermodynamic equilib-
rium is assumed):

ρ∂v
∂t

+ ρ∇B + ρω × v = ρT∇s+∇·τ + f (234)

where ω = ∇ × v represents the vorticity vector. As before we will neglect the friction in
Crocco’s equation. We may replace ρ∂v

∂t
by

ρ∂v
∂t

=
∂ρv
∂t

− v
∂ρ
∂t︸︷︷︸

(41)
= 1

a2
∂p
∂t

− σρ∂s
∂t

(231)
=

ρ
a2
DB
Dt

+
p
ρa2

ṁ+ 1
a2
ϑ̇+ 1

a2
v · f − σρ∂s

∂t

(235)

Using this relation in (234) we have

∂ρv
∂t

− ρv
a2
DB
Dt

+ σρv∂s
∂t

+ ρ∇B + ρω × v − ρT∇s =
pv
ρa2

ṁ− v
a2
ϑ̇− v 1

a2
v · f + f (236)

Finally we eliminate ρv in (233) and (236) by forming D
Dt

(233) −∇·(236):

∂
∂t

[
ρ
a2
DB
Dt

]
+∇·

[
ρv
a2
DB
Dt

]
−∇·(ρ∇B)−

−∇·(ρω × v) +∇·
(
ρT∇s− σρv∂s

∂t

)
− ∂
∂t

(
σρ∂s
∂t

)
= (237)

= ∂
∂t

[(
1− p

ρa2

)
ṁ+ 1

a2
ϑ̇+ 1

a2
v · f

]
−∇·f +∇·

[
v
(
− p
ρa2

ṁ+ 1
a2
ϑ̇+ 1

a2
v · f

)]
This is as far as we can get to set up an equation for B. Certainly, (237) is not yet solvable, since
several unknowns like v or ρ still appear on the left hand side. Therefore let us first of all check,
whether some terms will vanish for the case we are interested in, namely potential flow. The
vorticity ω = ∇×v of potential flow v is by definition zero, i.e. the first term on the second line
in (237) drops out.

As before we split our flow variables into a steady mean flow part v0, B0, ρ0, s0 with zero sources
ṁ0 = 0, f 0 = 0, ϑ̇0 = 0, and a small perturbation about that mean flow v′, B′, ρ′, s′ due to some
small sources ṁ′, f ′, ϑ̇′. First, observe that for a steady potential flow Crocco’s equation (234)
tells us that

∇B0 = ρ0T 0∇s0,

i.e. the gradient of B0 is parallel to the gradient of s0. On the other hand the entropy equation
for steady potential flow (40) tells us, that v0·∇s0 = 0, i.e. that there is no change in entropy
along a streamline. For constant entropy freestream conditions, this constancy of the entropy is
conserved over the whole flow field. This is called homentropic flow (German ”homentropische
Strömung”). From now on we will assume a homentropic steady mean flow. Then the stagnation
enthalpy B0 of the potential flow field is constant (in fact Bernoulli’s constant), which is a special
feature of potential flows. This is somewhat analogous to parallel flows, featuring a constant
mean flow pressure p0. For such parallel flows we derived equations for the perturbation of the
constant, i.e. for p′. For the potential flows in turn, it may be worthwhile trying to derive an
equation for B′. We obtain that equation by linearization of (237) about the isentropic, steady
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potential flow v0, B0, ρ0, which yields:

∂
∂t

[
ρ0

a20

D0B′

Dt

]
+∇·

[
ρ0v0

a20

D0B′

Dt

]
−∇·(ρ0∇B′)−

∇·
(
ρ0T 0∇s′ − σ0ρ0v0∂s′

∂t

)
− ∂
∂t

(
σ0ρ0∂s

′

∂t

)
= (238)

= ∂
∂t

[(
1− p0

ρ0a20

)
ṁ′ + 1

a20
ϑ̇′ + 1

a20
v0 · f ′

]
−∇·f ′ +∇·

[
v0
(
− p0

ρ0a20
ṁ′ + 1

a20
ϑ̇′ + 1

a20
v0 · f ′

)]
︸ ︷︷ ︸

=: QB

Note that if we supplement the linearized entropy equation (40)

D0s′

Dt
= 1
ρ0T 0

(
− p0

ρ0
ṁ′ + ϑ̇′

)
(239)

then (238) and (239) form a set of two equations for the two unknowns B′ and s′. For isentropic
perturbations (note: acoustic perturbations are isentropic), s′ = 0 the system decouples and we
have one equation for B′:

∂
∂t

[
ρ0

a20

D0B′

Dt

]
+∇·

[
ρ0v0

a20

D0B′

Dt

]
−∇·(ρ0∇B′) = QB

Using the mass balance equation ∇·(ρ0v0) = 0 we may still simplify our B′ equation further to

D0

Dt

[
1
a20

D0B′

Dt

]
− 1
ρ0

∇·(ρ0∇B′) = 1
ρ0
QB (240)

By comparison with the wave equations we have derived so far, we see that (240) is clearly a
wave equation. It describes the dynamics of the perturbation of the stagnation enthalpy B′ in any
steady potential flow. The link of B′ to the pressure perturbation p′ is easily found in equation

(231), evaluated at positions outside the source domain, where ∂p
′

∂t
= ρ0D

0B′

Dt
. The solution of

equation (240) needs to be done numerically, since no general Green’s function is known.

3.3 Motion of sound sources

So far we have considered sound propagation and noise generation in simple flow fields. A very
common situation is that sources are moving, e.g. an airplane flyover, the passing of a train or
a car. It is therefore important to consider also the effect of motion on the sound generation and
propagation. The situation is as depicted in figure 44. The medium between the observer and the
source is at rest. Therefore, in order to calculate the sound field we have to solve the simple wave
equation (61) for a moving source.

3.3.1 Moving mass- or heat source

We first consider the effect of source motion on the sound field of a point mass- or heat source,

i.e. the source term Qp =
∂θ̇′

∂t
in (61). The source at time t is located at y(t) and has the velocity
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Figure 44: Moving source.

ẏ. We may therefore describe the source as θ̇′ = δ(x− y(t))θp(t). We thus have to solve

1
a2∞

∂2p′

∂t2
−∆p′ = ∂θ̇′

∂t
= ∂
∂t

[
δ(x− y(t))θp(t)

]
For simplicity of the computation we first determine the velocity potential φ, of which the pres-
sure will be easily derivable:

p′ = −ρ∞∂φ∂t
The equation to be solved for φ is then

1
a2∞

∂2φ
∂t2

−∆φ = − 1
ρ∞

θ̇′ = − 1
ρ∞

δ(x− y(t))θp(t)

We use again the Green’s function method to solve the problem. In other words, we express the
source term in the source time τ and the source location ξ, multiply by the known (freefield)
Green’s function and integrate over all time and space:

φ(x, t) = − 1
ρ∞

∞∫
−∞

∫
V∞

θp(τ)δ(ξ − y(τ))
δ(τ − t+ |x− ξ|/a∞)

4π|x− ξ| dV (ξ) dτ

The volume integral is easily solved and we have

φ(x, t) = − 1
4πρ∞

∞∫
−∞

θp(τ)
|x− y(τ)|δ(τ − t+ |x− y(τ)|/a∞︸ ︷︷ ︸

= g(τ)

) dτ

To solve the time integral we use rule (114) and obtain immediately

φ(x, t) = − 1
4πρ∞

n∑
i=1

θp(τi)
|x− y(τi)|

1∣∣∣dg
dτ

∣∣∣
τi

where τi denotes the ith zero of g(τ), i.e.

g(τi) = 0 = τi − t+ |x− y(τi)|/a∞ (241)
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We may still express dg
dτ

more explicitly

dg
dτ

= 1− x− y
|x− y|︸ ︷︷ ︸
R
R

= eR

· dy
dτ

1
a∞︸ ︷︷ ︸

M q

where we have introduced the (vectorial) Mach number of the source motion M q, the distance
vector R between source and observer. Finally we have for the ith contribution φi to φ

φi(x, t) = − 1
4πρ∞

θp(τi)
Ri|1− eR·M q|

, Ri = |x− y(τi)|

We find the pressure from the definition of the velocity potential to be

p′i(x, t) = −ρ∞∂φi

∂t
= 1

4π
∂
∂t

[
θp(τi)

Ri|1− eR·M q|

]
︸ ︷︷ ︸

∂θp
∂t

Ri|1− eR·M q|
− θp

∂
∂t

(
Ri −Ri·M q

)
R2

i (1− eR·M q)
2

The second term in the underbrace can be expressed more explicitly

∂
∂t

(
Ri −Ri·M q

)
= ∂Ri

∂t
− ∂M q

∂t
·Ri −M q·∂Ri

∂t

Now Ri = a∞(t − τi) and therefore ∂Ri

∂t
= a∞

(
1 − dτi

dt

)
. We obtain dτi

dt
by differentiation of

(241) with respect to t:

dτi
dt

− 1− eR·M q
dτi
dt

= 0 =⇒ dτi
dt

= 1
1− eR·M q

Now we may express ∂Ri

∂t
= − eR·M qa∞

1− eR·M q
, while ∂Ri

∂t
= ∂
∂t

(x− y(τi)) = −a∞
M q

1− eR·M q
.

Finally we use ∂θp
∂t

=
∂θp
∂τ

dτ
dt

and after collection of all terms we obtain as solution for the
pressure

p′i(x, t) =
1
4π


∂θp
∂τ

+ eR·
∂Mq

∂τ
(1−MqR)

−1θp

Ri(1−MqR)
2 +

a∞(MqR −M 2
q )

R2
i (1−MqR)

3 θp

 (242)

whereMqR = eR·Mq is the momentary Mach number component in the direction of the observer,
which may alternatively also be expressed as MqR = Mq cos θ, where θ denotes the angle under
which the observer sees the source according to figure 44.

The pressure field of the moving mass- or heat source displays several distinct features, which are
not observed for a non-moving source:
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• contrary to the case of a non-moving source the pressure contains a nearfield (second term
in (242)) proportional to R−2

i ; the farfield is proportional to R−1
i , which is the only relevant

contribution far away from the source. This part represents the sound field.

• When compared to a non-moving source of the same strength θp a convective amplification
occurs, such that the signal strength is amplified by a factor of (1−MqR)

−2 in the direction of
the motion, while a signal reduction of (1+MqR)

−2 occurs against the direction of the motion.

• Contrary to the case of a non-moving source of the same strength θp a sound field exists also

for a steady source ∂θp
∂τ

= 0 as long as the motion is accelerated, i.e. ∂M q

∂τ
̸= 0. This

has far reaching consequences. From potential flow theory it is known that some object in a
flow may be represented by a source/sink distribution as our assumed mass sources. If e.g. a
propeller blade is represented by such a distribution of mass sources equation (242) shows that
the propeller blade generates noise because of its accelerated motion.

For constant source speed the change in the pressure field due to the motion of the source may be
compared to the results we obtained for a mass- or heat source in a steady flow eqn (176). It is
seen that the amplification factors are quite different even for the same Mach number. Only the
correct representation of the different amplification functions allows to transfer results obtained
in a windtunnel measurement to real flyover situations.

3.3.2 Moving point force

If we take as a source a given point source, in which case the equation

1
a2∞

∂2p′

∂t2
−∆p′ = −∇·

[
δ(x− y(t))fp(t)

]
is to be solved, an analogous derivation as for the mass- or heat source leads to the following
result

p′i(x, t) = 1
4π

{ ∂fp

∂τ
·eR + (fp·eR)

∂Mq

∂τ
·eR(1−MqR)

−1

a∞Ri(1−MqR)
2

+
−fp·Mq + (1−M 2

q )fp·eR(1−MqR)
−1

R2
i (1−MqR)

2

}
(243)

For constant source speed the change in the pressure field due to the motion of the source may
be compared to the results we obtained for a force point source in a steady flow eqn (178). It is
seen that the amplification factors are quite different even for the same Mach number. Only the
correct representation of the different amplification functions allows to transfer results obtained
in a windtunnel measurement to real flyover situations.
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3.3.3 Moving multipole

In section 2.6.4 we discussed the expansion of general source terms into more simple components
(superposition of poles of various orders). Here we have a look at the way in which a subsonic
motion of the source changes the multipole contributions. An expansion of the same kind as in
2.6.4 for (144) and (145) leads to terms (pole of order m):

p′ijk(x, t) =
1
4π

(−1)i+j+k ∂i+j+k

∂xi1∂x
j
2∂x

k
3

[
mijk(τ0)

R0|1−MqR0 |

]
, m = i+ j + k (244)

with τ = t − R(τ)/a∞ and MqR = eR·M q as in the previous section. In the farfield only
contributions proportional to 1/R exist, i.e. for subsonic motion

p′ijk(x, t) ≃ 1
4π

(−1)i+j+k 1
R0

∂i+j+k

∂xi1∂x
j
2∂x

k
3

[
mijk(τ0)
1−MqR0

]
, m = i+ j + k

Since the relative Machnumber of the motion w.r.t. the observer depends on R (and therefore
x) each derivative with respect to x1,2,3 of mijk(τ0) produces (through the retarded time τ0) the
convection factor (1 −MqR) and in the end higher order terms like (1 −MqR)

−(m+1). In other
words, as a consequence of the source motion a convective amplifiction occurs for each multipole
contribution differently. The higher order the multipole moment is, the stronger is the convective
amplification (beaming in flow direction).

3.3.4 Doppler effect

We consider a moving monopole source producing the field

p′(x, t) = 1
4π

f(iω0τ)
R|1−MqR|

where ω0 = const describes the time dependence of the source travelling along with the source
and f is the signal shape and MqR denotes again the Mach number component towards the ob-
server. The phase of the field is

Φ = ω0τ

Now, generally the frequency is defined as the time derivative of the phase. For the sender this is

ωs =
∂Φ
∂τ

= ω0

while for the observer this is:

ωr =
∂Φ
∂t

= ω0
dτ
dt

= ω0

1−MqR

which means that the observer receives a frequency, which is different from the one sent out. It is
interesting to note that the frequency shift is according to the convection factor dτ

dt
= 1

|1−MqR|
,

which was already responsible for the convective amplification. The frequency shift is called
Doppler shift. Specifically one obtains an increase in the frequency if MqR > 0 (component
of source motion towards observer), while a decrease in frequency is observed for MqR < 0
(component of source motion away from observer).
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VH

VH , f<0

vH

sV

, f=0

fn=
VB

object
source

Figure 45: Kirchhoff integration sur-
face ∂VH .

3.3.5 Kirchhoff integral for moving surface

If the pressure and its derivatives are known on an arbitrarily shaped closed (generally moving)
surface ∂VH (see figure 45), enclosing all source domains VS and all objects VB, then the sound
pressure field on all locations outside ∂VH may be determined with the Kirchhoff integral.

The Kirchhoff integral may be derived in a quite similar way as (130) or (131).

We define the domain VH inside of ∂VH with the help of the scalar function f(x, t), whose zero-
level surface is identical with ∂VH :

f(x, t) < 0 x ∈ VH
f(x, t) = 0 for x ∈ ∂VH
f(x, t) > 0 else

(245)

Also we require by simple normalization that |∇f |f=0 = 1. Now we introduce again a new

pressure variable p′ = H(f)p′ and apply the wave operator 1
a2∞

∂2

∂t2
−∆ on the right and left hand

sides of this definition equation. After elementary application of the product and chain rules of
differentiation we obtain

1
a2∞

∂2p′

∂t2
−∆p′ = HQp︸︷︷︸

= 0

+ 1
a2∞

∂
∂t

[
δ(f)

∂f
∂t
p′
]

︸ ︷︷ ︸
=: I1

+ 1
a2∞

δ(f)
∂f
∂t
∂p′

∂t︸ ︷︷ ︸
=: I2

−∇· [δ(f)np′]︸ ︷︷ ︸
=: I3

− δ(f)n·∇p′︸ ︷︷ ︸
=: I4

(246)
where the unit normal vector n = ∇f |f=0 points outside of ∂VH . We still need to express ∂f

∂t
on the surface. The motion of the surface is defined by the (given) velocity vector vH(x, t). The
location of the boundary, i.e. the isosurface f = 0, is found by requiring the total time derivative
of f to be zero:

∂f
∂t

+ vH· ∇f︸︷︷︸
n

= 0 (247)
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which we may transform to obtain

∂f
∂t

= −vH·n =: −vn . (248)

We may now solve (247) by the Green’s function method, i.e. multiply by the 3D free field
Green’s function G0 = δ(g)/(4πr), g = τ − t + r/a∞, and integrate over all space V∞ and all
time.

We treat the four contributions in (247) separately:∫
I1G0 = 1

4πa2∞

∫
V∞

∞∫
−∞

∂
∂τ

[
δ(f)(−vn)p′

]
δ(g)
r
dτ dV (ξ)

= −1
4πa∞

∫
V∞

[
δ(f)Mnp

′ δ(g)
r︸︷︷︸

= 0

]∞
−∞

dV (ξ) + 1
4πa2∞

∞∫
−∞

∫
V∞

δ(f)vn
p′

r
∂δ(g)
∂τ︸ ︷︷ ︸

−∂δ/∂t

dV (ξ) dτ

= − 1
4π

∂
∂t

[ ∫
∂VH

Mn

a∞

p′

r
dS(ξ)

]
τ=t−r/a∞

where we have introduced the acoustic Mach number Mn = vn/a∞ of the surface normal com-
ponent of the surface velocity.∫
I2G0 = 1

4πa2∞

∞∫
−∞

∫
V∞

δ(f)(−vn)∂p
′

∂τ
δ(g)
r

dV (ξ) dτ = − 1
4π

[ ∫
∂VH

Mn

a∞

∂p′

∂τ
1
r
dS(ξ)

]
τ=t−r/a∞

∫
I3G0 = − 1

4π

∫
∂V∞

∞∫
−∞

δ(f)︸︷︷︸
= 0

np′
δ(g)
r

dτ dS(ξ) + 1
4π

∞∫
−∞

∫
V∞

δ(f) p′ ∂
∂n

(
δ(g)
r

)
dV (ξ) dτ

= − 1
4π

∂
∂t

[ ∫
∂VH

1
a∞

p′

r
∂r
∂n

dS(ξ)
]
τ=t−r/a∞

− 1
4π

[ ∫
∂VH

p′

r2
∂r
∂n

dS(ξ)
]
τ=t−r/a∞

where the last equality follows from using the relation p′ ∂
∂n

(
δ(g)
r

)
=

(
p′ dδ
dg
∂g
∂r

1
r
− δ

p′

r2

)
∂r
∂n

=(
p′ dδ
dτ

1
a∞r

− δ
p′

r2

)
∂r
∂n

= − 1
a∞

∂
∂t

(
δ p′ ∂r

∂n

)
− δ

p′

r2
∂r
∂n

in the volume integral. Note, that we

have used the notation ∂
∂n

:= n·∇ξ as directional derivative. The final integral maybe integrated
straight forward:∫
I4G0 = − 1

4π

[ ∫
∂VH

1
r
∂p′

∂n
dS(ξ)

]
τ=t−r/a∞

Upon adding all four integrals we obtain the pressure p′ at any position outside the Kirchhoff
surface to be
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p′(x, t) = − 1
4π

[ ∫
∂VH

1
r

{
Mn

a∞

∂p′

∂τ
+
∂p′

∂n
− p′

r
n·er

}
dS(ξ)

]
τ=t−r/a∞

−

− 1
4πa∞

∂
∂t

[ ∫
∂VH

p′

r
(Mn − n·er) dS(ξ)

]
τ=t−r/a∞

(249)

The Kirchhoff integral is written for a closed integration surface in arbitrary (subsonic) motion
through a medium at rest. The observer at x is at rest as well. The normal vector n on the surface
element dS(ξ) is by definition pointing towards the exterior of the surface; the unit vector from
source element to observer is er = (x − ξ)/r. Note, that the integrals need to be evaluated at
the retarded time τ = t − r/a∞, which is non-trivial when the surface is moving because then
r = r(τ). If only time derivative data is available in the source time τ , the Kirchoff equation may
be re-written as

p′(x, t)=− 1
4π

[ ∫
∂VH

1
r

{
Mn

a∞

∂p′

∂τ
+
∂p′

∂n
− p′

r
n·er

}
dS(ξ)

]
τ=t−r/a∞

−

− 1
4πa∞

[ ∫
∂VH

{
∂
∂τ

[
p′

r
(Mn − n·er)

]
+
p′

r
(Mn − n·er)

dṠ
dS

}
1

1− er·M
dS(ξ)

]
τ=t−r/a∞

Here dṠ
dS

denotes the temporal change in surface element area, when for instance the surface is
extending or shrinking; this expression is zero for a rigid body motion. Traditionally the Kirchhoff
formula has been used for the prediction of helicopter noise, based on surface data obtained from
numerical fluid mechanics (CFD) simulations.
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4 Description of aerodynamic sources of sound

This section is devoted to pinning down quantities which represent aeroacoustic sources. It must
be admitted that no general answer to the question of describing aerodynamic sources of sound
has been found yet. We introduce the concept of aeroacoustic analogies with the most famous
Lighthill acoustic analogy. Then we introduce Lilley’s and Möhring’s analogies as generalizations
of Lighthill’s analogy. Next Ffowcs-Williams and Hawkings generalization of Lighthill’s analogy
to explicitly include boundaries is discussed.

4.1 The quiecent-fluid view: Lighthill’s acoustic analogy

Knowing about the general form of the acoustic wave operator in a non-moving medium one may
try to re-arrange the general balance equations for mass and momentum such that exactly this
form is obtained. The derivation is quite simple. Upon taking ∂

∂t
(32) −∇·(33) gives:

∂2ρ
∂t2

= ∇ · ∇·(ρvv + pI − τ ) (250)

Next we subtract the term a2∞∆ρ from left- and right hand side and obtain:

∂2ρ
∂t2

− a2∞∆ρ = ∇ · ∇·(ρvv + (p− a2∞ρ)I − τ︸ ︷︷ ︸
T

) (251)

The left hand side of (251) now clearly represents the wave operator for a non-moving homoge-
neous medium with a constant speed of sound of a∞. The quantity T is called Lighthill’s stress
tensor (German: ”Lighthill’scher Spannungstensor”).

If we introduce p′ := p − p∞, ρ′ := ρ − ρ∞ as deviations from respective constant reference
values of pressure p∞, density ρ∞ and speed of sound a∞ we may as well write (251) like:

∂2ρ′

∂t2
− a2∞∆ρ′ = ∇ · ∇·(ρvv + (p′ − a2∞ρ

′)I − τ︸ ︷︷ ︸
T

) (252)

This famous wave equation was published by M. Lighthill 1952 and it forms the basis of Lighthills
aeroacoustic analogy (German ”Lighthill’sche aeroakustische Analogie”). Note, that for small
deviations from the reference state (∞) the expression s′ := (p′ − a2∞ρ

′)/(σρ∞a
2
∞) represents

nothing but the entropy perturbation s′. In the following we discuss some features of this equation.

• compare the left hand side of (252) with the classical wave equation for the pressure (61) for
non-moving homogeneous media

• consider the aeroacoustic problem as analogous to an acoustic problem in a ficticious non-
moving medium; therefore we call this concept ”aeroacoustic analogy”.
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• Due to the identification of the left hand side as a wave operator, the right hand side represents
the aeroacoustic sources

• Three distinct source mechanism may be read from Lighthill’s stress tensor T :

1. Changes in flow velocities: ρvv (e.g. turbulence)

2. Changes of the entropy ∼ (p′ − a2∞ρ
′) (e.g. temperature fluctuations due to combustion)

3. changes in the viscous friction stresses τ (usually considered to be unimportant in most
cases)

• The source term QL = ∇ · ∇ · T represents the double divergence of a tensor. This means
that the leading order term of the multipole expansion of QL is of the order 22 = 4 or a
”quadrupole”. The aeroacoustic source terms may therefore be characterized as of ”quadrupole
type”.

• Pros of the analogy concept of Lighthill:

+ all methods from classical acoustics are immediately applicable

+ the solution of the acoustic part of the aeroacoustic problem is simple (partly analytical)

• Cons of the analogy concept of Lighthill:

- the right hand side must be modelled (or has to be simulated numerically).

- Sound propagation phenomena (refraction at shear- or boundary layers) appear as sources,
although they are obviously only kinematic effects. Lighthill’s analogy cannot describe these
effects; they would somehow have to be modelled as equivalent sources.

- the interpretation of the right hand side as ”given source term” is questionable in cases, where
T depends of the acoustic field, i.e. the solution. This is typical for aeroacoustic feedback or
resonance phenomena, e.g. at open shallow cavities in tangential flow.

• properties of Lighthill’s analogy equation (252):

* Equation (252) is an exact consequence of the balance equations of continuum mechanics,
i.e. as it stands, no simplification was introduced.

* ρ′ may be interpreted as acoustic signal only in domains where the time averages v = 0,
p = p∞, ρ = ρ∞ because of the underlying wave operator. This is indeed the case for
a localized aeroacoustic source (e.g. a turbulent jet flow), which radiates sound into the
quiecent surrounding air with a mean density of ρ∞ and mean pressure of p∞. The same is
true for a uniformly moving surrounding medium with v = v∞ = const, p = p∞

5

5in this case one may derive a convected wave equation as (161) by substituting v = v∞ + v′ in (252). Parts of
the term ∇ · ∇·(ρvv) may then be moved to the left hand side yielding

D2
∞ρ′

Dt2
− a2∞∆ρ′ = ∇·∇·(ρv′v′ + (p′ − a2∞ρ′)I − τ ) (253)
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* The left hand side of (252), namely the wave operator for the medium at rest is ”self adjoint”;
which means that in the spectral space (Fourier-transformed) it contains only real temporal
eigenvalues ω. This means that temporally amplified, e.g. self excited processes without
external forcing are excluded. Those would be characterized by complex ω = ωr + iωi with
ωi > 0. Such phenomena may exist e.g. in shear flows, where they are called ”hydrodynamic
instabililies”. Such contributions to the solutions may be quite cumbersome, such that the
”self adjointness” of the wave operator is a welcome feature. This property is important and
not obvious because other analogy equations were derived, which are not self adjoint and
contain unwanted solutions.

Note, that a similar derivation as for (252) can be done for the pressure instead of the density.
Then we obtain the pressure form of Lighthill’s analogy:

1
a2∞

∂2p′

∂t2
−∆p′ = ∇·∇·(ρvv − τ ) + 1

a2∞

∂2

∂t2
(p′ − a2∞ρ

′) (254)

For an isentropic problem (cold flow) the pressure and the density form of Lighthill’s inhomoge-
neous wave equation is virtually the same.

4.1.1 Solution of Lighthill’s equation for free field problems

Let us first consider aerodynamic sound generation in unbounded domain. Since Lighthill’s
acoustic analogy represents a wave equation for a homogeneous medium at rest we may use
the free field Green’s function to solve for ρ′ (see section 2.5.2):

ρ′(x, t) = 1
4πa2∞

∞∫
−∞

∫
V∞

∇ξ·(∇ξ·T )
δ(τ − t+ r/a∞)

r
dV (ξ) dτ.

The time integral can immediately be solved thanks to the delta function. Then we obtain:

ρ′(x, t) = 1
4πa2∞

∫
V∞

1
r
∇ξ·∇ξ·T (t− r/a∞, ξ) dV (ξ) (255)

We may re-write this solution by manipulation the second last equation. We re-formulate the
integrand by use of the product rule:

ρ′(x, t) = 1
4πa2∞

∞∫
−∞

∫
V∞

∇ξ·
(
δ
r
∇ξ·T

)
− (∇ξ·T )·∇ξ

(
δ
r

)
dV (ξ) dτ

The use of Gauss’ theorem shows that the first term yields zero since it is reasonably assumed that
the sources do not extend out to infinity. The remaining term may again be split by the product
rule to yield

ρ′(x, t) = − 1
4πa2∞

∞∫
−∞

∫
V∞

∇ξ·
(
T ·∇ξ

(
δ
r

))
− T :

(
∇ξ∇ξ

δ
r︸ ︷︷ ︸

= ∇x∇x
δ
r

)
dV (ξ) dτ
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Again, thanks to Gauss’ theorem the first term may be transformed into a vanishing surface inte-
gral. The underbrace below the second term indicates the for δ/r we may replace ξ by x. This
is true because the expression δ/r depends on ξ through r = |x− ξ|, which shows, that a differ-
entiation w.r.t. x would yield the same result except a minus sign from the inner derivative. Two
differentiations therefore yield a factor of unity. After this substitution we see that in the integrand
no other term depends on x such that we may take the differentiation outside the integral:

ρ′(x, t) = 1
4πa2∞

∇x·∇x·
∫
VS

T (t− r/a∞, ξ)
r

dV (ξ) (256)

4.1.2 Solution of Lighthill’s equation for free field problems in the farfield

Usually we consider the sound field far away from the sources (i.e. for large distances r). For
this case it is possible to considerably simplify the solution (256) of Lighthill’s wave equation.
We rearrange it by taking the gradients inside the integral and two successive applications of the
product rule, first

ρ′(x, t) = 1
4πa2∞

∫
VS

∇x·
[
∇x

(
1
r

)
·T + 1

r
∇x·T

]
dV (ξ)

and second:

ρ′(x, t) = 1
4πa2∞

∫
VS

∇x∇x

(
1
r

)
︸ ︷︷ ︸

= 3erer − I
r3

: T + 2∇x

(
1
r

)
︸ ︷︷ ︸
= −er

r2

· ∇x·T + 1
r
∇x·∇x· T dV (ξ)

Here the underbraces clearly show that the first two terms in the integrand scale with higher
powers of the distance r to the source domain VS than the last term. For r → ∞ they may
therefore be ignored:

ρ′(x, t) ≃ 1
4πa2∞

∫
VS

1
r
∇x·∇x· T (t− r/a∞, ξ) dV (ξ) .

Note, that we may replace the gradients (in x) on Lighthill’s stress tensor T by time derivatives,
i.e.

∇x· T (t− r/a∞, ξ) = − 1
a∞

∇xr · ∂T∂t = − 1
a∞

er· ∂T∂t

∇x·∇x· T (t− r/a∞, ξ) = 1
a2∞

erer:
∂2T
∂t2

− 1
a∞

2
r
er· ∂T∂t

The last relation shows again that for large r the second term on the r.h.s. is negligible compared
to the first and we may write our farfield solution as

ρ′(x, t) ≃ 1
4πa4∞

∂2

∂t2

∫
VS

1
r
erer: T (t− r/a∞, ξ) dV (ξ) .
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In order to describe large distances between source and observer more explicity we choose a
fixed reference point ξ0 somewhere inside the source volume VS . Its distance vector to the fixed
observer is then r0 := x− ξ0, which may be expressed in terms of r like r0 := r+ ξ− ξ0. Then

r0/r =
√

1 + 2r−1er·(ξ − ξ0) + r−2(ξ − ξ0)
2 =⇒ lim

r→∞
r0/r = 1 ,

provided the spatial extent lS = max
ξ∈VS

|ξ − ξ0| of the source volume VS is of course much smaller

compared to the large distance r. But this means that also the directions er may be simplified

because er =
r
r
= r0

r0
r0
r
+

ξ − ξ0
r

and thus for large r we obtain er ≃ r0/r0 =: er0 . This means

that we may replace r by r0 ̸= r0(ξ) and er by er0 ̸= er0(ξ) and take these out of the integral. So
the acoustic density fluctuation in the farfield finally is

ρ′(x, t) ≃ 1
4πa4∞r0

(er0er0):
∂2

∂t2

∫
VS

T (t− r/a∞, ξ) dV (ξ) . (257)

or in the frequency space (Fourier transform) with the wavenumber k = ω/a∞:

ρ̂(x, ω) ≃ − k2

4πa2∞r0
(er0er0):

∫
VS

T̂ (ω, ξ) exp(−ikr) dV (ξ) .

Note that we have not simplified r inside the retarded time t − r/a∞ at which Lighthill’s stress
tensor T is to be evaluated in (257). We recall that the retarded time represents phase information
(explicitly seen in the term exp(−ikr) in the frequency domain solution) and given a large enough
source volume VS there may be significant changes of T across this domain.

We try to interpret result (257). The aerodynamically generated acoustic farfield in free space (no
scattering objects present) is proportional to the second time derivative of the volume integral over
Lighthill’s stress tensor, evaluated as integrand at the retarded time t−r/a∞. As any acoustic field
the amplitude decays with the inverse of the distance to the source. The term (erer): describes
the projection of the various stress components onto the direction of the observer. Alternatively
we could have written the far field solution (257) as

ρ′(x, t) ≃ 1
4πa4∞r0

∂2

∂t2

∫
VS

Tr0r0(t− r/a∞, ξ) dV (ξ)

with Tr0r0 := (er0er0):T = er0·(Ter0) the observer-oriented component of Lighthill’s stress
tensor.

4.2 Lilley’s equation: Analogy for shear flows

It is a drawback of Lighthill’s equation that purely kinematic effects as e.g. refraction at shear-
layers are (mis-)interpreted as sources. This is a misinterpretation because these effects appear
implicitly as part of Lighthill’s stress tensor, although clearly, they are not generating sound. In
the attempt to isolate those quantities, which could be identified as true soures of sound, several
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generialized wave equations have been derived after Lighthill. One important such equation is
Lilley’s equation. In order that sources could be identified it is common to ”shape” the complete
conservation equations in such a way that a known wave operator occurs, at least for a special
case (concept of an acoustic analogy).

First we identify the sources in (32), (49), (44) with ṁ = 0, f = ∇·τ , θ̇ = τ :∇v − ∇·q,
respectively. Then (44) yields

1
ρa2︸︷︷︸
1
γp

Dp
Dt

+∇·v = 1
cp

1
ρ

1
T
θ̇︸︷︷︸

= ρDs
Dt

= 1
cp
Ds
Dt

Now we define a new variable Π := 1
γ
ln
(
p
p∞

)
and arrive at

DΠ
Dt

+∇·v = 1
cp
Ds
Dt

On the other hand, from (49) we have:

Dv
Dt

= −1
ρ
∇p+ 1

ρ
∇·τ = −a2∇Π+ 1

ρ
∇·τ︷ ︸︸ ︷

ρ =
γp
a2

In order to eliminate the divergence term in the second last equation, we form the divergence of
the above velocity equation:

∇·
(
Dv
Dt

)
= ∂∇·v

∂t
+∇·(v·∇v)︸ ︷︷ ︸
∂
∂xk

(
vj
∂vk
∂xj

)
= vj

∂
∂xj

(
∂vk
∂xk

)
︸ ︷︷ ︸
v·∇(∇·v)

+
∂vj
∂xk

∂vk
∂xj︸ ︷︷ ︸

∇v : t∇v

= −∇·
(
a2∇Π

)
+∇·

(
1
ρ
∇·τ

)

which yields
D∇·v
Dt

= −∇v : t∇v −∇·
(
a2∇Π

)
+∇·

(
1
ρ
∇·τ

)
Now taking the substantial derivative of the above equation for Π we may finally eliminate the
divergence term D∇·v

Dt
and obtain the ”Phillips equation”:

D2Π
Dt2

−∇·
(
a2∇Π

)
= ∇v : t∇v −∇·

(
1
ρ
∇·τ

)
+ 1
cp
D2s
Dt2

(258)

This equation closely resembles a wave equation for the quantity Π. However, it was shown
that terms associated with the acoustic pressure are still ”hidden” in the right hand side term
∇v : t∇v. This may be motivated by the same argument which led us from (160) to (199) for
the description of sound waves in parallel shear flows. One may still extract terms containing the
acoustic variable Π out of ∇v : t∇v. Being guided by the derivation of the pressure perturbation
equation for parallel shear flows (199), we take the substantial derivative of the Phillips equation
(258), in which the essential term is:
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D
Dt

(∇v : t∇v) = D
Dt

(
∂vj
∂xk

∂vk
∂xj

)
= ∂vi

∂xk
D
Dt

(
∂vk
∂xi

)
+ ∂vk
∂xi

D
Dt

(
∂vi
∂xk

)
= 2∂vk

∂xi
D
Dt

(
∂vi
∂xk

)
︸ ︷︷ ︸
∂
∂xk

Dvi
Dt

− ∂vj
∂xk

∂vi
∂xj

= 2 t∇v:∇
(
Dv
Dt

)
− 2 t∇v:(∇v∇v)

The substantial derivative of the velocity in this expression may again be eliminated from the
velocity relation from above. We may now write down the substantial derivative of the Phillips
equation and insert the result to arrive at

D
Dt

[
D2Π
Dt2

−∇·
(
a2∇Π

)]
+ 2 t∇v :∇

(
a2∇Π

)
= −2 t∇v :(∇v∇v) + Ψ (259)

Ψ := 2 t∇v :∇
(
1
ρ
∇·τ

)
− D
Dt

[
∇·

(
1
ρ
∇·τ

)
+ 1
cp
D2s
Dt2

]

which is called ”Lilley’s equation”. As Lighthill’s wave equation, Lilley’s equation is nothing
but a re-arrangement of the general conservation equations. As such, there is no simplification
contained in it. Clearly, the lengthy term on the left hand side somewhat resembles the wave
operator for small pressure perturbations in parallel shear flows (199). This can be verified by
evaluating (259) for small perturbations about a mean flow. Before doing so, consider mean Π0

and perturbation Π′ of the acoustic variable Π = Π0 + ϵΠ′

Π = 1
γ
ln
(
p0

p∞

)
︸ ︷︷ ︸

=: Π0

+ϵ
p′

γp0︸︷︷︸
=: Π′

+ϵ2...

We are specifically interested in parallel shear flows. In this case the mean flow pressure
is constant, so that we can choose p∞ = p0 and thus by definition Π0 = 0. Therefore
Π = ϵΠ′ = ϵp′/γp0 to leading order in the Taylor expansion about the small parameter ϵ. Now
we can immediately write down the linearized Lilley equation for constant mean flow pressure:

D0

Dt

[
D02Π′

Dt2
−∇·

(
a20∇Π′

)]
+ 2 t∇v0 :∇

(
a20∇Π′

)
=

− 2 t∇v0 :(∇v0∇v′ +∇v′∇v0)− 2 t∇v′ :(∇v0∇v0) + Ψ′

This equation attains a more simple form if we use the fact that the mean flow is parallel and di-
rected along the x-axis of a coordinate system ,i.e. v0 = u0(h(y, z))ex. Inserting this expression
into the linearized Lilley equation we obtain

D0

Dt

[
D02p′

Dt2
−∇·

(
a20∇p′

)]
+ 2|∇h|du

0

dh
a20

∂2p′

∂x∂h
= γp0Ψ′

The left hand side corresponds exactly to the wave operator for small pressure perturbations in
parallel shear flows (199). This shows that Lilley’s equation represents an acoustic analogy for
parallel shear flows.
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• Properties of Lilley’s analogy equation (259):

* Equation (259) is an exact consequence of the balance equations of continuum mechanics,
i.e. as it stands, no simplification was introduced.

* As indicated in Lighthill’s stress tensor the right hand side of Lilley’s equations features three
different sources of noise, namely flow turbulence (the term 2 t∇v :(∇v∇v)), entropy and
friction.

* In contrast to the (standard) wave operator of Lighthill’s equation Lilley’s wave operator is
not self-adjoint. This means, that there will in general exist eigenmodes which get amplified
in time and represent hydrodynamic instabilities, which are of purely vortical character. In
fact, the linearized Lilley equation is nothing but the inviscid stability equation of hydrody-
namic stability theory for parallel laminar flows. From this theory it is e.g. known that mean
flow profiles with a certain type of inflexion point are unstable to vortical perturbations, which
is always true for free shear layers. For supersonic shear or boundary layers beyond M ≈ 2.2
there may occur so called ”secondary instability modes” or ”Mack-Modes” which are associ-
ated with sound radiation because these vortical eigenmodes developing in the shear profile
move supersonic with respect to the exterior flow and therefore generate Mach waves (just as
a supersonically moving wavy wall).

* The linearized Lilley equation indicates that with the neglect of dissipation and friction terms
Ψ′ there exist no aeroacoustic sources in free parallel shear flows because for this case the
velocity related term on the right hand side drops out identically. In other words, sound
generation in parallel shear flows is a fundamentally nonlinear process. This is however not
true, if surfaces of objects are present.

• Pros of the analogy concept of Lilley:

+ the wave operator describes refraction effects in parallel shear flows; Lilley’s source term
has therefore a true source character as opposed to Lighthill’s source.

• Cons of the analogy concept of Lilley:

- there is no general solution known, i.e. a Green’s function is unknown. Thus, the solution
has to be done numerically (complicated)

- As mentioned the wave operator does not only describe acoustic, but vortical degrees of
freedom as well, the latter of which may even become unstable. The desired separation
between hydrodynamic and acoustic pressure is therefore difficult.

- For quiecent medium Lilley’s equation does not reduce to the simple wave equation.

4.3 Möhring’s wave equation: Analogy for potential flows

If the terms neglected during the derivation of the wave equation for acoustic perturbations in
potential flows (237) are identified with the external sources, in particular ṁ = 0, f = −ρω × v
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and θ̇ = τ :∇v −∇·q − ρT Ds
Dt

, we obtain

∂
∂t

[
ρ
a2
DB
Dt

]
+∇·

[
ρv
a2
DB
Dt

]
− ∇·(ρ∇B) = QM (260)

QM := ∇·(ρω × v)︸ ︷︷ ︸
=: L

+ ∂
∂t

(
ρ
a2
T Ds
Dt

)
+∇·

(
ρ
a2

vT Ds
Dt

)
where the stagnation enthalpyB as defined in (225) is the acoustic quantity and L is called ”Lamb
vector”, which plays a fundamental role in the noise generation of flows. The above equation may
be slightly simplified if we subtract the mass balance equation (54) pre-multiplied by 1

a2
DB
Dt

:

D
Dt

[
1
a2
DB
Dt

]
− 1
ρ
∇·(ρ∇B) = 1

ρ
QM (261)

This is Möhring’s equation.

• Properties of Möhring’s equation (261):

* Equation (261) is an exact consequence of the balance equations of continuum mechanics,
i.e. as it stands, no simplification was introduced.

* By comparison of the left hand sides of Möhring’s equation and the wave equation for sound
propagation in potential flows (240) it is seen, that both are identical. Hence the right hand
side may be interpreted as acoustic sources (analogy)

* The right hand side of Möhring’s acoustic analogy identifies two sources of noise, namely
the motion related aeroacoustic sources, represented by the Lamb vector and entropy related
sources.

* Möhring’s source term QM shows explicitly that the presence of vorticity is necessary for
the generation of aerodynamic sound! Correspondignly aeroacoustic phenomena are often
called ”vortex sound”.

• Pros of the analogy concept of Möhring:

+ The acoustic wave propagation is described correctly in the potential domain of the flow
field, which for external flows is by far the largest part.

+ Möhring’s wave operator is formally self-adjoint, i.e. it does not contain any unstable degrees
of freedom, even in arbitrary (e.g. hydrodynamic unstable) flow fields.

+ Möhring’s wave operator reduced to the convective wave equation for uniform flows field

+ Möhring’s wave operator reduced to the classical wave equation for quiecient medium with-
out flow.

• Cons of the analogy concept of Möhring:
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- there is no general solution known, i.e. a Green’s function is unknown. Thus, the solution
has to be done numerically (but numerically ”quite well behaved”).

- The implementation of physical boundary conditions for B is non trivial, e.g. at surfaces.

4.4 Curle’s equation: noise from steady objects in low speed flows

In section 2.6.1 we derived the solution of the wave equation if reflecting and diffracting objects
are present in the wave field. In this section we investigate the importance of the presence of
objects when the sound sources are aeroacoustic according to Lighthill. We simply use result
(128) and apply it for Lighthill’s wave equation (252)

ρ′(x, t) =

∫ ∞

−∞

{ ∫
V ′
∞

1
a2∞

G∇·∇·T dV (ξ) +

∫
∂VB

(
ρ′∂G
∂n

−G
∂ρ′

∂n

)
dS(ξ)

}
dτ (262)

Here V ′
∞ denotes all of space except the volume of the object(s). As usual the spatial derivatives

on the Lighthill tensor T are shifted over to the Green’s function G by means of

G∇·∇·T = ∇·(G∇·T − T ·∇G)− T :∇∇G

The first two terms represent a divergence, so that Gauss’ theorem can be applied to convert the
Volume integral into a surface integral about the bounding surface of V ′

∞, shown in figure 46.
This yields

ρ′(x, t) =

∫ ∞

−∞

∫
V ′
∞

1
a2∞

T :∇∇G dV (ξ) dτ +

+

∫ ∞

−∞

{ ∫
∂V ′

∞

1
a2∞

(
G(∇·T )·n− (T ·∇G)·n

)
dS(ξ) +

∫
∂VB

(
ρ′∂G
∂n

−G
∂ρ′

∂n

)
dS(ξ)

}
dτ
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Figure 46: Integration domain
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where n denotes a surface unit normal vector. Obviously the integration over the infinite part of
V ′
∞ is zero, while the integration over the finite part (the surface of the object, where n(∂VB) =

−n(∂V ′
∞) may be rearranged:

ρ′(x, t) = 1
a20

∫ ∞

−∞

∫
V ′
∞

T :∇∇G dV (ξ) dτ +

+

∫ ∞

−∞

{ ∫
∂VB

−G∇·
(
ρ′I + T

a2∞

)
·n+∇G·

(
ρ′I + T

a2∞

)
·n dS(ξ)

}
dτ

now we insert the actual expression for Lighthill’s stress tensor T = ρvv + (p′ − a2∞ρ
′)I − τ

and for G we choose the free field Green’s function G = G0 = δ(τ − t + r/a∞)/(4πr). Then
our solution is

ρ′(x, t) = 1
4πa2∞

∇x·∇x·
∫
V ′
∞

1
r
T dV (ξ)−

− 1
4πa2∞

∫ ∞

−∞

∫
∂VB

∇
(
δ
r

)
·(ρvv + p′I − τ )·n dS(ξ) dτ −

− 1
4πa2∞

∫
∂VB

1
r

∫ ∞

−∞
δ∇·(ρvv + p′I − τ )︸ ︷︷ ︸

(33): = −∂ρv
∂τ

dτ

︸ ︷︷ ︸
= −

∫ ∞

−∞

∂
∂τ

(δρv) dτ︸ ︷︷ ︸
= 0

+
∫∞
−∞ ρv

∂δ(τ − t+ r/a∞)
∂τ︸ ︷︷ ︸

= −∂δ
∂τ

dτ

·n dS(ξ)

Denominating the wall normal velocity vn := n·v with n directed outside the object we arrive at
the final, so called ”Curle’s equation”:

ρ′(x, t) = 1
4πa2∞

∇x·∇x·
∫
V ′
∞

1
r
T (t− r/a∞, ξ) dV (ξ)−

− 1
4πa2∞

∇x·
∫

∂VB

1
r

(
ρvvn + (p′I − τ )·n

)
t−r/a∞

dS(ξ) + (263)

+ 1
4πa2∞

∂

∂t

∫
∂VB

1
r

(
ρvn

)
t−r/a∞

dS(ξ)

Curle’s equation describes the sound field generated by a body immersed in a flow field. Ac-
cording to the three terms three distinct contributions to this sound field are seen. The first term
represents nothing but the sound field produced in the free fluid volume, which we know from the
solution of Lighthill’s equation for the free field. The second term is obviously related to the local
forces acting on the surface of the object. In fact, if the body surface is rigid and non-moving,
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then vn = 0 and the integral represents almost the net aerodynamic force, acting on the fluid.
There is however a subtle difference, namely, the terms are to be evaluated at the retarded time
and weighted by r−1, which varies along the object. Nevertheless this part of the sound field is
called ”loading noise”. Finally, the third term is related to the displacement of the object. Obvi-
ously, if the body is at rest then again vn = 0 and this third contribution of the sound field is zero;
it is called ”thickness noise”.

The acoustic farfield is of main importance. Analogously to the derivation of (257) we consider
very large distances to the object and the source: r → r0, where r0 is the distance to, say, the
geometrical center of gravity of all considered source and object volumes together. We also
assume that r0 is very large compared to the extension of the system of all sources and objects.
Then ∇x → − 1

a∞
er0

∂
∂t

with the direction er0 := r0

r0
. Moreover, in the farfield, the density and

pressure fluctuations are related according to isentropy via ρ′ = p′/a2∞, such that Curle’s equation
yields

p′(x, t) ≃ 1
4πa2∞r0

(er0er0):
∂2

∂t2

∫
V ′
∞

[T ]t−r/a∞ dV (ξ) +

+ 1
4πa∞r0

er0· ∂∂t

∫
∂VB

[ρvvn + (p′I − τ )n]t−r/a∞
dS(ξ) + (264)

+ 1
4πr0

∂

∂t

∫
∂VB

[ρvn]t−r/a∞
dS(ξ)

4.5 Ffowcs-Williams and Hawkings equation: noise from objects in motion

The influence of motion on the sound radiation from point sources was investigated in section
3.3.1. As a result we learned, that even stationary sources (mass, heat or momentum) generate
sound whenever in accelerated (or supersonic) motion. This points to a potential sound generation
mechanism of objects in accelerated motion, because their action on the surrounding fluid may
be described by an integration over point sources (see potential flow theory). For instance, the
displacement of a body in a flow may be described by a spatial distribution of mass sources. As
long as the net mass flow of all contributing sources is zero, a body with a closed shape may be
represented. We want to generalize this for the case of moving objects with a finite extension.
We consider a situation as sketched in figure 17, where a (closed) control surface ∂VH surrounds
the object completely. It may or may not surround the aerodynamically induced sound (volume)
sources. The control surface is moving with vH(x, t).

Just as for the derivation of the Kirchhoff equation in section 2.6.3 we want to describe the sound
field outside of the control surface ∂VH by information given only on this very surface. In order to
define all variables in all of space (including the inside of the body VB) we introduce generalized
variables using H(f) as a pre-factor to all relevant quantities. For the density perturbation ρ′ :=
ρ−ρ∞ about its free field value ρ∞ we use now insteadH(f)ρ′. Next we try to derive an equation
for this new variable by multiplying the mass balance (32) by H(f) and applying the product rule
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(no mass sources ṁ = 0):

H
(
∂ρ′

∂t
+∇(ρv)

)
=
∂Hρ′

∂t
− ρ′∂H

∂t
+∇·(Hρv)− ρv·∇H = 0

This leads to new mass balance equation with a non-zero right hand side:

∂(Hρ′)
∂t

+∇·(Hρv) = ρ′∂H
∂t

+ ρv·∇H

in which we may still replace ∂H
∂t

= dH
df

∂f
∂t

= δ(f)
∂f
∂t

. Moreover from relation (248) we have

∂f
∂t

= −vH·∇f , which finally yields

∂(Hρ′)
∂t

+∇·(Hρv) = [ρ(v − vH) + ρ∞vH ]·∇fδ(f)

The same procedure may be applied to the momentum balance (33), in which p may be replaced
by p′ = p− p∞ to give

∂(Hρv)
∂t

+∇·(Hρvv −Hτ ) +∇(Hp′) = [ρv(v − vH)− τ + p′I]∇fδ(f)

Just as in the derivation of Lighthill’s wave equation we may now eliminate the termHρv between
the last two relations. We take the time derivative of the former and subtract the divergence of the
latter to obtain

∂2

∂t2
(Hρ′)− a2∞∆(Hρ′) = ∇·∇·(HT )−

− ∇·
([
ρv(v − vH)− τ + p′I

]
∇fδ(f)

)
(265)

+ ∂
∂t

([
ρ(v − vH) + ρ∞vH

]
·∇fδ(f)

)
This is the Ffowcs-Williams & Hawkings (FW-H) wave equation (1969). Its first line resem-
bles (yet due to H(f) does not exactly equal) Lighthill’s equation (252), whenever aerodynamic
sources are outside the control volume VH . However, there appear two extra terms on the right
hand (i.e. source) side. Both are non-zero only on the surface of the control volume ∂VH .

We solve this wave equation using the free field Green’s function G0 = δ(g)/(4πr) with g =
τ − t+ r/a∞ and immediately obtain

4πa2∞Hρ
′(x, t) = ∇x·∇x·

∞∫
−∞

∫
V∞

HT
r
δ(g) dV (ξ) dτ −

− ∇x·
∞∫

−∞

∫
V∞

[
ρv(v − vH)− τ + p′I

]
n |∇ξf | δ(f)

δ(g)
r

dV (ξ) dτ +

+ ∂
∂t

∞∫
−∞

∫
V∞

[
ρ(v − vH) + ρ∞vH

]
·n |∇ξf | δ(f)

δ(g)
r

dV (ξ) dτ
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where we replaced ∇ξf = n|∇ξf |, n representing the unit normal pointing outward to VH .

Note that the integrands of the second and third integral are different from zero when f(ξ, τ) = 0
only. This in turn means that in order to satisfy f = 0 the positions ξ have to be chosen dependent
on time τ . Therefore it is resonable to consider ξ = ξ(τ) with ξ(τ) =

∫ τ

τ0
vHdτ

∗ + ξ(τ0), such
that ∂

∂τ
ξ = vH and ξ(τ0) describing the surface f(ξ, τ0) = 0 at some intermediate instant τ0.

The position vector ξ may be expressed in a fixed (time independent) observer co-ordinate base
system e1, e2, e3, implying that the coordinate values depend on time, which is rather inconve-
nient for the execution of the integrals. Instead a co-ordinate system g1, g2, g3 may be used,
which is attached to the moving control surface, i.e. a system, in which the description of the
control surface ∂VH appears temporally constant.The position vectors ξ may now be expressed
in these two systems

ξ = ξ1(τ)e
ξ
1 + ξ2(τ)e

ξ
2 + ξ3(τ)e

ξ
3 = η1g

1
η(τ) + η2g

2
η(τ) + η3g

3
η(τ) + η0(τ) (266)

Here eξ
k denotes the k’th unit basis vector of the non-moving cartesian system ξ, while gk

η(τ)
represents the (generally non-unit) basis vector of the moving co-ordinate system. The position
vector η0 has the meaning of the (moving) origin of the η-system (e.g. geometric center of
gravity of V ). Note, that ”fixing the co-ordinate system to the surface” means, that in (266) the
co-ordinates do not depend on time ηk ̸= ηk(τ); any rigid body motion and/or deformation is
accounted for by the time-varying basis gk

η(τ). If we want to transform the volume integral in
the solution of the FW-H wave equation from eξ

k to gk
η we need to account for the ”functional

determinant” or ”Jacobian”
J := det

(
∂ξi
∂ηj

)
=
dV (ξ)
dV (η)

which represents the ratio of the differential volume elements in the two systems. We may use
(266) to express ξi in terms of ηk by forming the dot product with eξ

i ; then we have

ξi(τ) = ηk(g
k
η(τ)·e

ξ
i )

The differentiation with respect to ηj is now easily done and yields

∂ξi
∂ηj

= gj
η(τ)·e

ξ
i (267)

We may now solve the time integral in the above solution of the FW-H wave equation. It is
important to note that the argument g = τ − t+ r/a∞ depends on the source time τ additionally
implicit through r = |x− ξ(τ)|. Rule (114) brings the convection factor∣∣∣dg

dτ

∣∣∣ = ∣∣∣1 + 1
a∞

∂ξ
∂τ︸︷︷︸
vH

·∇ξr︸︷︷︸
−er

∣∣∣ = |1−Mr|

into play. Mr = vH·er/a∞ denotes the Mach number component of the volume (or surface
element) in the direction of the observer.

When solving the volume integral it is necessary to respect the delta function δ(f), which by rule
(117) brings a factor |∇ηf | in the denominator into play, such that finally we have
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4πa2∞Hρ
′(x, t) = ∇x·∇x·

∫
V +
H

T
r|1−Mr|

J dV (η)−

− ∇x·
∫

∂VH

[ρv(v − vH)− τ + p′I]n
r|1−Mr|

K dS(η) + (268)

+ ∂
∂t

∫
∂VH

[ρ(v − vH) + ρ∞vH ]·n
r|1−Mr|

K dS(η)

with the abbreviations K := J |∇ξf |/|∇ηf | and V +
H = V∞ − VH the volume outside of ∂VH .

Note, that all integrands are to be evaluated at the retarded time t − r/a∞. This is the famous
Ffowcs-Williams & Hawkings equation in general form for an integration surface ∂VH in arbitrary
motion (also called ”porous (or permeable) FW-H equation”). Note that if all the aerodynamic
sources (volume integral) are contained inside ∂VH , then the first term on the right hand side
drops out and the sound field is determined completely by the two surface integrals. Due to the
motion of the surface a convective amplification is seen through the convection factor |1−Mr|.

We still need to interpret the term K = J |∇ξf |/|∇ηf | in (268). We represent the gradient of f
in the ξ and η systems respectively using the introduced coordinate transform:

∇ηf =
∂ξ
∂η

∇ξf,
∂ξ
∂η

:=
∂ξi
∂ηk

(gk
η e

ξ
i )

Now we take the magnitude of this relation and divide by |∇ξf | to obtain

|∇ηf |
|∇ξf |

=
∣∣∣∂ξ
∂η

n
∣∣∣ =:

dξn
dηn

which uses the transformation from the η−system to the ξ−system of the unit normal vector n
to the level surfaces of f to show that |∇ξf |/|∇ηf | has the meaning of the stretch factor for the
magnitude of the normal vector in the η system in relation to the ξ system. On the other hand we
may represent the volume elements like dV (ξ) = dξndS(ξ) and dV (η) = dηndS(η). Therefore
the term K = |∇ξf |/|∇ηf |J = dS(ξ)/dS(η) represents the area ratio of the surface elements in
the non-moving and moving coordinates; this expression is also called ”surface dilatation” 6.

One may draw back the integration surface in the permeable FW-H equation (268) onto the sur-
face of the object: ∂VH = ∂VB. Here the local surface velocity has to assume the local surface
velocity of the body, which in turn equals the local fluid velocity vH = v due to the no slip
condition. Moreover, if the object is moving and deforming while conserving its volume (incom-
pressible motion), then J = 1, but generally |∇ξf |/|∇ηf | ≠ 1, because the local curvature of the
body surface is changing. This is e.g. the case for an elastically deforming and rotating slender
helicopter blade.

6if ∂VH was a sphere with time varying radius R(τ), then dS(ξ) = duξ dvξ with the two (mutually orthogonal)
line elements duξ, dvξ tangent to ∂VH , while dS(η) = duηdvη . Here, (duξ, dvξ) = ν(duη, dvη) with ν = R/R0, in
which R0 ̸= R0(τ) corresponds to the actual radius at some time τ0. In this case K = (R/R0)

2 and J = (R/R0)
3
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If the object is in a rigid body motion, then this motion vH is a superposition of a translation
vT and a rotation, which for any moment in time can be represented by a pure rotation about an
instantaneous pole by a rotation matrix Ω. Note that the rotation matrix Ω may be composed out
of three subsequent rotations about the three co-ordinate axes eξ

1, e
ξ
2, e

ξ
3,, i.e. Ω = Ω1Ω2Ω3. The

determinant of each of these single rotation matrices is equal to unity and so is detΩ. Therefore
J = detΩ = 1 in this case. Of course, for a rigid body motion the local surface element cannot
change either, which means that K = 1. The FW-H equation for a rigid body motion (e.g.
propeller blades) and VH = VB is therefore

4πa2∞Hρ
′(x, t) = ∇x·∇x·

∫
V +
B

T
r|1−Mr|

dV (η)−

− ∇x·
∫

∂VB

(−τ + p′I)n
r|1−Mr|

dS(η) + (269)

+ ∂
∂t

∫
∂VB

ρ∞vn
r|1−Mr|

dS(η)

As in all acoustic integrals, the integrand is to be evaluated at the retarded time t−r/a∞. The first
term is usually called ”quadrupole noise” (contribution of the unsteady flow volume), the second
term is called ”loading noise” (note p′ = p− p∞ typically is not a small deviation from p!), while
the third is called ”thickness noise”. Similarly to Curle’s equation, the second term is roughly
related to the aerodynamic load on the object, while the third term is related to the (unsteady)
volume displacement of the body in the medium. Note, that this third term only depends on the
geometry and the kinematics of the body motion. For non-moving objects the thickness noise
vanishes.

In the farfield the solution (269) becomes:

a2∞ρ
′(x, t) = p′(x, t) ≃ 1

4πa2∞r0
(er0er0):

∂2

∂t2

∫
V +
B

T
|1−Mr|

dV (η) +

+ 1
4πa∞r0

er0· ∂∂t

∫
∂VB

(p′I − τ )n
|1−Mr|

dS(η) + (270)

+ 1
4πr0

∂

∂t

∫
∂VB

ρ∞vn
|1−Mr|

dS(η)

where vn = v·n denotes the velocity component normal on the surface element due to the motion
of the aerodynamic surface, er0 is the unit vector pointing from the center of the source to the
observer and I is the unit matrix. It is reminded that the integrands are to be evaluated at the
retarded time τ = t − r/a∞ (note, here it is important to use the true distance r instead of r0
because even small differences in the distance across the source domain may introduce significant
phase shifts in the signals produced by the various source locations).
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It is easier to physically interpret the contributions of the FW-H equation if one takes the deriva-
tives in (268) inside the integral. If the surface motion, again, is a rigid body motion, then one
obtains

a2∞ρ
′(x, t)= 1

4πa2∞

∫
V +
H

T̈rr
r|1−Mr|3

+ 3ṪrrṀr + TrrM̈r

r|1−Mr|4
+

3TrrṀ
2
r

r|1−Mr|5
+ Tnf dV (η) +

+ 1
4πa∞

∫
∂VH

ḟr
r|1−Mr|2

+
frṀr

r|1−Mr|3
+ fnf dS(η) +

+ 1
4π

∫
∂VH

ṁn

r|1−Mr|2
+ mnṀr

r|1−Mr|3
+mnf dS(η)

in which Tnf , fnf ,mnf are near field terms ∼ r−n with n > 1, listed in appendix E. Moreover
the abbreviations

fr := er·([ρv(v − vH)− τ + p′I]n)

mn := [ρ(v − vH) + ρ∞vH ]·n
Trr := er·(Ter)

were used. The subscripts r at either vectorial or tensorial quantities always denote the pro-
jection(s) onto the direction er and the dot denotes the derivative w.r.t. the emission time
τ = t− r/a∞.

For the derviation of the above formulation of the FW-H, one uses the fact that in the co-moving
system η the integration surface is not dependent on either x or t (remember dS(η) ̸= dS(τ) and
hence ∂VH(η)). Expressions occur, where the gradient of r is to be taken. When doing so, one has
to respect the fact that r = |x− ξ(τ)|, while τ itself again depends on x through τ = t− r/a∞!
Therefore

∇xr=∇x

√
(x− ξ)2 =

[∇x(x− ξ)](x− ξ)√
(x− ξ)2

=
[∇xx−∇xξ](x− ξ)

r
=

Ir − dξ
dτ

·r∇xτ

r
=

= Ier − vH·er(−∇xr/a∞) = er +Mr∇xr ⇒ ∇xr =
er

1−Mr

In a similar way, for the time derivative w.r.t. t, one has to take into account that the integrand in
the (second) integral is rather dependent on τ . Therefore one may use the relation

∂
∂t

= dτ
dt

∂
∂τ
, τ = t− r(τ)/a∞ ⇒ dτ

dt
= 1− 1

a∞
∇ξr︸︷︷︸
−er

dξ
dτ
dτ
dt

⇒ ∂
∂t

= 1
1−Mr

∂
∂τ

i.e. replacing the derivative w.r.t. t with the one to τ yields another time the convection factor.

It is interesting to see that each source element dS of the first surface integral in this formulation of
the FW-H equation exactly acts as a point force with the strength fp = [ρv(v−vH)−τ +p′I]dS
(compare to (242)). Likewise, each source element dS of the second surface integral exactly acts
as a point mass source with the strength mp = [ρ(v − vH) + ρ∞vH ]·dS, compare to (243).
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5 Technical application

5.1 Jet noise

The noise levels of civil jet aircraft introduced in the 1950’ies were so extreme that this prob-
lem triggered the research on noise generated aerodynamically. This was jet noise and in the
following we use (257) to estimate the sound intensity as a function of the jet flow speed

ρ′(x, t) ≃ 1
4πa4∞r0

(er0er0):
∂2

∂t2
∫
VS

T dV . Here we are not interested in quantitative predic-

tion but the way in which the noise scales with the geometrical and operational parameters of the
jet flow.

We assume to have a cold flow, such that entropy related noise may be neglected. With the usual
simplification of a negligible contribution of the viscous stress to the sources Lighthill’s stress
tensor is T = ρvv. We consider the density ρ ≃ ρ∞ and the velocity v scales like the mean flow
jet speed us. This leads us to estimate the Lighthill stress tensor as Tij ∼ ρ∞u

2
s. Next we need

to determine, how the temporal change, expressed as ∂2

∂t2
, scales with the operating parameters

of the jet. For this purpose and in a most simplifying way consider turbulence as a random
sequence of eddies, i.e. vortices. When focussing on a source element in the turbulent flow, the
characteristic frequency 1/tc generated by an eddy passing through the position of the source
element is proportional to the mean convection speed uc of the eddy and is inversely proportional
to its characteristic dimension l, i.e. 1/tc ∼ uc/l. Now uc clearly scales with us and the eddy size
l scales like the characteristic dimension of the jet, which is its nozzle diameter D (the larger the
nozzle, the larger the eddies). We therefore find the characteristic scaling ∂2

∂t2
∼ (us/D)2. Finally,

the volume to be integrated
∫
...dV scales like D3. Now all components in the farfield expression

for the acoustic density fluctuation have been estimated and we obtain

ρ′ ∼ 1
a4∞

1
r0

(
us
D

)2

ρ∞u
2
sD

3

In the farfield the intensity I = p′v′r ≃ p′2/ρ∞a∞ and due to isentropy p′ = a2∞ρ
′ which yields

I ≃ ρ′2a3∞/ρ∞ and thus

I ∼ 1
r20

ρ∞
a5∞

D2u8s (271)

• This famous result derived by Lighthill says that the sound intensity scales with the 8’th power
of the jet flow velocity.

• For high supersonic Mach numbers of the flow us/a∞ > 2 the 8’th power law transitions into
u3s.

• the u8s-law is valid for free turbulence in general

• if the sound generation of enptropy fluctuations (neglected here) is significant this lowers the
exponent
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5.2 Noise from compact objects

Fixed and rigid objects generate excess noise due to the interaction of the body surface with
unsteady flow fluctuations (e.g. turbulence). The far field solution of Curle’s or Ffowcs-Williams
and Hawkings equation (264) or (270) respectively, is

p′ ≃ 1
4πa2∞r0

(er0er0):
∂2

∂t2
∫
V ′
∞
T dV + 1

4πa∞r0
er0· ∂∂t

∫
∂VB

(pI − τ )·n dS.

The first term yields contributions as in free turbulence (see section 5.1). The excess noise due
to the presence of the object is described by the surface integral term, which we will concentrate
on for the moment. We are interested only in parts of the sound signal below a characteristic
frequency fc = 1/tc which corresponds to the characteristic time which a sound signal needs
to travel across the largest extension D of the object: fc = a∞/D. For frequencies f << fc
the retarded time differences over the body may be neglected and the object is called ”compact
body”. Then the surface integral of Curle’s equation represents the net aero force on the body F ≃∫
∂VB

(pI − τ )n dS. The compactness of a source or body is characterized by the dimensionless
parameter

He := D
λ

where λ = a∞/f is the wave length. He is called ”Helmholtz number”. For He << 1 the body
is compact. For compact bodies the surface related sound source in Curle’s / Ffowcs-Williams
and Hawkings equation reduces to 1

a∞r0
er0· dFdt = 1

a∞r0
dFx

dt
, where Fx denotes the component

of the aero force in the direction of the observer. This means that the sound field is directly
proportional to the time change of the net aero force on the body.

Let us again estimate the magnitude of the aerodynamic force. It is mainly generated by the
surface pressure p , which scales like p ∼ ρ∞U

2
∞. For a body of characteristic dimension D

the force |F | scales like |F | ∼ ρ∞U
2
∞D

2. The time change of the force occurs during the
characteristic period tc it takes to convect a flow disturbance (e.g. turbulence element) past the
body, i.e. tc ∼ D/U∞. From this we have ∂

∂t
∼ 1/tc = U∞/D. Finally, the sound intensity of a

compact body scales like

I ∼ 1
r20

ρ∞
a3∞

D2U6
∞ (272)

• the sound intensity of compact bodies scales with the sixth power of the flow speed

• for small (subsonic) flow Mach number the sound signals originating from the surface dominate
the overall sound field. The quadrupole terms are negligible (factor ∼M2 smaller).

• the sound field of a compact body has a directivity like a dipole. The dipole axis is aligned with
the (unsteady) aero force on the body.

Note that in the aeolian tone problem of a cylinder in cross flow (section 2.6.4.3) we observed
exactly this sixth power dependence of the sound power from the flow speed for relatively short,
i.e. compact cylinders.
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5.3 Noise from non-compact objects

For non-compact objects the exponent of the flow speed scaling law changes. Ffowcs-Williams
and Hall (1970) showed for instance, that the sound intensity generated at the trailing edge of a
flat plate of very large extent immersed in a turbulent flow scales like U5

∞ instead of U6
∞ as for a

compact body.

• The presence of the trailing edge in the turbulent flow field increases the efficiency, by which
turbulent fluctuations are converted into sound like Itrailingedge/Ifreeturbulence ∼ u5∞/U

8
∞ =

M−3.

• As a general rule sound is generated mainly at positions where turbulent flow experiences an
abrupt change in the boundary conditions (sudden absence of the hard wall condition for a
turbulence element passing across an edge).

• slanting a trailing edge has a sound reducing effect because the change in boundary condition
seen by the convecting turbulence is more smooth (serrations). The edge noise mechanism is
discussed in detail in the lecture ”Methods of Aeroacoustics”.
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6 Further reading

Apart from the cited literature, we like to recommend certain books or scripts, we consider espe-
cially helpful when studying aeroacoustics.

• The script ”An Introduction to Acoustics” by S.W. Rienstra and A. Hirschberg, Eindhoven
University of Technology, P.O. Box 513, 5600 MB EInhoven, The Netherlands is a superb
introduction not only to classical acoustics, but to the basics of aeroacoustics. The authors
develop everything from basic principles and all mathematical tools used are explained, un-
derstandable from an average engineering mathematics background. Many practical examples
serve to deepen the understanding of the presented the material.

• The textbook ”Sound and Sources of Sound” by A.P. Dowling and J.E. Ffowcs Williams (Ellis
Horwood Limited, distributors John Wiley& Sons, 1983) is very well readable and gives a
broad and sufficiently deep overview on what the title says.

• Reference [1] by Crighton et al. is a set of well selected lectures on ”Modern Methods in
Analytical Acoustics”. The book covers a wide range of topics, related to acoustics. The topics
are elaborated from basics to pretty advanced techniques. Everything, especially the advanced
mathematical tools are exlained and made understandable for readers with a typical engineering
knowledge of mathematics. The text gives a very good overview about the pertinent methods
in use, and so it also represents a good reference book for applied mathematical methods.

• M.E. Goldstein’s classical textbook ”Aeroacoustics” (McGraw-Hill 1976) is probably the most
known book on aeroacoustics. It provides a broad range of aeroacoustics topics and methods.
The mathematics used go beyond a standard engineering knowledge and are sometimes kept
rather brief.

• The classical textbook ”Theoretical Acoustics” by P.M. Morse and K.U. Ingard (McGraw-Hill
1968) is very elaborate. Very many aspects of acoustics including mathematical methods are
presented, and aeroacoustics appears as one of the several sub-topics. The book is very mathe-
matical and requires respective skills of the reader.

• The book ”Wind turbine noise” by S. Wagner, R. Bareiss, G. Guidati (Springer Verlag 1996)
provides a very well readable introduction to aeroacoustics. Only the second half of the book
is specialized on wind turbines.

References

[1] Crighton, D.G.; Dowling, A.P.; Ffowcs Williams, J.E.; Heckl, M.; Leppington, F.G., ”Mod-
ern Methods in Analytical Acoustics”, Lecture Notes, Springer Verlag 1992.

[2] Lighthill, M.J., ”On sound generated aerodynamically. I. General theory”, Proc.Roy.Soc. A
221, 564-87. 1952.
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A. Averaging with finite sample time A1

A Averaging with finite sample time

Let us determine the deviation of the approximate time average pT , i.e. when using a finite
averaging period T , from the true time average p. The actual pressure is p = p + p′. Inserting
this into the definition of the approximate time average (3) for a windowing function W = 1 one
obtains:

pT = 1
T

T∫
0

(p+ p′) dt = p+ 1
T

T∫
0

p′ dt

Now, let us assume p′ to be sinusoidal, i.e. in general

p′ = p̂ cos(ωt− φ)

So integration yields

pT = p+
[
sin(ωT )
ωT

cosφ− cos(ωT )− 1
ωT

sinφ
]
p̂ (A.1)

Let us look at the maximum occuring difference between the true and the approximate average
∆p := pT − p of all phase shifts φ, i.e.

d∆p
dφ

∣∣∣
max

!
= 0 ⇔ sin(ωT )

ωT
sinφmax+

cos(ωT )− 1
ωT

cosφmax
!
= 0 ⇔ cos(ωT −φmax)

!
= cosφmax,

(A.2)
of which one may easily find that φmax = ωT/2. Using this result in (A.1) we obtain the relative
error, which pT contains due to the non-perfect averaging-out of the frequency component f =
ω/(2π):

∆pmax/p̂(ω) = −2 sin(ωT/2)
ωT

(A.3)

Note, that for T → ∞ ⇒ pT = p. Equivalently; the higher the frequency ω, the smaller the error
in p for a given averaging period T .

let us now use a windowing function W = 1 − cos(2πt/T ) for the approximate averaging (3).
Then the same procedure as above will yield

∆pWmax/p̂(ω) = 2 sin(ωT/2)
[
− 1
ωT

+ 1
2(ωT − 2π)

+ 1
2(ωT + 2π)

]
(A.4)

Figure A.1 shows an example plot of ∆pmax/p̂ and ∆pWmax/p̂ for a signal frequency of f = 16Hz
as a function of the averaging duration T . One may see that for about T ≈ 0.5s, the error is about
4% with no windowing applied, while it is 0.06% with windowing.
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A. Averaging with finite sample time A2

Figure A.1: Relative error in average value in
percent due to averaging over finite duration T
for a signal frequency of f = 16Hz. Red:
no window, black: window (see A.4). Dashed
curves indicate envelopes to curves
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B. Free field Green’s functions B1

B Free field Green’s functions

The 3D Green’s function (174) for the convective wave equation in spectral space follows by
Fourier-transforming (174):

Ĝ
(3D)
0 =

exp(−ikr+)
4πr∗

(B.5)

with r+ = (−rMr + r∗)/(1−M2) and r∗ = r
√
M2

r + 1−M2.

The 2D and 1D free field Green’s function for the convective wave equation (165) can be derived
from the 3D free field Green’s function (174)

G
(2D)
0 =

H

(
t− τ + r

a∞

Mr −
√

1−M2 +M2
r

1−M2

)
2π

√
1−M2

√[
t− τ + r

a∞
Mr

1−M2

]2
− r2

a2∞

(1−M2 +M2
r )

(1−M2)2

(B.6)

The corresponding 2D Green’s function in the spectral space follows upon Fourier-transforming
(B.6) in time:

Ĝ
(2D)
0 = − i

4
√
1−M2

exp
(
ikr Mr

1−M2

)
H

(2)
0

(
kr

√
1−M2 +M2

r

1−M2

)
(B.7)

The 1D Green’s function is similarly derived from the 3D Green’s function by integration over
the plane x = 0 perpendicular to the flow direction, i.e. G

(1D)
0 =

∫ 2π

0

∫∞
0
G0 RdRdφ with

R2 = (y − η)2 + (z − ζ)2 and φ the circumferential direction around the x-axis (details see
appendix):

G
(1D)
0 = a∞

2
H

(
t− τ − r

a∞
1

1 +Mr

)
(B.8)

Again, the 1D Green’s function in spectral space follows by Fourier transformation in time of
G1D

0 :

Ĝ
(1D)
0 = − i

2k
exp

(
−ikr 1

1 +Mr

)
(B.9)

The table below shows the collection of Green’s functions for Poisson’s equation, the Helmholtz
equation and the wave equation in 1D, 2D and 3D.
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B. Free field Green’s functions B2

1D 2D 3D
equation x = x x = t(x, y) x = t(x, y, z)

ξ = ξ ξ = t(ξ, η) ξ = t(ξ, η, ζ)

−∆G = δ(x− ξ) −1
2
r − 1

2π
ln r 1

4πr

−∆G− k2G = δ(x− ξ) − i
2k

exp(−ikr) − i
4
H

(2)
0 (kr)

exp(−ikr)
4πr

1
a2∞

∂2G
∂t2

−∆G = δ(x− ξ)δ(t− τ) a∞
2
H(t− τ − r

a∞
) 1

2π

H(t− τ − r
a0

)√
(t− τ)2 − r2

a2∞

δ(t− τ − r
a∞

)

4πr

Table B.1: Green’s functions for various equations and dimensions, whereby the distance r is
defined as r := |x − ξ| In the Helmholtz equation the wavenumber is denoted k := ω/a∞ and
the assumed time factor is exp(+iωt).
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C. Solutions for point mass or heat source in uniform flow C1

C Solutions for point mass or heat source in uniform flow

C.1 Particle velocity for 3D point mass or heat source in uniform flow

According to (177) the acoustic particle velocity of a point source in uniform flow is

v′(x, t) =
r+0

4πρ0a0r
2
0(1−M2 sin2 θ0)

e+
r

∂θp
∂t

∣∣∣
t−r+0 /a0

+

+ 1
4πρ0r20

M cos θ0M + (1−M2)er√
1−M2 sin2 θ0

3 θp|t−r+0 /a0
(C.1)

Remember that e+
r = r0/r

+
0 −M represents the direction out of which the signal arrives at the

observer (propagation direction), i.e. in the farfield the acoustic particle velocity points exactly
along the effective propagation direction e+

r as expected.

C.2 2D acoustic field of line mass or heat source in uniform flow

The acoustic field due to a harmonic line mass or heat source D∞θ̇
′

Dt
with θ̇′ = θ̂p exp(iωt)δ(x−

ξ0) in two dimensions is

p′(x, t) =
ωθ̂p

4
√
1−M2

3

{[
J0(kr

∗) + Mr√
1−M2 +M2

r

Y1(kr
∗)

]
cos

(
ωt+ kr Mr

1−M2

)
+[

Y0(kr
∗)− Mr√

1−M2 +M2
r

J1(kr
∗)

]
sin

(
ωt+ kr Mr

1−M2

)}
ρ′(x, t) = 1

a2∞
p′(x, t) (C.2)

v′(x, t) =
−ωθ̂p

4a∞ρ∞
√
1−M2

3

{[
MJ0(kr

∗) +
(1−M2)er +MrM√

1−M2 +M2
r

Y1(kr
∗)

]
cos

(
ωt+ kr Mr

1−M2

)
+[

MY0(kr
∗)− (1−M2)er +MrM√

1−M2 +M2
r

J1(kr
∗)

]
sin

(
ωt+ kr Mr

1−M2

)}
where r∗ = r

√
1−M2 +M2

r /(1−M2), in which r = |r| with r = x− ξ0 and Mr = r · M/r
while er = r/r.

C.3 1D acoustic field of plane mass or heat source in uniform flow

The acoustic field due to a plane mass or heat source D∞θ̇
′

Dt
with θ̇′ = θp(t)δ(x−ξ0) in one space

dimension is

p′(x, t) = a∞
2

1
1 +Mr

θp

(
t− r

a∞
1

1 +Mr

)
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C.3 1D acoustic field of plane mass or heat source in uniform flow C2

ρ′(x, t) = 1
a2∞

p′(x, t) (C.3)

v′(x, t) = − 1
2ρ∞

1
1 +Mr

θp

(
t− r

a∞
1

1 +Mr

)
where r = |r| with r = x− ξ0 and Mr = r · M/r.

In the spectral space this becomes:

p̂(x, ω) = a∞
2

1
1 +Mr

exp

(
−ikr 1

1 +Mr

)
θ̂p

ρ̂(x, ω) = 1
a2∞

p̂(x, ω) (C.4)

v̂(x, ω) = − 1
2ρ∞

1
1 +Mr

exp

(
−ikr 1

1 +Mr

)
θ̂p
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D. Parallel flow independence on direction of flow E1

D Parallel flow independence on direction of flow

According to the parallel flow assumption v0 = exu
0 the x-momentum conservation equation

states
u0∂u

0

∂x
+ 1
ρ0
∂p0

∂x
= 0. (D.1)

Assuming isentropic variations along the streamlines (along x), i.e. ρ0 = ρ∞(p0/p∞)1/γ we
therefore have

1
ρ0
∂p0

∂x
=
p∞
ρ∞

(
p0

p∞

)− 1
γ ∂(p0/p∞)

∂x
=

γ
γ − 1

p∞
ρ∞

∂
∂x

[(
p0

p∞

)γ−1
γ
]
,

which inserted into (D.1) leaves

∂
∂x

{
1
2
u02 +

γ
γ − 1

p∞
ρ∞

(
p0

p∞

)γ−1
γ
}
= 0

or accordingly the statement, that the term to be differentiated w.r.t. x is a constant B ̸= B(x),
but generally dependent on y, z:

1
2
u02 +

γ
γ − 1

p∞
ρ∞

(
p0

p∞

)γ−1
γ !

= B(y, z)

solved for the pressure or density respectively we obtain

p0

p∞
=

[
(B − 1

2
u02)

γ − 1
γ

ρ∞
p∞

] γ
γ−1 ⇒ ρ0

ρ∞
=

[
(B − 1

2
u02)

γ − 1
γ

ρ∞
p∞

] 1
γ−1

(D.2)

Again, according to the parallel flow assumption v0 = exu
0 the mass conservation equation states

∂
∂x

(
ρ0

ρ∞
u0
)
= ∂
∂x

(
ρ0

ρ∞

)
u0 +

ρ0

ρ∞
∂u0

∂x
= 0

which upon inserting ρ0/ρ∞ from eqn (D.2) gives

1
γ − 1

γ − 1
γ

ρ∞
p∞

(
− u0∂u

0

∂x

)[
(B− 1

2
u02)

γ − 1
γ

ρ∞
p∞

]2−γ
γ−1

u0 +
[
(B− 1

2
u02)

γ − 1
γ

ρ∞
p∞

] 1
γ−1 ∂u0

∂x
= 0.

This may finally be rearranged to

ρ∞
γp∞

[
(γ − 1)B − γ + 1

2
u02

]
∂u0

∂x
= 0.

Since B ̸= B(x), the bracket expression cannot be zero for u0 varying with x. Therefore, neces-
sarily u0 ̸= u0(x).
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E. Nearfield terms in FW-H integral E2

E Nearfield terms in FW-H integral

Tnf = a∞
r2

[
− Ṫkk

(1−Mr)
2 − 4MṪrM + TkkṀr + 2ṀTrṀ

(1−Mr)
3 +

+
3(1−M2)Ṫrr − 6MTrMṀr − TrrṀ ·M

(1−Mr)
4 +

3TrrṀr(1−M2)
(1−Mr)

5

]
+

+
a2∞
r2

[−2TrrṀ ·M
(1−Mr)

4 +
3TrrṀr(1−M2)

(1−Mr)
5

]
+

+
a2∞
r3

[
2TMMM

2 − Tkk(1−M2)
(1−Mr)

3 − 6MTrMṀr

(1−Mr)
4 +

3Trr(1−M2)2

(1−Mr)
5

]
fnf = a∞

r2

[ −fM
(1−Mr)

2 +
fr(1−M2)
(1−Mr)

3

]
mnf = a∞

r2

[
mn(Mr −M2)
(1−Mr)

3

]
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F. Example Problems F1

F Example Problems

F.1 Sound of a bursting bubble

A soap bubble of Radius R bursts at t = 0. The soap skin has a surface tension of T . Determine
the sound field generated after the burst.

i

R T 2π2F =

R

pF =π
2R  p’

T

Figure F.1: A soap bubble before burst.

Prior to the burst there exists an interior overpressure of p′i. Cutting the spherical bubble into
two equal halfs allows to apply force equilibrium in order to find the value of that pressure. The
surface tension is by definition a line force, which is constant along the circumference of the cut
bubble surface. The overall surface tension force FT balancing the pressure force Fp, is therefore
(2πR) · T · 2. Note the occurence of the factor 2 because the skin of the bubble consists of two
surfaces (the inner and the outer surface). The pressure force Fp = πR2 · p′i. Therefore the
pressure in the bubble is:

p′i = 4T
R

F.1.1 Approach

We describe the acoustic field using a potential φ′. The potential satisfies the same wave equation
as the pressure p′. Therefore we start with assuming the general solution according to d’Alembert:

φ′ =
f(t− r/a0) + g(t+ r/a0)

r

F.1.2 Boundary conditions

Since the problem is symmetric about the centre r = 0 the acoustic particle velocity contains only
a radial component: v′ = v′er. The only boundary condition we may assume is at r = 0. For
reasons of symmetry the particle velocity v′ at r = 0 has to vanish for all times t:

v′(r = 0, t) = ∇φ′ ·er =
∂φ′

∂r
= 0.
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F.1 Sound of a bursting bubble F2

according to (64). The particle velocity is

v′(r, t) =
−f ′(t− r/a0) + g′(t+ r/a0)

a0r
− f(t− r/a0) + g(t+ r/a0)

r2

Note that for r → 0 this is an undetermined expression. In order to apply the condition one has
to use Hopital’s rule, which requires first to re-arrange v′ into an expression of type ”0/0” near
r = 0:

v′(r, t) =
r[−f ′(t− r/a0) + g′(t+ r/a0)]− a0[f(t− r/a0) + g(t+ r/a0)]

a0r
2

Hopital’s rule yields:

lim
r→0

v′ = lim
r→0

{
r[f ′′(t− r/a0) + g′′(t+ r/a0)]

2a0r

}
= 0

which immediately gives

g′′(t) = −f ′′(t) =⇒ g(t) = −f(t) + C1t+ C0

Since the argument t is not restricted by whatsoever condition it may assume any value. Therefore
one may also replace t by t+ r/a0 to arrive at the general form of g

g(t+ r/a0) = −f(t+ r/a0) + C1(t+ r/a0) + C0

F.1.3 Initial conditions

Prior to the burst there is no motion anywhere. For all r at t = 0 we have

ρ0a0r
2v′(r, t = 0) = r[−f ′(−r/a0)−f ′(r/a0)+C1]−a0[f(−r/a0)−f(r/a0)+C1r/a0+C0] = 0

The only way this equation can be satisfied for all r is when

f ′(−r/a0) = −f ′(r/a0) =⇒ f(−r/a0) = f(r/a0)

i.e. for f being an even function and C0 = 0.

There exists an initial condition for the pressure perturbation p′ as well. First we express p′ in
terms of the potential and the above results, eqn (66):

p′(r, t) = −ρ0∂φ
′

∂t
= −ρ

0

r
[f ′(t− r/a0)− f ′(t+ r/a0) + C1]

For t = 0 this can be re-arranged to

p′(r, t = 0) = −ρ
0

r
[f ′(−r/a0)− f ′(r/a0)︸ ︷︷ ︸

= −2f ′(r/a0)

+C1]
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F.1 Sound of a bursting bubble F3

The pressure inside the buble is p′ = p′i = 4T/R and outside p′ = 0:

p′(r, t = 0) =
ρ0

r
[2f ′(r/a0)− C1] =


4T/R 0 < r < R

for
0 r > R

This gives the following determining equation for f ′:

f ′(r/a0) =


2T
R
a0
ρ0

r
a0

+ 1
2
C1 0 < r < R

for
1
2
C1 r > R

= −f ′(−r/a0) =⇒ C1 = 0

The conclusion that C1 = 0 follows from the fact that f ′ is an odd function.

F.1.4 General solution

We may now generalize the above result for f ′:

f ′(t− r/a0) =


2T
R
a0
ρ0

(t− r/a0) 0 < t− r/a0 < R/a0 or 0 < −t+ r/a0 < R/a0

for
0 t− r/a0 > R/a0 or −t+ r/a0 > R/a0

f ′(t+ r/a0) =


2T
R
a0
ρ0

(t+ r/a0) 0 < t+ r/a0 < R/a0 or 0 < −t− r/a0 < R/a0

for
0 t+ r/a0 > R/a0 or −t− r/a0 > R/a0

The respective domains where f ′ ̸= 0 are marked in the figure F.2. Obviously the pressure p′ is
of interest only for t ≥ 0. In order to simplify the discussion of the solution let us assume to
first look only at positions outside the original radius of the bubble: r > R. Then t + r/a0 >
R/a0 =⇒ f ′(t + r/a0) = 0, i.e. the advanced time part of the solution vanishes here. Then we
have

p′(r, t) =


2T
R

(1− a0t
r
) 0 < |t− r/a0| < R/a0

for
0 |t− r/a0| > R/a0

For a fixed position r the time signal is a (piecewise) linear function, while for a fixed time (a
shapshot) the pressure decays like a (piecewise) hyperbola with the distance from the origin. The
figure F.3 shows the time and space signature of the resulting pressure pulse, forming a so called
N-wave (according to the shape of the signal) in time.
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F.1 Sound of a bursting bubble F4
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Figure F.2: Functions f ′(t− r/a0) and f ′(t+ r/a0).
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Figure F.3: Pressure pulse. Left: spatial signature for different times, right: temporal signature
for different positions.
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F.2 Sound of a harmonically pulsating (”breathing”) sphere F5

F.2 Sound of a harmonically pulsating (”breathing”) sphere

A sphere oscillates radially about its average radius R with a small amplitude A0 ≪ R at a
circular frequency of Ω. What sound field is generated?

R

Figure F.4: A pulsating impermeable sphere surface.

The sphere’s surface moves like

δ(t) = A0 exp(iΩt), δ ≪ R

in the radial direction. The respective radial velocity of the sphere is therefore

v′r(r = R) = ∂δ
∂t

= iΩA0 exp(iΩt)

We use the velocity potential φ′ to describe the sound field. The general form of the solution
(satisfying the radiation condition at infinity) is

φ′(r, t) = φ0
1
r
exp(iωt− ikr)

For reasons of symmetry the acoustic particle velocity has only a radial component, which may
be computed from the potential through (64):

v′ =
∂φ′

∂r
=
φ0

r
(−ik − 1

r
) exp(iωt− ikr)

The velocity of the medium at the sphere’s surface has to be the same as that of the surface

φ0

R
(−ik − 1

R
) exp(iωt) exp(−ikR) = iΩA0 exp(iΩt)

This equality can only hold for:

ω = Ω and φ0 = iΩ R
−ik − 1/R

exp(−ikR)A0

Having determined the potential, we may now compute the pressure according to (66)

p′ = −Ω2A0

R
ρ0
R2(1− ikR)
1 + (kR)2

R
r
exp[iΩt− ik(r −R)]

= −ρ0a20
δ(t)
R

(kR)2

1 + (kR)2
(1− ikR)R

r
exp[−ik(r −R)]
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F.2 Sound of a harmonically pulsating (”breathing”) sphere F6

where k = a0Ω = 2π/λ. The solution shows that for small radii of the sphere (compared to a
wavelength of the radiated sound) R/λ≪ 1 the pressure amplitude decreases, i.e. a small sphere
generates sound only inefficiently compared to a large sphere.

Note that if φ′ is a solution of the wave equation, then ∂φ′

∂x̃
= ex̃·∇φ′, where x̃ := ex̃·x is a

solution to the wave equation as well.
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F.3 Sound of a harmonically oscillating sphere F7

F.3 Sound of a harmonically oscillating sphere

A rigid sphere of radius R oscillates harmonically about its average centre along a direction ex̃

with a small amplitude A0 ≪ R at a circular frequency of Ω. What sound field is generated?

ψ

x
~e

er

v’r = cosψV
~

V
~

V
~

R

Figure F.5: An oscillating impermeable rigid sphere
surface.

The sphere’s surface moves like

δ(t) = A0 exp(iΩt), δ ≪ R

in the direction ex̃. The respective velocity of the sphere in this direction is therefore

v′x̃(r = R) = ∂δ
∂t

= iΩA0 exp(iΩt) = iΩδ(t) = Ṽ exp(iΩt)

Adjacent to it’s surface the sphere displaces fluid according to the velocity component along it’s
normal. Therefore the radial component of the surface velocity is important:

v′r(r = R) = cosψ v′x̃(r = R) = cosψ Ṽ exp(iΩt)

We start with the velocity potential φ′ to describe the sound field. Certainly, we cannot use our
spherically symmetric harmonic solution φ′ = ϕ0 exp(ωt− ω/a0︸︷︷︸

=: k

r)/r to solve this problem. But

from eqn (93) we know that we may generate new solutions to the wave equation by taking the
derivative of known solutions. One possibility is to differentiate φ′ by x̃ and try to satisfy the
boundary conditions at r = R with this new elementary solution:

φ̃′ = φ̃0
1
r
(−ik − 1/r)∂r

∂x̃
exp(iωt− ikr)

Now
∂r
∂x̃

= ex̃· ∇r︸︷︷︸
er

= ex̃·er = cosψ

according to figure F.5. From the general definition of v′ = ∇φ̃′ the required radial velocity field
at r = R is found to be

v′r(r = R) =
∂φ̃′

∂r
= φ̃0

[
2
R3 + 2ik

R2 − k2

R

]
exp(iωt) exp(−ikR) cosψ
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F.3 Sound of a harmonically oscillating sphere F8

The comparision with the above mentioned boundary conditions of the problem shows that the
direction cosine cosψ drops out and that the remaining terms may indeed be matched with

ω = Ω , φ̃0 = iΩA0 exp(ikR)/
[
2
R3 + 2ik

R2 − k2

R

]
with the velocity potential φ̃′ thus known, it is easy to determine the pressure field from (66)

p′ = −ρ0∂φ̃
′

∂t
= −ρ0a20 cosψ

A0

R
(kR)2

2 + 2ikR− (kR)2
R
r

[
R
r
+ ikR

]
exp[iΩt− ik(r −R)]

= −ρ0a20 cosψ
δ(t)
R

(kR)2

2 + 2ikR− (kR)2
R
r

[
R
r
+ ikR

]
exp[−ik(r −R)]

where k = a0Ω = 2π/λ. The solution shows that the pressure behaves differently near and
far from the sphere’s surface r = R. There is a part, decaying like R/r and one decaying more
rapidly likeR2/r2. The former is also called farfield (german: ”Fernfeld”), the latter is also called
nearfield (german: ”Nahfeld”). Note that such a nearfield does not exist in the pressure field of
the pulsating sphere (Example 2).

Next observe that the amplitude of the sound field is depending on the angle ψ. This directivity
is such that along ψ = 0 and ψ = π or ±ex̃ most sound is radiated, while under ψ = π/2 exactly
no sound is radiated. Such a sound field is called to have dipole character.

Also note that the solution for the oscillating sphere would have resulted from the solution of
the pulsating sphere p′ps (Example 2) basically by differentiating the latter with respect to the
direction x̃

p′ = − (1 + ikR)R
2 + 2ikR− (kR)2

∂p′ps
∂x̃
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F.4 Scattering of plane wave at cylinder F9

F.4 Scattering of plane wave at cylinder

The scattering of a plane Gaussian-shaped acoustic pressure pulse p′ at a cylinder with radius R
and center at x = 0, y = 0 is considered. The initial condition is:

p′(t = 0, x, y) = exp

(
−(x− xs)

2

h2w
ln 2

)
(F.1)

where hw denotes the half-width of the Gaussian function and xs is the initial position of the
center of the Gaussian. The pressure must satisfy the hard wall boundary condition at the wall
of the cylinder, easiest expressed in an axi-symmetric co-ordinate system (r, ϑ) with x = r cosϑ
and y = r sinϑ:

∂p′

∂r
(t, r = R, ϑ) = 0 (F.2)

The governing wave equation for the pressure field is:

∂2p′

∂t2
− c2

(
∂2p′

∂r2
+ 1
r
∂p′

∂r
+ 1
r2
∂2p′

∂ϑ2

)
= 0 (F.3)

The pressure field p′ = pp + ps may be split into a primary wave pp(t, x, y) and a scattered wave
ps(t, r, ϑ). The primary wave pp is assumed to behave as if the cylinder was absent, i.e. a plane
pulse, traveling with the speed of sound c:

pp(t, x, y) = exp

(
−(x− xs − ct)2

h2w
ln 2

)
= exp

(
−(r cosϑ− cτ)2

h2w
ln 2

)
(F.4)

where the shifted time
τ = t+ xs/c (F.5)

was introduced for convenience. The scattered wave ps is computed according to (F.3) under the
(known) inhomogeneous boundary condition

∂ps
∂r

(τ, r = R, ϑ) = −∂pp
∂r

(τ, r = R, ϑ) (F.6)

Since the fields are single valued one may expand them into a Fourier series in ϑ and then consider
its coefficients m = 0, . . . ,∞ separately:

p(τ) =
∞∑
0

pm(τ) cos(mϑ) (F.7)

where explicit use has been made of the fact that the fields are symmetric w.r.t. the x-axis (van-
ishing of sine part). The problem becomes even more explicit in the frequency domain. Upon
Fourier cosine and sine transforming (F.3) in time τ one obtains the mth order Bessel equation,
governing the mth Fourier coefficient p̂m(ω, r) of the Fourier series in ϑ:[(

ω
c

)2

− m2

r2

]
p̂m +

d2p̂m
dr2

+ 1
r
dp̂m
dr

= 0 (F.8)
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F.4 Scattering of plane wave at cylinder F10

where p̂m stands for both the cosine- and sine coefficients p̂cm(ω) and p̂sm(ω) defined as:

p̂cm(ω) =
1
π

∫ ∞

−∞
pm(τ) cos(ωτ)dτ , p̂sm(ω) =

1
π

∫ ∞

−∞
pm(τ) sin(ωτ)dτ (F.9)

pm(τ) =

∫ ∞

0

p̂cm(ω) cos(ωτ) + p̂sm(ω) sin(ωτ) dω (inversion) (F.10)

The boundary condition (F.6) now reads:

(dp̂s)m
dr

(ω, r = R) = −(dp̂p)m
dr

(ω, r = R) (F.11)

The general solution of (F.8) is

p̂m = Cm(k)Jm(kr) +Dm(k)Ym(kr) (F.12)

where k = ω/c is the wave number, Jm and Ym represent the Bessel functions of order m of
the first and second kind respectively (see e.g. ). Further, Cm(k) and Dm(k) denote coefficients,
depending on k. It is these coefficients which are to be determined as to let ps + pp satisfy the
boundary conditions (F.11) at r = R and the condition of outgoing waves for ps.

The implementation of (F.11) necessitates the Fourier transform in time of pp(τ):

p̂cp(ω) = F (k) cos(ωx/c) , p̂sp(ω) = F (k) sin(ωx/c) (F.13)

with the abbreviation

F (k) = hw
c

√
1

π ln 2
exp

(
− k2

h2w
4 ln 2

)
(F.14)

Next, cosine and sine are expressed in terms of the Bessel functions:

cos(kx) = cos(kr cosϑ) = J0(kr) + 2
∞∑
n=1

(−1)n cos(2nϑ)J2n(kr)
(F.15)

sin(kx) = sin(kr cosϑ) = −2
∞∑
n=1

(−1)n cos((2n− 1)ϑ)J2n−1(kr)

The respective substitution into (F.13) now immediately yields the Fourier coefficients n =
1, . . . ,∞ of the primary wave:

(p̂cp)0 = F (k)J0(kr) , (p̂cp)2n = 2F (k)(−1)nJ2n(kr) ,

(p̂sp)2n−1 = −2F (k)(−1)nJ2n−1(kr) (F.16)

The coefficients (p̂cp)2n−1 = (p̂sp)2n = (p̂sp)0 = 0. Upon using the differentiation rule

dJm(η)
dη

= [Jm−1(η)− Jm+1(η)]/2 for m > 0 and dJ0(η)
dη

= −J1(η) (F.17)

one finally obtains for the derivative of the non-zero coefficients of the primary wave (p̂p)m at the
cylinder surface r = R:

d
dr

(p̂cp)0 = −kF (k)[J1]kR,
d
dr

(p̂cp)2n = kF (k)(−1)n[J2n−1 − J2n+1]kR
(F.18)

d
dr

(p̂sp)2n−1 = −kF (k)(−1)n[J2n−2 − J2n]kR
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F.4 Scattering of plane wave at cylinder F11

Next, the boundary condition (F.11) requires the evaluation of the gradient of the scattered wave
Fourier coefficients (p̂s)m. The differentiation rule (F.17) is valid for the functions Ym too and its
application on (F.12) leaves:

d
dr

(p̂s)
c/s
0 = −kCc/s

0 J1 − kD
c/s
0 Y1 (F.19)

d
dr

(p̂s)
c/s
m = kCc/s

m (Jm−1 − Jm+1)/2 + kDc/s
m (Ym−1 − Ym+1)/2

where (p̂s)
c/s
m stands for the two temporal Fourier coefficients, i.e. the cosine (p̂s)cm and sine (p̂s)sm

parts. The matching of (F.19) with (F.18) according to (F.11) now yields the first two equations
for Cc/s

m , D
c/s
m :

sin(γ0) C
c
0 + cos(γ0) D

c
0 = −F (k) sin(γ0)

sin(γ2n) C
c
2n + cos(γ2n) D

c
2n = −2(−1)nF (k) sin(γ2n) (F.20)

sin(γ2n+1) C
s
2n+1 + cos(γ2n+1) D

s
2n+1 = 2(−1)nF (k) sin(γ2n+1)

where

sin(γ0) =
[

J1√
J2
1 + Y 2

1

]
kR
, cos(γ0) =

[
Y1√

J2
1 + Y 2

1

]
kR

sin(γm) =
[

Jm−1 − Jm+1√
(Jm−1 − Jm+1)2 + (Jm−1 − Jm+1)2

]
kR

(F.21)

cos(γm) =
[

Ym−1 − Ym+1√
(Jm−1 − Jm+1)2 + (Jm−1 − Jm+1)2

]
kR

The equation system for the Cm, Dm is closed by application of the condition of outgoing wave
behavior at large kr. Far out, the Bessel function Jm(kr) −→ cos(kr + ϕm)const/

√
kr and

Ym(kr) −→ sin(kr + ϕm)const/
√
kr. The integrand in (F.10) for ps, i.e.

lim
kr→∞

p̂s(r, t)/
√
kr ∼ [Cc

m cos(kr + ϕm) +Dc
m sin(kr + ϕm)] cos(ωτ) +

[Cs
m cos(kr + ϕm) +Ds

m sin(kr + ϕm)] sin(ωτ) (F.22)

will have to consist of strictly outgoing components, i.e. only combinations cos(kr+ϕm−ωτ) =
sin(kr+ϕm) sin(ωτ)+cos(kr+ϕm) cos(ωτ) and sin(kr+ϕm−ωτ) = sin(kr+ϕm) cos(ωτ)−
cos(kr + ϕm) sin(ωτ) are allowed in (F.22) leading to the auxiliary relations:

Ds
m − Cc

m = 0 and Cs
m +Ds

m = 0 (F.23)

The solution of the system (F.20,F.23) and substitution into (F.12) finally yields (n = 1, . . . ,∞):

(p̂s)
c
0 = −F (k) sin(γ0) [sin(γ0)J0(kr) + cos(γ0)Y0(kr)]

(p̂s)
c
2n = −2F (k)(−1)n sin(γ2n) [sin(γ2n)J2n(kr) + cos(γ2n)Y2n(kr)]

(p̂s)
c
2n−1 = 2F (k)(−1)n sin(γ2n−1) [cos(γ2n−1)J2n−1(kr)− sin(γ2n−1)Y2n−1(kr)]

(F.24)
(p̂s)

s
0 = F (k) sin(γ0) [cos(γ0)J0(kr)− sin(γ0)Y0(kr)]

(p̂s)
s
2n = 2F (k)(−1)n sin(γ2n) [cos(γ2n)J2n(kr)− sin(γ2n)Y2n(kr)]

(p̂s)
s
2n−1 = 2F (k)(−1)n sin(γ2n−1) [sin(γ2n−1)J2n−1(kr) + cos(γ2n)Y2n(kr)]
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F.4 Scattering of plane wave at cylinder F12

The (p̂s)
c
m and (p̂s)

s
m are respectively the cosine and sine coefficients for the Fourier inversion

(F.10) back into the time domain (ps)m(τ = t + xs). The summation over all m in (F.7) finally
gives the pressure field of the scattered wave ps.
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