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Abstract— Periodic Lyapunov, Sylvester and Riccati differ-
ential equations have many important applications in the
analysis and design of linear periodic control systems. For
the numerical solution of these equations efficient numerically
reliable algorithms based on the periodic Schur decomposition
are proposed. The new multi-shot type algorithms compute
periodic solutions in an arbitrary number of time moments
within one period by employing suitable discretizations of the
continuous-time problems. In contrast to traditionally usedone-
shot periodic generator methods, themulti-shot type methods
have the advantage to be able to address problems with large
periods and/or unstable dynamics. Applications of the proposed
techniques to compute several system norms are presented.

I. I NTRODUCTION

We consider the numerical computation of the periodic
solutions to three classes of periodic matrix differential
equations:

1) Periodic Lyapunov differential equations(PLDE) either
in the direct form

Ẋ(t) = A(t)X(t) + X(t)AT (t) + Q(t) (1)

or in theadjoint form

−Ẋ(t) = AT (t)X(t) + X(t)A(t) + Q̃(t) (2)

whereQ(t) = QT (t), Q̃(t) = Q̃T (t) and A(t), Q(t), and
Q̃(t) aren× n T -periodic matrices (i.e.,∀t A(t+T ) = A(t),
Q(t+T ) = Q(t), Q̃(t+T ) = Q̃(t)). These equations play an
important role in the analysis of controllability/observability
of linear continuous-time periodic systems [1], in solving
periodic stabilization problems [2], computing Hankel- and
H2-norms of periodic systems [3], or in solving periodic dif-
ferential Riccati equations by employing Newtons’ method
[4].

2) Periodic Sylvester differential equation(PSDE) of the
form

Ẋ(t) = A(t)X(t) + X(t)B(t) + C(t) (3)

whereA(t), B(t), andC(t) are respectivelym×m, n× n,
and m× n T -periodic matrices. The PDSE (3) is useful in
solving periodic eigenvalue assignment problems [5], [6].

3) Periodic Riccati differential equation(PRDE) in the
filtering form

Ẋ(t)=A(t)X(t)+X(t)AT (t)+R(t)−X(t)Q(t)X(t) (4)
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or in thecontrol form

−Ẋ(t)=AT (t)X(t)+X(t)A(t)+Q(t)−X(t)R(t)X(t) (5)

whereQ(t) = QT (t) ≥ 0, R(t) = RT (t) ≥ 0, and A(t),
Q(t), R(t) are n× n T -periodic matrices. Solving these
equations for the stabilizing solution plays an important role
in periodic filtering or control problems [7], [4], [3].

In this paper we propose reliable numerical methods to
compute the periodic solutionX(t) = X(t+T ) of equations
(1)-(5). Both one-shot periodic generatormethods as well
as multi-shot type methods are discussed. Themulti-shot
type methods rely on discretization techniques, which turn
the continuous-time problems into equivalent discrete-time
problems for which satisfactory numerical methods already
exist. The main appeal of these methods is that the periodic
solution X(t) is computed simultaneously in many time
moments within one period, so that the numerical difficulties
related to numerical integrations for large periods and/or
unstable dynamics are highly alleviated. The solution for
intermediary values of timet can be computed using special
numerical integration by initializing the solution in the near-
est time moment. Applications of the proposed techniques
to compute the Hankel-,H2- andH∞-norms of a periodic
system are presented.

The key numerical ingredient for solving the discrete-
time problems is theperiodic real Schur form(PRSF) of
a periodic matrix sequence [8], [9]. The underlying com-
putational methods to solve discrete-time periodic Lyapunov
[10] and Sylvester equations [11] employ the PRSF to reduce
the problem matrices to condensed forms which allows an
easy solution of the reduced equations. In the case of the
solution of PRDEs, the main technique is the computation
of an ordered PRSF of a symplectic periodic matrix together
with the corresponding periodic basis of the stable invariant
subspace [8], [9].

II. SOLUTION OF PLDES

Let ΦA(t, τ) denote the transition matrix corresponding to
A(t) satisfying

∂ΦA(t, τ)
∂t

= A(t)ΦA(t, τ), ΦA(τ, τ) = I (6)

For a T -periodic A(t), ΨA(τ) := ΦA(τ + T, τ) is called
the monodromymatrix corresponding toA(t) and its eigen-
values, which are independent ofτ , are calledcharacteristic
multipliers. We say thatA(t) is a stableperiodic matrix if
all its characteristic multipliers have magnitudes less than 1.



Existence conditions of periodic solutions of PLDEs have
been discussed in [12]. We recall the main result of [12].

Theorem 1:The PLDE (1) or (2) admits a uniqueT -
periodic solutionX(t) if and only if ΨA(τ) does not have
reciprocal eigenvalues.

In what follows, we assume the above condition fulfilled.

A. Periodic generator method

The computation of the solution of (1) can be done in two
steps using theperiodic generator method. First we solve for
a given time, sayt = 0, the standard discrete-time Lyapunov
equation satisfied byX(0) (= X(T )) [1]

X(0) = ΨA(0)X(0)ΨT
A(0) + W (T, 0) (7)

where

W (t, t0) :=
∫ t

t0

ΦA(t, τ)Q(τ)ΦT
A(t, τ)dτ (8)

Then, we integrate fromt = 0 to t = T the matrix differen-
tial equation (1) using any standard integration method for
ODEs. Observe that because of the symmetry ofX(t), only
n(n+1)

2 equations must be integrated.
For the adjoint Lyapunov differential equation (2) a similar

approach can be used with obvious replacements. First we
solve the standard discrete-time Lyapunov equation satisfied
by X(T ) (= X(0))

X(T ) = ΨT
A(0)X(T )ΨA(0) + W̃ (T, 0) (9)

where

W̃ (tf , t) :=
∫ tf

t

ΦT
A(τ, t)Q̃(τ)ΦA(τ, t)dτ (10)

and then integrate (2) backward in time fromt = T to t = 0.
The one-shotapproach has several potential numerical

difficulties for long periods and/or unstable dynamics as-
sociated withA(t). For example, the computation of the
free termW (T, 0) in (7) using the methods described in
the next subsection can be hardly done with high accuracy
for long periods. The same is true for evaluating the mon-
odromy matrixΦA(T, 0) for large values ofT . Moreover,
for unstableA(t) (i.e., some eigenvalues ofΦA(T, 0) have
magnitudes larger than 1), the differential equations are ill-
conditioned and thus any numerical integration algorithm for
ODEs becomes numerically unstable. This is why, generally
the one-shot method is not recommended to solve periodic
differential Lyapunov equations.

B. Multi-shot approach

The values of the solutionX(t) of the PDLE (1) at time
momentst and t + ∆ are related as [1]

X(t + ∆) = ΦA(t + ∆, t)X(t)ΦT
A(t + ∆, t) + W (t + ∆, t)

Let N ≥ 1 be an integer such that∆ := T/N represents a
meaningful time increment to determine the solutionX(t).
Then, the solution at successive time moments(k−1)∆ and
k∆ satisfies

Xk+1 = FkXkFT
k + Wk (11)

whereXk := X ((k − 1)∆), Fk := ΦA (k∆, (k − 1)∆), and
Wk := W (k∆, (k − 1)∆). By imposingXN+1 = X1, the
N coupled equations in (11) fork = 1, . . . , N represent a
discrete-time forward periodic Lyapunov equation. Thus, by
solving theN simultaneous equations (11), we determine
N values of the solutionX(t) at equidistant time instants.
Since the time increment∆ can be chosen arbitrary small,
this multi-shot approach certainly alleviates the numerical
difficulties associated with large periods and/or unstable
dynamics when evaluatingFk andWk, k = 1, . . . , N .

A similar approach can be developed to solve the adjoint
PDLE (2). The solutionX(t) at time momentst and t−∆
are related as [1]

X(t−∆) = ΦT
A(t, t−∆)X(t)ΦA(t, t−∆) + W̃ (t, t−∆)

Thus, the solution at successive time moments(k−1)∆ and
k∆ satisfies

Xk = FT
k Xk+1Fk + W̃k (12)

where W̃k := W̃ (k∆, (k − 1)∆). By imposing XN+1 =
X1, the N coupled equations in (12) fork = 1, . . . , N rep-
resent a discrete-time backward periodic Lyapunov equation.

To solve the periodic discrete-time Lyapunov equations
(11) and (12) the numerically reliable methods proposed in
[10] can be used. These methods are based on computing the
real Schur form(RSF) of the monodromy matrixΨA(0) =
FN · · ·F2F1 via the PRSF of the periodic matrixFk. For
the computation of PRSF numerically stable algorithms have
been proposed in [8], [9] and robust numerical software
implementations are available in the recently developed
PERIODIC SYSTEMS Toolbox for MATLAB [13]. For the
solution of the periodic Lyapunov equations (11) and (12)
robust numerical software is also available in this toolbox.

The computation ofFk, Wk and W̃k for k = 1, . . . , N
in the equations (11) and (12) can be done using numeri-
cal integration of appropriate ordinary differential equations
(ODEs). To computeFk, the matrix differential equation
(6) must be integrated fromτ = (k − 1)∆ to k∆ using
appropriate methods for ODEs. Since the time step∆ can
be chosen arbitrarily small, the numerical integration even
for unstableA(t) will not raise any numerical difficulties.

To compute Wk observe that for givent0, Y (t) :=
W (t, t0) in (8) satisfies the Lyapunov differential equation

Ẏ (t) = A(t)Y (t) + Y (t)AT (t) + Q(t), Y (t0) = 0 (13)

Thus,Wk can be computed asWk = Y (k∆) by integrating
the above equation fromt0 = (k − 1)∆ to tf = k∆.

To compute W̃k observe similarly that for giventf ,
Ỹ (t) := W̃ (tf , t) in (10) satisfies the Lyapunov differential
equation

− ˙̃
Y (t) = A(t)Ỹ (t) + Ỹ (t)AT (t) + Q̃(t), Ỹ (tf ) = 0 (14)

Thus, W̃k can be computed as̃Wk = Ỹ ((k − 1)∆) by
integrating the above equation backward in the time from
tf = k∆ to t0 = (k − 1)∆.

To integrate the PLDEs (13) and (14) it is important to
use methods which preserve the symmetry of the solution



and if appropriate, also its positive definiteness. For example,
methods which are able to preserve positive definiteness have
been proposed in [14].

III. SOLUTION OF PSDES

Existence conditions similar to those for periodic solutions
of PLDEs can be easily stated. The following result is a
straightforward generalization of Theorem 1 and we give it
without proof.

Theorem 2:The PSDE (3) admits a uniqueT -periodic
solutionX(t) if and only if ΨA(τ) andΨB(τ) do not have
mutually reciprocal eigenvalues.

In this section, we assume the above condition is fulfilled.

A. Periodic generator method

The computation of the solution of the PSDE (3) can be
done similarly to solving the PLDE (1). First we solve for
a given time, sayt = 0, the standard discrete-time Sylvester
equation satisfied byX(0) (= X(T )) [1]

X(0) = ΦA(T, 0)X(0)ΦT
BT (T, 0)+∫ T

0
ΦA(T, τ)C(τ)ΦT

BT (T, τ)dτ

Then, we integrate fromt = 0 to t = T the matrix differen-
tial equation (3) using any standard integration method for
ODEs. Thisone-shotapproach leads to the same numerical
difficulties as for PLDEs for long periods and/or unstable
dynamics associated withA(t) or B(t). Thus, generally the
one-shot methods are not recommended to solve periodic
differential Sylvester equations.

B. Multi-shot methods

The values of the solutionX(t) of the PSDE (3) at time
momentst and t + ∆ are related as [1]

X(t + ∆) = ΦA(t + ∆, t)X(t)ΦT
BT (t + ∆, t)+∫ t+∆

t
ΦA(t + ∆, τ)C(τ)ΦT

BT (t + ∆, τ)dτ

Let N ≥ 1 be an integer such that∆ := T/N represents
a meaningful time increment for the solutionX(t). Then,
the solution at successive time moments(k − 1)∆ and k∆
satisfies

Xk+1 = FkXkGT
k + Wk (15)

where Xk := X ((k − 1)∆), Fk := ΦA (k∆, (k − 1)∆),
Gk := ΦBT (k∆, (k − 1)∆) and

Wk :=
∫ k∆

(k−1)∆

ΦA (k∆, τ) C(τ)ΦT
BT (k∆, τ) dτ

By imposingXN+1 = X1, theN coupled equations in (11)
for k = 1, . . . , N represent a discrete-time forward periodic
Sylvester equation. To solve this equation the numerically
reliable method proposed in [11] can be used. This method
is based on the PRSFs of the periodic matricesFk andGk.

The computation ofFk, Gk, and Wk for k = 1, . . . , N
in the equation (15) can be done as follows. To compute
Fk, the matrix differential equation (6) must be integrated
from τ = (k − 1)∆ to k∆ using appropriate methods for
ODEs.Gk can be determined completely analogously with

the obvious replacement ofA(t) by BT (t). To computeWk

consider

W (t) :=
∫ t

t0

ΦA(t, τ)C(τ)ΦT
BT (t, τ)dτ

which satisfies the Sylvester differential equation

Ẇ (t) = A(t)W (t) + W (t)B(t) + C(t), W (t0) = 0

Thus, Wk can be computed asW (k∆) by integrating the
above equation betweent0 = (k − 1)∆ and t = k∆.

IV. SOLUTION OF PRDES

We address the computation of the periodic stabilizing
solution X(t) of the PRDE (4) or (5) for whichA(t) −
X(t)R(t) or, respectively,A(t) − Q(t)X(t) is stable. The
following result from [7] gives necessary and sufficient
conditions for the existence of a stabilizing solution:

Theorem 3:The PRDE (4) or (5) admits a uniqueT -
periodic stabilizing solutionX(t) = XT (t) ≥ 0 if and
only if the pair (A(t), R(t)) is stabilizable and the pair
(A(t), Q(t)) is detectable.

In this section, we assume the above conditions are ful-
filled.

A. Periodic generator method

Let H(t) be the Hamiltonian matrix corresponding to the
filtering PRDE (4)

H(t) =
[ −AT (t) Q(t)

R(t) A(t)

]

or to the control PRDE (5)

H(t) =
[

A(t) −R(t)
−Q(t) −AT (t)

]

In both casesJH(t)+HT (t)J = O, whereJ =

[
0 I
−I 0

]
,

and thusH(t) is indeed a Hamiltonian matrix. The theorem
above ensures that the monodromy matrixΨH(0) is di-
chotomic and this property is the key aspect of the following
approach to solve either the PRDEs (4) or (5) (see [15]):
1. Compute the symplectic transition matrixΦH(T, 0) (i.e.,

ΦT
H(T, 0)JΦH(T, 0) = J) which has eigenvalues sym-

metric with respect to the unit circle.

2. Compute orthogonalZ to reduceΦH(T, 0) to an ordered
RSF such that

ZT ΦH(T, 0)Z =
[

Θ11 Θ12

O Θ22

]
(16)

where Θ11 has n eigenvalues inside the unit circle and
Θ22 hasn eigenvalues outside the unit circle.

3. PartitionZ in n× n blocks

Z =
[

Z11 Z12

Z21 Z22

]

and integrate fromt = 0 to t = T the matrix differential
equation

Ṡ(t) = H(t)S(t), S(0) =
[

Z11

Z21

]



From the conformably partitioned solution

S(t) =
[

S1(t)
S2(t)

]

computeX(t) = S2(t)S−1
1 (t).

This approach is potentially numerically unreliable be-
cause it involves the numerical integration of two ODEs with
unstable dynamics: the first to computeΦH(T, 0) and the
second to computeS(t). Therefore, for large periods, this
approach will almost certainly fail because of the uncon-
trolled accumulation of roundoff errors.

B. Multi-shot methods

To alleviate the numerical difficulties related to the peri-
odic generator method, we propose an alternative approach
which relies on determining the transition matrixΦH(T, 0)
in a product form (recommended in [16])

ΦH(T, 0) = ΦH(T, T −∆) · · ·ΦH(2∆, ∆)ΦH(∆, 0) (17)

where∆ = T/N for a suitably chosen integer periodN . We
denoteHk := ΦH(k∆, (k − 1)∆) for k = 1, 2, . . . , which
is obviously anN -periodic matrix. Using the algorithm of
[8], we can determine an orthogonalN -periodic matrixZk

to reduceHk to an ordered PRSF such that

Zk+1HkZk =
[

Jk;11 Jk;12

O Jk;22

]
, (18)

whereJN ;11 · · · J2;11J1;11 hasn eigenvalues inside the unit
circle andJN ;22 · · · J2;22J1;22 hasn eigenvalues outside the
unit circle. SinceΦH(T, 0) = HN · · ·H2H1, it follows that
ZT

1 ΦH(T, 0)Z1 is in the ordered RSF (16), where both
Θ11 = JN ;11 · · · J2;11J1;11 and Θ22 = JN ;22 · · · J2;22J1;22

are in RSF, andZ is simply Z1. If we partitionZk in n×n
blocks as

Zk =
[

Zk;11 Zk;12

Zk;21 Zk;22

]

we obtain the solution of PRDE att = (k − 1)∆ as

X((k − 1)∆) = Zk;21Z
−1
k;11

Some computational aspects are relevant for a robust
implementation of this approach. Since each matrixHk is
symplectic, it is important to employ numerical integrators
which are able to guarantee this property. Note that standard
methods (even the simple explicit Euler method) do not
ensure thatHk will be symplectic. Among methods able to
compute symplectic solutions are the Gauss-Legendre (diag-
onal Pad́e approximants) methods which belong to the class
of symplectic Runge-Kutta methods [15], [17].MATLAB

software for symplectic integration is freely available [18].
To compute the values of the solutionX(t) between two

discretization momentst0 = (k− 1)∆ andtf = k∆, special
ODE solvers as those proposed in [19], [14] can be used to
integrate (4) in forward time withX(t0) = X((k− 1)∆) or
(5) in backward time withX(tf ) = X(k∆). A distinctive
feature of solvers discussed in [14] is their capability to pre-
serve the positivity of the numerical solution of differential
Riccati equations and in particular of differential Lyapunov
equations.

V. A PPLICATIONS: COMPUTATION OF SYSTEM NORMS

The proposed multi-shot techniques can be applied to
solve norm computation problems for continuous-time pe-
riodic systems of the form

ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t) + D(t)u(t) (19)

where A(t) ∈ IRn×n, B(t) ∈ IRn×m, C(t) ∈ IRp×n,
and D(t) ∈ IRp×m are periodic matrices of periodT .
In this section we assume that the periodic systemG =
(A(t), B(t), C(t), D(t)) is stable (i.e.,A(t) is stable).

System norms are important in solving many computa-
tional problems. For example, Hankel-norm based bounds
appear in solving model reduction problems of continuous-
time periodic systems [20], while theH2-norm andH∞-
norm play an important role in solving the periodicH2- or
H∞-norm control synthesis problems [21], [22], [3].

All these system norms can be defined (see [21]) in terms
of the input-output operatorGop(τ) which relates the inputs
u(t) and outputsy(t) for zero initial conditions att = τ ,
i.e.,

y(t) = [Gop(τ)u](t), t ≥ τ

Due to periodicity, the norms are defined to be independent
of τ and the definitions for constant systems are recovered.

A. Computation of Hankel-norm

Analogously to the discrete-time case [23], the computa-
tion of the Hankel-norm‖Gop‖H relies on computing the
positive semidefinite periodic reachability and observability
GramiansP (t) andQ(t), respectively, defined as

P (t) =
∫ ∞

t

ΦA(t, τ)B(τ)BT (τ)ΦT
A(t, τ)dτ

Q(t) =
∫ t

−∞
ΦT

A(τ, t)CT (τ)C(τ)ΦA(τ, t)dτ

It is well-know that the periodic Gramians satisfy the PDLEs

Ṗ (t) = A(t)P (t) + P (t)AT (t) + B(t)BT (t) (20)

−Q̇(t) = AT (t)Q(t) + Q(t)A(t) + CT (t)C(t) (21)

The Hankel-norm of the system is defined from

‖Gop‖2H = max
τ∈[0,T ]

λmax(P (τ)Q(τ))

When using the multi-shot approach to solve the PDLEs
(20) and (21), we have the values ofP (t) and Q(t) in
the discrete time grid points0 < ∆ < 2∆ < . . . <
(N − 1)∆. For practical Hankel-norm determination, we
can choose a sufficiently dense time grid and compute the
maximum eigenvalues only in the grid points. Furthermore,
interpolation can be employed to determine the norm to
higher accuracy.



B. Computation ofH2-norm

In this subsection we assumeD(t) = 0. For the computa-
tion of theH2-norm of the system (19) we mention only
two recently proposed methods. The approximation-based
method of [24], [25] relies on finite truncation of infinite-
dimensional structured matrices. For this method the choice
of truncation order guaranteeing a given accuracy of the norm
is the most critical aspect. Closed-form formulas to compute
theH2-norm have been proposed in [26], [27]. The formula
in [27] involves the evaluation of a double matrix integral by
integrating a large system of ODEs which includes the com-
putation of the transition matrices corresponding to the stable
direct and unstableadjoint system dynamics. To circumvent
unstable integrations, the inversion of the direct transition
matrix at each time moment is necessary. Additionally, a
complex matrix integral must be evaluated via complex
residuals, which involves potentially sensitive computations
in the case of multiple characteristic multipliers.

The straightforward method which we propose relies on
the evaluation of the trace formula [3]

‖Gop‖22 = trace

[
1
T

∫ T

0

C(τ)P (τ)CT (τ)dτ

]
(22)

whereP (t) is the uniqueT -periodic solution of the PDLE
(20). Let∆ = T/N be an appropriate discretization interval
and let denotetk := (k − 1)∆ and Pk = P (tk) for
k = 1, . . . , N the values of the solution determined by the
proposed multi-shot method (to be always preferred over
the periodic generator method). Then, we can compute the
squared norm‖Gop‖22 = µ(T )/T by integrating(20) with
initial condition P (0) = P1 jointly with the equation

µ̇(t) = trace
[
C(t)P (t)CT (t)

]
, µ(0) = 0

over the interval[0, T ]. This computation involves (provided
symmetry is exploited) the integration ofn(n + 1)/2 + 1
differential equations. If the accuracy requirements are not
too high, the numerical integration of(20) can be completely
avoided by employing interpolation formulas to evaluate the
integral in (22) based on the availableN discrete values
trace

[
C(tk)P (tk)CT (tk)

]
, k = 1, . . . , N .

If parallelization of computations is possible, the squared
norm can be evaluated as‖Gop‖22 = 1

T

∑N
i=1 µk(k∆), where

eachµk(t) for t ∈ [tk, tk+1] satisfies

µ̇k(t) = trace
[
C(t)P (t)CT (t)

]
, µk((k − 1)∆) = 0

which is integrated jointly with an equation of the form(20)
with initial condition P (tk) = Pk. Thus allN terms of the
sum can be evaluated in parallel.

C. Computation ofH∞-norm

The approximate computation ofH∞-norm of linear
continuous-time periodic systems has been addressed in fre-
quency domain in [24] relying on handling finite truncations
of infinite-dimensional matrices. In this paper we propose
a time-domain approach to theH∞-norm computation by
exploiting the characterization of the condition‖Gop‖∞ < γ

for a givenγ in terms of the characteristic multipliers of the
associated Hamiltonian matrix

Hγ(t) =

[
Â(t) −R̂(t)
−Q̂(t) −ÂT (t)

]

where

Â(t) = A(t) + B(t)(γ2I −DT (t)D(t))−1DT (t)C(t)
R̂(t) = −B(t)(γ2I −DT (t)D(t))−1BT (t)
Q̂(t) = CT (t)(I −D(t)DT (t)γ−2)−1C(t)

According to [21], for a stable system (19), the condition
‖Gop‖∞ < γ is equivalent to the fact that the associated
monodromy matrixΦHγ (T, 0) does not have eigenvalues on
the unit circle. This characterization can be used to compute
theH∞-norm using a standard bisection algorithm:
1. Select an upper boundγub and a lower boundγlb such

that γlb ≤ ‖Gop‖∞ ≤ γub and setγL = γlb, γU = γub.

2. If (γU − γL)/γL ≤ tol (a given tolerance), then set
‖Gop‖∞ ≈ (γU + γL)/2, stop; otherwise go to next step.

3. Setγ = (γU + γL)/2 and test‖Gop‖∞ < γ by computing
the characteristic multipliers of the associatedHγ(t).

4. If Hγ(t) has characteristic multipliers on the unit circle,
setγL = γ; otherwise, setγU = γ; go to Step 2.
After q iterations, we haveγU − γL = 2−q(γub −

γlb). Thus, to increase the efficiency of computations it
is important to have good initial approximations for the
bounds. It is possible to start with a lower boundγlb >
maxt∈[0,T ] σ(D(t)), whereσ(·) denotes the maximum singu-
lar value, and increaseγlb until no characteristic multipliers
lie on the unit circle. The corresponding value can be taken
as γub. Alternatively, the lower bound can be taken such
thatγlb > max{maxt∈[0,T ] σ(D(t)), ‖Gop‖H}, while for the
upper bound the valueγub = maxt∈[0,T ] σ(D(t))+2‖Gop‖H

can be used.
In the above algorithm we do not need to solve any peri-

odic Riccati equation, but only to compute the eigenvalues of
the monodromy matrixΦHγ (T, 0) and check for values on
the unit circle. Similarly to the case when solving a PDRE,
we choose an appropriate discretization step∆ = T/N ,
and computeΦHγ (k∆, (k − 1)∆) for k = 1, . . . , N by
numerical integration to obtainΦHγ (T, 0) in a product form
as in (17). As before, for numerical integrations the special
symplectic integration methods are appropriate [18]. For the
computation of the eigenvalues ofΦHγ (T, 0) the PRSF based
algorithm can be used [8], [9].

VI. N UMERICAL EXAMPLE

To illustrate the capabilities of the multi-shot approach,
we consider the numerical solution of the PLDE (1), where
we consider

A(t) =
[

0 1
−10 cos (t)− 1 −24− 10 sin (t)

]

and we chooseQ(t) such that the exact solution of (1) is

X(t) =
[

1 + cos (t) 0
0 1 + sin (t)

]



The period of the problem isT = 2π. The characteristic
multipliers of A(t) are e−0.046T and e−23.95T , thus the
problem is moderately stiff and moderately ill-conditioned.

We computed the unique periodic solutionX(t) of (1) us-
ing sampling periods∆ = T/N , for N = 1, 16, 64, 128, 256.
The value ofN = 1 corresponds to the one-shot method.
For the discretization of the continuoous-time problem and
solution of the resulting discretized periodic Lyapunov equa-
tions tools available in thePERIODIC SYSTEMS Toolbox
[13] have been used. In Table 1 we present accuracy results
obtained using threeMATLAB ODE solvers: the Dormand-
Prince Runge-Kutta (4,5) codeode45 , the non-stiff variable
order Adams-Bashforth-Moulton solverode113 and the
numerical differentiation formulas based stiff solverode15s
all with both the relative and absolute tolerances set to10−8.
The accuracy of solution is evaluated as‖X(tk)−X(tk)‖2
in each pointtk = (k − 1)∆, for k = 1, . . . , N .

TABLE I

ACCURACY RESULTS FORmax ‖X(tk)−X(tk)‖2

N ode45 ode113 ode15s
1 1.6 · 10−4 1.9 · 10−8 2.4 · 10−7

16 1.4 · 10−6 8.3 · 10−9 2.1 · 10−8

64 1.1 · 10−7 5.6 · 10−9 5.4 · 10−8

128 9.0 · 10−9 9.1 · 10−9 1.1 · 10−7

256 1.1 · 10−9 8.3 · 10−9 8.9 · 10−8

While the accuracy of the multi-shot method is always
better than that of the one-shot approach, the accuracy gains
obtained for the Runge-Kutta method are remarkable. Notice
that the more accurate multistep methods implemented in
ode113 and ode15s achieve their limiting accuracy al-
ready forN = 64 andN = 16, respectively.

VII. C ONCLUSIONS

We proposed severalmulti-shottype algorithms for solving
various periodic matrix differential equations. These methods
compute the periodic solutions in an arbitrary number of
equidistant time instants within one period, by employing
suitable discretizations of the continuous-time problems. In
contrast to traditionally usedone-shotperiodic generator
methods, themulti-shot methods have the advantage to be
able to successfully tackle problems with large periods and/or
unstable dynamics. We presented straightforward applica-
tions of the developed techniques in computing various
periodic system norms.

All computational techniques involves as preprocessing
step and sometimes also as postprocessing step the numerical
integration of specific matrix differential equations. This
part of computations is usually the most computer intensive
processing and we assumed tacitly that existing standard
or symplectic techniques can be used to perform them. It
appears that in all cases these computations are ”embarrass-
ingly” parallelizable, which makes the multi-shot approach
very appealing on parallel machines.
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