DESIGN AND ANALYSIS OF A LWIR DETECTOR ELECTRONIS FOR SPACE APPLICATIONS

Thomas Behnke, Matthias Grott, Jörg Knollenberg, Nicolas Napp

DLR e.V., Institute of Planetary Research, Department PSS Rutherfordstraße 2, 12489 Berlin, Germany

Outline

- 1. Detector Architecture and Analysis
- 2. Detailed Design Concept
- 3. Signal Chain Performance
- 4. Detector Characterization Lab
- 5. Summary

DETECTOR ARCHITECTURE & ANALYSIS

- PICO1024 is a high resolution 1024x768 image sensor with 17 µm pitch
- Sensitive to IR radiation in the LWIR (8 to 14µm) spectral range
- Based on amorphous Silicon (α-Si)
- Operation temperature between -40°C to +85°C
- Thermal sensitivity 30-50 mK
- Thermal time constant <12 ms
- Power consumption <220mW
- Providing a raw analog video signal (up to 4 outputs)
- Input clock signals: master clock, integration time, reset frame synchronization

• 73 bit register to configure ROIC (gain, windowing, scanning direction) via SPI

 Each pixel is electrically connected to an input of the readout integrated circuit (ROIC) designed to read each thermometer and multiplex the signals generated by all the pixels to a video output.

 The PICO1024[™] sensor present a normalized spectral response within the spectral range 8-14 µm.

$$i(\lambda) = i_0 + i_c$$

$$\frac{v_{CTIA_REF}}{R(\lambda)} = i_0 + C * \frac{\Delta(v_{O_S} - v_{CTIA_REF})}{\Delta t}$$

$$\Delta t = integration time$$

$$\int_0^t \frac{v_{CTIA_REF}}{R(\lambda)} dt = \int_0^t i_0 dt + C * \int_0^t \frac{d(v_{O_S} - v_{CTI_REF})}{dt} dt$$
Signal:
$$v_{O_S}(t) = v_{CTIA_REF} + \frac{1}{C} * t * \left[\frac{v_{CTIA_REF}}{R(\lambda)} - i_0\right]$$

$$\frac{\sum_{i=1}^{t} \sum_{j=1}^{t} \sum_{j=1}^{$$

Noise:
$$v_{O_N}(t) = \sqrt{e_{v_{CTIA_REF}}^2 \Delta f + \frac{1}{C^2} * t^2 * \left[\frac{e_{v_{CTI_REF}}^2 \Delta f}{R(\lambda)} + \frac{4kT\Delta f}{R(\lambda)} + 2qi_0\Delta f\right]}$$

- Integration time controls detector output swing
- The noise floor is dominated by integration time, only $V_{\text{CTIA}_\text{REF}}$ fraction can be suppressed at large T_{INT}

Blockdiagram of the Focal Plane Assembly

Blockdiagram of the Proximity Electronics

SIGNAL CHAIN PERFORMANCE

Spice signal analysis

11

AC Analysis

- µBolometer output voltage swing ~3.2V unipolar single ended
- Signal chain provides transformation to 1.6V pp full differential balanced signal
- Pixel clock amounts to 8 MHz

12

Noise Analysis

- Noise floor less than 8 nV/ \sqrt{Hz}
- Equal to $50\mu V \text{ rms}$ @ ~ 60MHz 3dB Bandwidth

Transient Analysis

- ~ 60 MHz 3dB flat bandwidth
- Unity gain signal

Curso	r 1 (V(adcp)-\	/(adcm))/V	(vin)	
Freq:	58.88909MHz	Mag:	-3.0187354dB	۲
		Phase:	-74.459489°	0
Group Delay:			2.8754787ns	10
Curso	r 2			1100
Freq:	N/A	Mag	N/A	-0
Phase:			- N/A	10
Group Delay:			- N/A-	
	Ratio (Cursor2 / C	Cursor1)	
Freq:	- N/A	Mag	- N/A-	
Phase			- N/A-	

Cryostat Setup

- Vacuum of 10⁻⁵ mbar, two independently controlled environments
- Temperature at the coldplate 50 K 350 K, cold shroud 50 K 350 K independently controlled
- Cooling power of 2 W at the DUT at 50 K
- Changeable, flange-mounted optical window for illumination, closed system for dark measurements
- Standard and thermally decoupled micro-D feedthroughs

Selectable Spectral Lightsource

- Radiometrically calibrated light sources
- Motorized stage allows selecting the light source:
 - Cavity blackbody, 50°C 1200°C
 - VIS-SWIR integrating sphere
 - Each light source is equipped with a filter wheel
 - 12 filters each with $\lambda/\Delta\lambda > 50$
- Collimator:
 - Aperture 5"
 - Focal length 15"
 - FoV 2.0°
 - Target wheel with 6 standard targets

Data Acquisition System idqVision

- System supports 3 protocols: channel ling 21:3, 28:4 and up to 16 bit parallel (LVDS
- 200 Msps data rate (up to 40 fps)
- GUI for quick look investigation with basic image processing tools
- Open source PYTHON API i/f to control all hardware components and custom analysis
- Source measurement unit for bias voltage and current control is available

- Types of thermal detectors to be tested in the DCL:
 - Thermopile sensors, microbolometer
 - Photon detectors (InGaAs, InSb, MCT)
 - Microbolometers
- First test is commissioning of the Lynred PICO1024
- Determination of the PICO1024 operation parameters
- Planned test for the Lynred PICO1024 microbolometer:
 - Responsivity at room temperature
 - Noise equivalent power at room temperature
 - Pixel Response Non-Uniformity at room temperature
- Further tests:
 - Responsivity and Noise Equivalent Power as a function of sensor temperature
 - Performance under non-stabilized conditions and defined temperature drift
 - Spectral responsivity at room temperature

Space Components Approach

Components in use	Function	Space Grade Equivalent	
OPA837IDCKT	OPAMP buffer	0PA4277-SP	
ADA4897-1ARZ	OPAMP buffer	0PA2H112-SP	
ADN4668ARUZ	4-channel LVDS receiver	RHFLVDS32A	
PIC01024-048	microbolometer sensor array	Qualification program	
ADM7151ARDZ-04	adjustable output LDO		
ADM7151ACPZ-02-R7	adjustable output LDO RHFL4913A		
ADM7150ACPZ-3.3-R7	3.3V fixed output LDO		
TPS62912RPUR	adjustable low noise buck converter	ISL70003	
REF3433MDBVTEP	3.3V voltage reference	IS-1009RH	
LM7705MMX/NOPB	negative bias generator		
AD5684BRUZ	4-channel DAC	DAC39RF10-SP	
ADN4667ARZ	4-channel LVDS driver	RHFLVDS31A	
LTC2313ITS8-14TRMPBF	ADC	ADC128S102QML-SP	
ADC3661IRSBT	ADC	ADC3683QML-SP	
THS4541IRGTT	FDA	LMH5485-SP, LMH6702QML-SP	
TPS3899DL08DSER	Watchdog	ISL705AEH	
XLH735128.0000001	128MHz Clock	Q-TECH	
530NC128M000DG	128MHz differential output clock		
A3PE3000-2FGG484I	FPGA	RTAX2000	
DS90CR217MTD/NOPB	Serialyzer	UT54LVDS217	
DS901 V049TMT/NOPR	I VDS Transceiver	RHFLVDSR2D2	

Summary

- Estimation of the detector output signal
- Design of a 16 bit 8 Msps readout electronics to operate LWIR PICO1024 detector
- Investigation and evaluation of the analog signal chain
- IEEE space option with power consumption < 4 W is feasible
- VIS-LWIR prospect of detector characterization
- Test campaign is scheduled for July/August 2023

