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Abstract

Multivariate time series (MTS) data are widely prevalent in various domains, in-
cluding medical screening, system monitoring or astronomy, where each instance
consists of multiple sequences with inherent temporal ordering. Detecting anomalies
in MTS is a critical research area aimed at identifying time points or patterns that
deviate from normal behaviour. The demand for not only detecting anomalies but
also processing them representatively, has led to the development of shapelet-based
anomaly detection methods, which offer both interpretability and accuracy for MTS
analysis. Despite the increasing interest in anomaly detection methods, shapelet-
based anomaly detection remains a relatively small research field. This thesis in-
troduces a novel workflow for unsupervised shapelet-based anomaly detection and
anomaly prototype identification in MTS data, combining established anomaly de-
tection methods with a shapelet-based classification framework. To evaluate different
shapelet detection techniques based on clustering and validate the effectiveness of
the workflow, experiments were conducted on both synthetic and real-world teleme-
try datasets of an exploration greenhouse. It was found, that the proposed workflow
successfully detected diverse anomaly types while demonstrating the shapelet’s in-
terpretability, especially for the real-world case. Moreover, the potential to enhance
anomaly detection appears to rely on the adapted weighting of cluster size and
distance during shapelet selection and the issue of vanishing anomalies due to the
Euclidean distance used for clustering.





Zusammenfassung

Multivariate Zeitreihendaten (MTS) sind in verschiedenen Bereichen weit verbreitet,
beispielsweise in medizinischen Untersuchungen, der Systemüberwachung oder der
Astronomie, wo jede Instanz aus mehreren Sequenzen mit inhärenter zeitlicher Ord-
nung besteht. Die Erkennung von Anomalien in MTS ist ein wichtiger Forschungs-
bereich, der darauf abzielt, Zeitpunkte oder Muster zu identifizieren, die vom nor-
malen Verhalten abweichen. Die Anforderung, nicht nur Anomalien zu erkennen,
sondern sie auch repräsentativ zu verarbeiten, hat zur Entwicklung von Shapelet-
basierten Anomalie-Erkennungsmethoden geführt, die sowohl Interpretierbarkeit als
auch Genauigkeit für die MTS-Analyse bieten. Trotz des zunehmenden Interesses an
Methoden zur Erkennung von Anomalien ist die Shapelet-basierte Anomalieerken-
nung noch ein relativ kleines Forschungsgebiet. In dieser Arbeit wird ein neuartiger
Arbeitsablauf für die unüberwachte Shapelet-basierte Anomalieerkennung und Iden-
tifizierung von Anomalie-Prototypen in MTS-Daten vorgestellt, unter Verwendung
etablierter Anomalie-Erkennungsmethoden kombiniert mit einem Shapelet-basierten
Klassifizierungsverfahren. Um die Identifizierung von Shapelets, basierend auf Clus-
tering, zu bewerten und die Effektivität des Arbeitsablaufs zu validieren, wurden
Experimente sowohl mit synthetischen, als auch mit Telemetriedatensätzen eines
Forschungsgewächshauses durchgeführt. Es zeigte sich, dass der vorgeschlagene Ar-
beitsablauf verschiedene Anomalietypen erfolgreich erkannte und gleichzeitig die
Interpretierbarkeit der Shapelets demonstrierte, insbesondere für die Realdaten.
Darüber hinaus scheint das Potenzial zur Verbesserung der Anomalieerkennung
von der angepassten Gewichtung zwischen Clustergröße und -distanz während der
Shapelet-Auswahl und dem Problem der verschwindenden Anomalien aufgrund der
für das Clustering verwendeten euklidischen Distanz abzuhängen.
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1. Introduction

Multivariate time series (MTS) data are ubiquitous in many applications, for exam-
ple medical screening [ZS23] or astronomy [LCX+21a], where each instance is associ-
ated with multiple series or sequences which have a natural temporal ordering. Mul-
tivariate time series analysis has become an important research topic, which aims to
discover time-dependent characteristics or statistics [AAXJ21][ZMK12]. Time series
anomaly detection is one form of multivariate time series analysis, aiming to find time
points or patterns, that deviate from what is seen as normal behaviour [BKS+18, p.
947]. Anomaly detection has gained growing attention from academic research and
industry, initiated by an explosion in the amount of data produced and the number
of systems requiring monitoring [GCC+23, p.1]. There exist many anomaly detection
methods, but the need for more interpretable anomaly detection resulted in the rise
of explainable artificial intelligence and thus in the development of shapelet-based
anomaly detection methods [SWP22] [CYPY21][BGCML21]. Time series shapelets
are short, discriminative subsequences that have been found not only to be accu-
rate, in terms of classification and clustering but also interpretable for multivariate
time series analysis. Their comprehensibility is primarily demonstrated by their vi-
sual simplicity, direct applicability within time series for comparative purposes, and
their role as prototypes for specific classes. [ZS23, YK09].

The EDEN NEXT GEN Project, supported by the Institute of Data Science at the
German Aerospace Center (DLR), is exploring the design as well as the detailed
analysis of all essential subsystems of an integrated Bio-regenerative life support
system (BLSS) demonstrator [ZBV+15]. Considering that such systems are designed
for highly autonomous operations management, their autarky exacerbates the usage
of expensive expert knowledge for detecting anomalous system states and types
of anomalous states in system control. In order to not only find anomalies and
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1. Introduction

anomaly types but also to capture them in a visually representative way, shapelets
could be a useful approach, focussing on the detection of anomalies in environmental
parameters and telemetric data, to counteract, if necessary, with minimal need of
an expert [ZBV+15].

In recent years, the number of shapelet-based time series analysis methods steadily
rose, providing a range of different techniques for shapelet selection and shapelet
learning [ZS23, LCX+21a, ZMK12, GSWST14]. Shapelet-based anomaly detection
otherwise is a relatively small field of research [BGCML21, p.26][SWP22][CYPY21].
Current methods can only detect whole time series as anomalous and still rely on
heuristics for crucial assumptions or do not work fully unsupervised in other ways
[AA22][BKS+18]. This work wants to reduce this gap and propose a novel workflow
for real-world multivariate time series anomaly detection with little to no label
information present. The contribution of this thesis consists of:

• a workflow for unsupervised shapelet-based anomaly detection and anomaly
type identification on time point level

• a synthetic anomaly dataset generator, based on the EDEN ISS dataset, that
allows full control over the distribution, number and type of anomalies to be
investigated

• the application to a synthetic and the EDEN ISS dataset, to compare different
designs based on machine and deep learning methods

The structure of this work is presented in the following. Chapter 2 provides an intro-
duction to time series analysis basics, anomaly detection fundamentals and existing
approaches in shapelet-based anomaly detection found in the relevant literature. Af-
ter presenting the in this thesis proposed workflow in Chapter 3, Chapter 4 offers a
comprehensive overview of the utilized methods and algorithms, along with a discus-
sion of their respective advantages and disadvantages. It describes the integration
of previous shapelet-based anomaly detection techniques with time series classifica-
tion techniques for unsupervised anomaly detection and anomaly type identification.
In Chapter 5 and Chapter 6, the proposed workflow undergoes testing in multiple
realizations to evaluate its anomaly detection capabilities, while giving meaningful

2



shapelets for anomaly types. This evaluation is carried out on both the EDEN ISS
dataset and a synthetic dataset. The synthetic dataset is generated using a custom
time series generator specifically developed for this research, based on the EDEN
ISS dataset. Chapter 7 comprises a thorough analysis of the experimental results
and offers suggestions for future improvements before concluding with a summary
and overall conclusion in Chapter 8.
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2. Related Work & State of the Art

This Chapter will introduce the basic concepts of anomaly detection and shapelets
that are relevant to this thesis as well as their application for multivariate time series
anomaly detection in general. Section 2.1 provides necessary definitions and will give
a short review of how anomaly detection integrates itself in time series analysis. It
also highlights other important analysis tasks and used methods associated with
current anomaly detection techniques. The subsequent section 2.2 gives an insight
into interpretable unsupervised multivariate time series analysis using shapelets and
shapelet detection and why they are preferable in contrast to other representation
methods. State of the art shapelet-based anomaly detection is presented in section
2.3 showing how shapelets can be used for finding anomalies and outlining what
the current limitations are. Finally, a state of the art shapelets based classification
method is explained in section 2.4 that can be combined with current shapelet-based
anomaly detection for unsupervised shapelet-based anomaly detection and anomaly
type identification for multivariate time series.

2.1. Time series analysis

Time series analysis is the task of utilizing methods to understand or model the
underlying statistics and other characteristics of time-dependent data [CC08, p. 1].
The definition of a time series is based on [SWP22, p. 1780][NIMK20, p. 1191]:

Definition 2.1.1. A time series X of length n is an ordered set of n real-valued
data points X = {x1, x2, ...xn} with data point xt ∈ Rd, 1 ≤ t ≤ n and t ∈ N. For
d = 1, X is called univariate, for d ≥ 2, X is referred to as multivariate.
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2. Related Work & State of the Art

For certain time series characteristics, for example, stationarity, time series are usu-
ally not analyzed as a whole but on subsequence level [RDN23, p. 2][NIMK20, p.
1191]:

Definition 2.1.2. A time series subsequence Xi,j = {xi, ..., xj} ⊆ X; i < j is a
contiguous segment of X, starting from position i with length | Xi,j |= j − i + 1.

Time series analysis can be divided into different areas, depending on the research
purpose: subsequence matching, anomaly detection, motif discovery, indexing, clus-
tering, classification, visualization, segmentation, pattern identification, trend anal-
ysis, summarization and forecasting [ASW15, p. 1-2]. Aspects of time series analysis
relevant to this work are classification, clustering and anomaly detection. First, time
series classification and clustering are discussed since anomaly detection is closely
related to them and many detection algorithms use classification or clustering tech-
niques internally [SWP22, p. 1781].

2.1.1. Time series classification

Classification aims to specify which of C classes prior unknown input data falls into
by learning a mapping f : Rn → {1, . . . , C} from a given training dataset. [GBC16,
p. 97]. Numerous time series classification applications exist, for example, gesture
recognition, finance, multimedia or electroencephalogram (EEG) [BB17, p. 1]. The
problem definition for the task of time series classification is taken from [FFW+19,
p. 921]:

Definition 2.1.3. A given dataset D consists of tuples (Xi, Yi), where Xi ⊆ Rd rep-
resents a univariate or multivariate time series and Yi ∈ {0, 1} is the corresponding
label vector. In the case of a dataset with C classes, the label vector Yi is a binary
vector of length C. Each element j ∈ [1, C] in Yi is set to 1 if Xi belongs to class j,
and 0 otherwise. The goal of Time Series Classification (TSC) is to train a classifier
on dataset D to learn a mapping f : X → Y from the input space to a probability
distribution over the class labels. This classifier aims to predict the class label for
new, unseen time series data.

6



2.1. Time series analysis

By definition, classification falls into the category of supervised tasks. Existing meth-
ods for classification can be grouped into five main categories, depending on what
they are based on [RFL+20, p. 403]. In the following, the focus is mainly on cate-
gories that also play a role in shapelet-based anomaly detection.

distance based methods A widely used approach in time series classification
(TSC) involves employing a 1-nearest neighbour classifier along with a customized
distance function that addresses potential offset issues by allowing some realignment
of the series. It aims to classify time series by comparing their distance values, where
smaller distances indicate greater similarity and larger distances indicate greater dis-
similarity. Dynamic Time Warping is the favoured distance function for this purpose
[RFL+20, p. 403f.].

Dynamic Time Warping (DTW) [SC07, p. 2f.] is a similarity measure for temporal
sequence comparison. It aligns sequences by minimizing the total distance between
corresponding elements. Given time series X of length n and Y of length m, the
distance between elements (i, j) is calculated using a distance function dist(i, j).
The cumulative distance matrix D is computed as:

D(0, 0) = 0

D(i, 0) = ∞; i = 1, ..., n

D(0, j) = ∞; j = 1, ..., m

D(i, j) = dist(i, j)+min(D(i−1, j), D(i, j−1), D(i−1, j−1)); i = 1, ..., n, j = 1, ..., m

The optimal alignment distance is D(n, m), representing the minimum cumulative
distance. The warping path is obtained by backtracking through the matrix D from
(n, m) to (0, 0), following the path with the lowest cumulative distances at each step.
Each step corresponds to a pair of elements in the aligned sequences. DTW is ver-
satile, accommodating variations in length, temporal distortions, and irregularities.
It is commonly used in speech recognition, gesture recognition, time series analysis,
and other applications involving temporal data. Recent studies have demonstrated
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that DTW is often considered a challenging benchmark for time series classifica-
tion. A conducted review by [BLB+16, p. 657] confirms the findings of its robust
performance, with 7 out of 19 evaluated algorithms failing to surpass DTW.

feature based approaches In these methods, a high-level representation of a time
series is constructed by using pre-determined features.

Definition 2.1.4. Time series representation, also called time series transforma-
tion: "Given a time-series data Xi = {x1, . . . , xt, . . . , xn}, representation is trans-
forming the time-series to another dimensionality reduced vector X ′

i = {x′
1, . . . , x′

m}
where m ≤ n and if two series are similar in the original space, then their represen-
tations should be similar in the transformation space too." [ASW15, p. 20]

The features can be examined in two categories. Local features are typically gen-
erated from subsequences of a time series while for global features the whole time
series is used [AB21, p. 1491][SL17, p. 3]. For local features, each real-valued sub-
sequence is discretized into a discrete word, a sequence of symbols over a fixed,
pre-defined alphabet. The model builds a histogram, a feature vector, from word
counts and finally utilizes a simple, e.g. linear, classifier on these feature vectors.
Models that proceed in this way are called bag-of-patterns and are categorised by
their discretization functions. [SL17, p. 3][RFL+20, p. 406f.] A commonly used bag-
of-patterns algorithm is WEASEL+MUSE, a model utilizing the truncated Fourier
transform and which showed to be competitive to even deep learning classification
methods. [SL17, p. 8]

deep learning A comprehensive overview of deep learning-based time series classi-
fication is neither necessary nor within the scope at this point, the reader is referred
to the relevant literature [GBC16, FFW+19]. Used deep learning methods and re-
lated basics are explained in chapter 4 to the required extent. At this point, it
is sufficient to define deep learning methods as all methods, which are considered
complex machine learning models [FFW+19, p. 921].

8



2.1. Time series analysis

Definition 2.1.5. Machine learning: "A computer program is said to learn from
experience E with respect to some class of tasks T and performance measure P ,
if its performance at tasks in T , as measured by P , improves with experience E."
[GBC16, p. 97]

A conducted deep learning review by [FFW+19] revealed, that deep learning meth-
ods based on so-called convolutional filters f for time series classification tend to
yield better results on average compared to other methods. In the context of time
series, a convolutional filter f of size fs ≤ |X| can be seen as a vector of weights
w ∈ R. The concept is to use filters as a transformation, by applying a striding dot
product between the filter f and a given time series X, from position i in X:

fs−1∑
j=0

Xi+j × fj (2.1)

and utilizing the transformed features as input to another, simpler, mostly linear,
classifier [DPW20, p. 4f.]. The learning procedure for convolutional filters [GBC16,
p. 350ff.], as defined above, is done by a problem dependent performance measure
P , the weight-dependent loss function L(w). The gradients of the loss function with
respect to the weights are computed, specifically the partial derivative of the loss
with respect to a specific filter weight wij, denoted as ∂L

∂wij
. To optimize the loss

function, an iterative process is employed w.r.t weights, the gradient descent:

w
(t+1)
ij = w

(t)
ij − η · ∂L

∂w
(t)
ij

(2.2)

where w
(t+1)
ij represents the updated weights at iteration t + 1 and η is the learning

rate. 1

While traditional filter-based methods are extensively trained and optimized on
different datasets, for the best possible results and generalisation abilities, [DPW20]
demonstrated, that instead of learning individual weights, utilizing a multitude of

1For more information about the training in deep learning see: [GBC16]. The in this work used
loss function for adopted deep learning methods can be found in section 4.1.3 and its derivation in
A
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random filters, which may only approximate relevant patterns individually, proves
to be highly effective in capturing discriminative patterns in time series when used
in combination.

By defining certain classes Ci ⊆ C as anomalous, time series anomaly detection
can be seen as a specialized field of time series classification, referring to the whole
time series or subsequences of it. Because classification falls into the category of
supervised learning methods, in the following section the unsupervised time series
clustering will be explained, as a labeless way of class determination.

2.1.2. Time series clustering

Time series clustering is a time series analysis task, which aims to discover similar
characteristics and statistics among multiple time series or subsequences and parti-
tion them into several subsets [ZS23, p. 1]. This section will introduce basic concepts
that are relevant to this work.

Definition 2.1.6. Time series clustering: "Given a dataset of n time-series data
D = {X1, X2, . . . , Xn}, time series clustering is the process of unsupervised par-
titioning of D into C = {C1, C2, . . . , Ck} such that homogenous time series are
grouped based on a specific similarity measure. A cluster Ci is defined as a subset of
D where D = ⋃k

i=1 Ci and Ci ∩ Cj = ∅ for i ̸= j." [ASW15, p. 17]

Various types of clustering algorithms exist, the ones important for this work are
partitioning and density-based methods. Since all methods used later in this thesis
are explained in more depth in section 4, they are only discussed here to the extent
necessary to understand anomaly detection.

partitioning methods A partitioning clustering technique aims to divide a set of
n unlabeled objects into k distinct groups, ensuring that each group contains at
least one object [AAXJ21, p. 8f.][ASW15, p. 26ff.]. The k-Means [AV07] algorithm
is one of the commonly used methods for partitioning clustering, where each cluster

10



2.1. Time series analysis

is represented by a centre that corresponds to the mean value of its constituent
objects. The primary objective of k-Means clustering is to minimize the overall
distance, often measured using Euclidean distance, between a set of n data points
X ⊂ Rd within a cluster and their respective cluster centre c by iteratively choosing
the k centres C:

ϕ =
∑
x∈X

min
c∈C

∥x − c∥2 (2.3)

The clustering is implicitly defined by the selection of these centres - for each centre,
a cluster is designated as the set of data points that are closer to that centre than
to any other centre. However, when applying k-Means to time-series clustering, the
task becomes challenging and non-trivial.[AV07, p. 1028][ASW15, p. 28]

density based methods Density-based clustering is a clustering approach where
clusters are formed as subspaces containing dense objects, with separation between
clusters occurring in subspaces with objects having low density [AAXJ21, p. 9]
[ASW15, p. 29]. Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN) is a well-known algorithm that operates based on the density-based concept.
It expands clusters by considering the density of neighbours, allowing the cluster to
grow in regions where points are densely packed together. Given a dataset D with
data points X = x1, x2, . . . , xn and a distance function dist(xi, xj), a point xj is said
to be density-reachable from another point xi if there exists a chain of data points
xi1 , xi2 , . . . , xik

such that xj = xik
is reachable from xi = xi1 and each successive

point in the chain satisfies the density condition, i.e., dist(xim , xm+1) ≤ eps for a
specified distance threshold eps and the minimum number of points minpts. Based
on this density reachability definition, DBSCAN identifies clusters by connecting
density-reachable points and considering their neighbourhood density. Points that
are not density-reachable from any other point are considered noise or outliers. This
method for time-series data offers several advantages, including its ability to detect
clusters of arbitrary shapes and outliers, its parameterization based on spatial close-
ness, and its flexibility in not requiring a pre-defined number of clusters k. [EKSX96,
p. 2f.][SSE+17][SEKX98]
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By focusing on unusual and unexpected patterns in time series with a high distance
regarding the similarity measure, time series clustering is closely related to time
series anomaly detection [ASW15, p. 17].

2.1.3. Time series anomaly detection

Anomaly detection is the task of detecting observations that significantly deviate
from what is considered normal. In terms of time series, anomalies can be from vari-
ous sources, a out of rhythm heartbeat in healthcare or unexpected high bandwidth
usage in cybersecurity [RDN23, p. 1f.].

The definition of anomalies is vague and varies with the use case, but these definitions
have in common, that anomalies are rare events [GCC+23, p .1]. Commonly used
general definitions describe an anomaly as a sequence of data points Xi,j of length
j −i+1 ≥ 1, which deviates from frequent patterns in the time series X with respect
to a characteristic embedding, model, or similarity measure [SWP22, p. 1780].

Definition 2.1.7. Time series anomaly: "An anomaly deviates so much from the
other observations as to arouse suspicion it was generated by a different mechanism"
[CYPY21, p. 120045] [BGCML21, p. 2].

Definitions for anomaly types are as manifold as anomaly definitions themselves.
Different authors have tried to give a universal categorisation. Anomalies can be uni-
variate or multivariate depending on whether they affect one or more time-dependent
variable [LZX+21][CYPY21][BGCML21].

Definition 2.1.8. Point outlier: A point outlier is a timestep that behaves unusually
in a specific time instant when compared either to its neighbouring points (local out-
lier) or all other values in the time series (global outlier) [BGCML21, p. 5][LZX+21,
p. 3].

12



2.1. Time series analysis

Definition 2.1.9. Collective outlier: This type of anomaly refers to subsequences,
which show a gradually different pattern over time, although each observation point
individually is not necessarily a point outlier [RDN23, p. 2] [LZX+21, p. 3][CYPY21,
p. 120045] [BGCML21, p. 56].

Definition 2.1.10. Contextual outlier: They represent an observed data point or
subsequence that is anomalous considering the specific context e.g. a measured tem-
perature value that can be considered normal in another environment, but corre-
sponds to an anomaly in the observed environment. [RDN23, p. 2][LZX+21, p. 3].

The variety of anomaly types, pattern models, and time series properties has given
rise to a wide range of detection algorithms [SWP22, p. 1780]. These algorithms orig-
inate from different research areas and authors condensed them to different method
families [SWP22, p. 1781]. An intuitive method for anomaly detection is forecast-
ing a given time series and verifying if the predicted time steps match the original
time series. These forecasting models are mostly trained in a way, that the train-
ing part of the dataset covers only normal class and is used to learn the normal
model. A deviation from this expected, normal behaviour in the test part is re-
garded as anomalous. Some models learn the normal model directly from the raw,
unknown dataset using some initial timepoints, the context window. For every con-
text window, these models assume normality. The model is periodically rebuilt on
different context windows, or the mean of a selection, to adapt to changes in the
data. [SWP22, p. 1782-1783][CYPY21, p. 120050][BGCML21, p. 15]

Other methods rely more directly on data stochasticity [BRGD19, p. 2-3]. Distribu-
tion methods fit or estimate a distribution model to the data. Calculating distribu-
tions, in this algorithm family, can either be done over data points or subsequences,
obtained through windowing. While the similarity of points and subsequences can
affect the distribution fit and very similar patterns are counted as equal, abnormal-
ity is judged based on frequency rather than distance. Typically, anomaly scores are
measured using probabilities, likelihoods or distances of the points or subsequences
with respect to the prior calculated distributions. This approach is generally unsu-
pervised under the assumption that anomalies are often found in the tails of the
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distributions. However, in the semi-supervised case, the distribution is estimated
over a training time series that only includes normal behaviour. Later, the points
or subsequences of the test time series are examined against the previously learned
distribution. [SWP22, p. 1784][BGCML21, p. 17]

As describing all employed methods in full depth would by far exceed the scope of
this thesis, other method families, like reconstruction, encoding and isolation tree
methods, will not be described and reference is made to the attached literature
[SWP22] [CYPY21] [LZX+21][BGCML21].

shapelet-based anomaly detection, in general, falls into the category of distance-
based methods. Subsequences displaying anomalous behaviour are anticipated to
have larger distances to other subsequences than subsequences with normal be-
haviour. Algorithms in this family can use all other subsequences, only some nearest
neighbours, or certain cluster centroids as distance reference points [BRGD19, p.
2]. Some methods also include a mapping of the subsequences into an appropri-
ate representation space before computing the distances. Distance-based clustering
methods cluster similar subsequences together and compute the distances to dense
areas [CYPY21, p. 120051][van19]. Often, subsequences are generated using a sliding
window with a stride of one on the test time series. Distance-based methods do not
typically require training data and are thus unsupervised. [SWP22, p. 1784][LZX+21,
p. 7][CYPY21, p. 120051]

This work draws upon a variety of algorithms that utilize distance-based methods:
DBStream [HB16], k-Means [YKH01] and PhaseSpaceSVM (PS-SVM) [MP03]. DB-
Stream and k-Means are nearest neighbour methods, calculating anomaly scores
by computing the distance of points or subsequences to their nearest neighbours.
Infrequent or unusual subsequences exhibit larger distances from their neighbours
and are therefore considered anomalous. For k-Means, the anomaly score can also
be computed by using the distances between subsequences and their corresponding
cluster centroids as anomaly scores. PS-SVM fits a one-class support vector machine
to a transformed representation of the subsequences and utilizes the inverse distance
to the decision boundary as the anomaly score. A one-class support vector machine
is a machine learning algorithm that separates normal data instances from outliers
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by creating a hyperplane with the largest margin around the normal data. [SWP22,
p. 1784].

A few anomaly detection approaches already relied on feature-based classification
with some visual interpretability. The work of [HWL15] presents an approach, where
they address the task of learning from an unlabeled set of time series that may con-
tain anomalies. Their method involves extracting basic representative features such
as mean and trend, as well as domain-specific features like the number of zero-
crossings. Anomalies are detected by estimating the density of the feature trans-
formed time series [BKS+18, p. 948]. However, these features still lack a visual
component, whereby individual time series or subsequences can be visually assigned
to a class or anomaly type. This task is performed by time series shapelets.

2.2. Time series shapelets

The in 2.1.1 introduced feature extraction is a form of dimension reduction which
helps to lower the computational cost of dealing with high-dimensional data and
achieve higher accuracy of classification or clustering. Mentioned discretization is
often required for feature-based techniques, but can cause information loss in time se-
ries data. To address this [YK09] introduced time series shapelets, or short shapelets.
Shapelets can be directly applied to time series. The similarity of time series se-
quences is measured based on comparing subsections of shapes, therefore the name
shapelet. [AAXJ21, p. 7f.]

Definition 2.2.1. "A shapelet S of length |S| is a time series subsequence of class
Cj, where Cj ∈ C, which represents class Cj and discriminates Cj from other
classes i.e. C \ {Cj}. This accounts for all time series Xj having the label Cj which
dist(Xj, S) is smaller than dist(Xk, S), where Xk is a time series having a label in
C \ {Cj}" [LCX+21b] [ZMK12, p. 3].

Shapelets are phase independent, meaning they are patterns within a time series that
define a class, but the location of this pattern is irrelevant. For instance, an abnor-
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mal ECG measurement can exhibit an uncommon pattern that sporadically appears
at any given moment during the measurement. Shapelets are subseries that capture
such distinctive characteristics, enabling the identification of phase-independent lo-
calized similarities among series belonging to the same class while giving a easy to
interpret visualization [BLB+16, p. 622].

shapelet discovery Discovering shapelets methods can be divided into two groups,
shapelet selection and shapelet learning[ZS23, p. 1]. Shapelet selection is closely re-
lated to prototype clustering, which is an essential subroutine in time-series clus-
tering approaches. In partitioning clustering algorithms, such as k-Means, a clus-
ter’s prototype, denoted as Pj, minimizes the distance between all subsequences Xn

within the cluster and the prototype. A subsequence Pj that minimizes the value of
E(Ci, Rj) is referred to as a Steiner sequence.

E(Ci, Pj) = 1
n

n∑
h=1

dist(Xh, Pj); Ci ∈ X = {X1, X2, . . . , Xn} (4.1)

In this definition, a cluster prototype and a shapelet can be seen as synonymous.
[ASW15, p. 25]

In contrast to conventional shapelet selection methods, [GSWST14] proposed a
shapelet learning approach. This is achieved by employing a heuristic gradient
descent approach for a differential shapelet-based representation and employing a
pseudo-classification objective function. The primary goal is to learn shapelets that
enhance the linear separability of the time series data following the shapelet trans-
formation. Notably, the shapelets learned through this method are not necessarily
present in the original data [ZS23, p. 1]. Other methods utilize machine learning
methods, like neural networks, for shapelet learning [MRDD21].

Since the first description, shapelets have already been implemented in time series
analysis, e.g. classification, clustering and anomaly detection.

shapelet-based classification [YK09] introduced the original shapelet algorithm,
which involves an exhaustive search of all potential candidates to find shapelets.
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The algorithm selects the best shapelet as the splitting criterion at each node of a
decision tree to determine, whether each new subsequence or time series belongs to a
class or not. The shapelet decision tree classifier compares the distance between the
testing object and the shapelet at each node. It recursively traverses the left subtree
if the distance is below the split point or threshold, and the right subtree otherwise.
This process continues until a leaf node is reached, providing the predicted class
label. [BLB+16, p. 622] [AAXJ21, p. 7f.]

A more common approach was introduced by [BB17], who proposed a shapelet
transformation approach that decouples shapelet discovery and classification. They
identify the top fS shapelets in a single run and use them to transform the data,
assigning each attribute in the new dataset as the distance dist(S, X) between a
series X and one of the shapelets S. They further employ the k-nearest neighbours
algorithm for determining the class of each representation [BLB+16, p. 623].

shapelet-based clustering In an unsupervised way, in shapelet-based clustering,
the raw time series is transformed into a condensed shapelet-based space, similar to
the transformation in classification, and the determination of time series clusters is
achieved by applying the k-Means clustering algorithm to the shapelet-transformed
representations. [ZS23, p. 1] [ZMK12]

Shapelets can provide intuitive, visually meaningful and interpretable results in time
series analysis, particularly for the unsupervised case, helping domain practition-
ers better understand their data. Since they are local features, it was shown, that
shapelets proved to be more accurate/robust in some classification tasks while also
improving computation time, compared to the other methods investigated. [YK09,
p. 2][ZMK12]

These advantages and the introduced extraction of shapelets from unlabeled data
leveraged the use of shapelets for anomaly detection. However, using shapelets for
anomaly detection has not gained much attention yet. [BGCML21, p. 55][BKS+18,
946][ZMK12]
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2.3. Shapelet-based anomaly detection

Anomaly detecting methods, based on shapelets, fit seamlessly into the above de-
scribed algorithm family of distance-based methods as a subcategory of methods,
which aim to find more interpretable detection results [BGCML21, p. 55]. Instead
of utilizing all generated subsequences, like described above, shapelets are short,
discriminative and representative time series subsequences of one class [YK09, p.
1-3].

A common workflow observed in the literature incorporates elements of nearest
neighbour methods, transformed representation, and occasionally a reference model
of normal behaviour, as previously introduced. A supervised algorithm introduced
by [AA22], for example, includes a mapping of the time series into a list of vectors,
the so called orderline Ds, by calculating the squared Euclidean distance between
shapelets Sj ∈ S and all time series subsets Xi ∈ X, both of fixed length l

dist(Sj, Xi) =
l∑

t=1
(st − xt)2 (2.4)

and ranks the shapelets, utilizing the transformation, regarding their information
gain. If a time series dataset X can be divided into two classes, labeled as C1 and
C2, the entropy of X can be calculated as:

H(X) = −p(C1)log(p(C1)) − p(C2)log(p(C2)) (2.5)

where p(C1) and p(C2) represent the proportions of objects in classes C1 and C2

respectively. The information gain [YK09, p. 3] of a split is determined by the
difference between the entropy of the entire dataset and the weighted sum of average
entropies for each split.

Definition 2.3.1. Information gain: Given a time series dataset X, a shapelet S,
and a distance threshold dt, the dataset X is divided into two sub-datasets Xa and
Xb. Each time series in Xa satisfies the condition dist(Xai, S) < dt, while each
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series in Xb satisfies dist(Xbi, S) ≥ dt. The information gain at each split point is
calculated as [AK21, p. 4f.]:

IG = H(X) −
(

|Xa|
|X|

H(Xa) + |Xb|
|X|

H(Xb)
)

(2.6)

The IG value ranges between 0 ≤ IG ≤ 1. Based on the distance from every shapelet
candidate to every time series, shapelets with more discriminative power will gen-
erate small distances when compared to a time series of its own class and therefore
will have a higher information gain. By ranking and selecting the shapelets, compu-
tational effort can be minimized in contrast to utilizing all extracted subsequences.
Based on the IG of each individual split, a classifier divides the labeled anoma-
lous time series with their associated shapelets using the transformed data space,
while maximizing summarized IG as target function. With the rise of deep learn-
ing and automated feature extraction, shapelet identification and classification was
turned into an end-to-end deep learning task, for example using deep support vector
data description (SVDD) by [ZZSG22]. [ZZSG22] tried to learn a shapelet-based
time series representation, where all anomalous time series samples lie outside a
given hypersphere of radius R and normal class within. Advantageous is that the
proposed methods learn multi-scale length shapelets, instead of using fixed length
shapelets, but still rely on supervised datasets while making the shapelet identifica-
tion a black-box model.

[BKS+18] showed a similar to PS-SVM [MP03] approach and demonstrated how
SVDD can be extended for unsupervised time series for fixed length shapelets, using
shapelet learning [GSWST14]. With a time series transformation Φ(X; S1, ..., SfS

),
calculated similar to [AA22],with fS being the number of final shapelets S, a given
decision boundary R, a regularization parameter C and slack variable θ, [BKS+18]
define a solution to the constrained optimization problem:

arg min
R,S,θ

F (R, S) = R2 + C ·
N∑

i=1
θi +

N∑
i=1

||ϕi||2 (2.7)
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s.t.||ϕi||2 ≤ R2 + θi, θi ≥ 0, ∀i = 1, ..., N

with ϕi = Φ(Xi; S1, ..., SfS
). Initially, all representation points ϕi lie within a scat-

tered feature space. By learning best fitting normal class shapelets, normal class
representation points are drawn towards the origin of the feature space, leaving
anomalous time series as outliers. However, the proposed algorithm is only able to
learn the normal class from the data and not anomalies or their types. Given the lack
of existing literature supporting unsupervised anomaly detection methods capable of
simultaneously identifying different types of anomalies and providing representative
shapelets for both anomalous and normal classes, approaches have been drawn from
the broader domains of shapelet-based time series classification and clustering.

2.4. ShapeNet

A lot of research in unsupervised time series clustering and classification exist
[RFL+20][FFW+19][RPY+22][AAXJ21][yan18][ASW15], but the possibility of a mod-
ular workflow, which can combine the advantages of already known classification
methods with the above mentioned anomaly detection algorithms, led to the final
selection of the ShapeNet framework [LCX+21a]. ShapeNet was developed to provide
more interpretability in the methods of end-to-end classification models. It consists
of four individually configurable parts, namely shapelet discovery, shapelet selection,
shapelet transformation and a final time series classification. The goal of shapelet
discovery is the grouping of shapelets to find maximally representatives shapelets
of a cluster in an unsupervised manner. The process of candidate creation, which
serves as the starting point for shapelet discovery, bears similarities to the methods
introduced in Section 2.3. Initial shapelet candidates are all time series subsequences
of different lengths, found by using sliding windows of discrete sizes. Similar to, e.g.
DBStream [HB16] or k-Means [YKH01], all shapelet candidates are clustered based
on their distance to each other [LCX+21a, p. 8376f.].
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Since shapelet discovery is unsupervised, clustered shapelets are sorted to obtain
the final number of shapelets fS, eliminating duplicates from dense, overlapping
candidate clusters. At the same time, strong outliers must be preserved as proba-
ble representatives of rare classes [LCX+21a, p. 8378f.]. This is called the shapelet
selection.

ShapeNet uses the already introduced time series transformation as a means of
dimension reduction and time series representation [BB17][MP03]. Regions of the
time series X that are close to a given shapelet SfS

shall have small transformation
values, simplifying the use of classification algorithms, assuming the shapelets are
representative of a class. [LCX+21a, p. 8378f.]

Finally, the shapelet transformation is used by a simple, linear classification module
learning the time series classes [LCX+21a, p. 8379]. It was shown, that the classifica-
tion accuracy of the proposed ShapeNet framework is above the introduced DTW,
WEASEL+MUSE or convolutional filter based methods while it is also capable of
providing easy to understand, meaningful shapelets. In this work, the ShapeNet
framework will be adapted to extend current anomaly detection and shapelet-based
anomaly detection methods [LCX+21a].
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This chapter gives a short explanation about how state of the art shapelet based
time series classification frameworks can be taken as inspiration, expanding the cur-
rent anomaly detection algorithms to fit the defined goal of this thesis. The finalized
workflow of this thesis is presented in this section. It is described how anomaly
detection algorithms can be combined with the presented ShapeNet framework to
obtain an easily configurable, interpretable unsupervised time series anomaly detec-
tion. For every part a short description is given and an explanation how the target
of the part is embedded in the overall thesis target. After the overview has been
given, the used algorithms are described in the next section.

The Workflow retains the described four-part modular structure, as seen in figure
3.1.

shapelet discovery
anomaly
detection

shapelet selection

x x

x

x

x multivariate
time series

transformation

multivariate
time series (MTS)

shapelets candidates
of different lengths

final
shapelets

cluster Nr.
MTS positions

Figure 3.1. – The proposed workflow for unsupervised interpretable
anomaly detection, in accordance with [LCX+21a]

Shapelet discovery initiates univariate shapelets as windowed subsequences of the
time series and clusters them subsequently. By considering anomaly types as classes,
clustering provides a grouping of all initial shapelets for further filtering. Since the
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initial shapelets are of unknown type, the task of selection is to create a balance be-
tween shapelets from large clusters and shapelets that are outliers but can be counted
as examples of rare anomaly types. By only choosing maximum representative final
shapelets, the computational effort is reduced but nevertheless, high possible inter-
pretability should be preserved. Shapelet multivariate time series transformation is
also already widely recognized, as well for classification as anomaly detection and
will be inherited by this thesis. Because labels for the whole time series, subsequence
or time points are non existent, a representation is needed, that makes it possible to
identify all anomaly types, point, collective or contextual outliers. Current anomaly
detection literature does not provide a suitable solution with the desired represen-
tation properties, therefore a new transformation is proposed in this thesis. Lastly,
anomaly detection receives the multivariate time series transformation and decides
based on the distance values if a time point, sequence or time series can be identified
as an anomaly or not. Anomaly detection will be unsupervised since no information
about the dataset will be given. In addition to the anomaly tags of the time series,
anomaly detection shall return additional information about the final shapelets, for
example, the corresponding cluster or for which time points it influenced decision
making about being detected as normal or anomalous.

The proposed method has two main advantages: firstly, an operator receives infor-
mation where to find anomalies in the dataset. Different types of anomalies should
be easily identifiable, using the cluster information of each final shapelet and where
in the time series it was used for anomaly detection. Final shapelets of the same
shape, in the same or close clusters, which have detected similar anomalies, form the
anomaly prototypes. The previous selection should ensure that few best representa-
tive shapelets are used, which makes a possible later labelling much easier and more
intuitive since the anomaly prototypes are more intuitive to distinguish and anoma-
lies do not have to be searched manually in the dataset. Secondly, even though parts
of the proposed workflow are already used in anomaly detection (e.g. subsequence
clustering) or shapelet-based anomaly detection (e.g. time series transformation), it
has not yet been tested as a whole in this form, so the white-box modular design
allows improvements to be made more quickly or performance problems to be traced
back to individual parts that can be changed in future work.
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Based on the in chapter 3 introduced workflow, each part will be explained in detail
in this section and information about the used algorithms and techniques is given.

4.1. Shapelet discovery

Shapelet discovery starts by extracting univariate shapelets from the dataset X using
windowing [LKWL07]. The window size for initial univariate shapelets candidates S
with length |S| is contingent upon the time series length |X|, with tunable parameter
α:

|S| = α · |X| (4.1)

Each candidate is annotated with a variable label as preparation for the shapelet
transformation in section 4.3. All initial shapelets are clustered.

A large number of clustering methods have been proposed over the past decades, in-
cluding centroid-based clustering, density based clustering and deep learning based
clustering [RPY+22]. Shapelets fall into the category of shape-based clustering ap-
proaches [ASW15, p. 19] and only methods suitable for anomaly detection or shapelet-
based time series analysis were implemented in this work.

4.1.1. k-Means

Within the centroid-based clustering methods, k-Means is a common one used for
both classification and distance based anomaly detection, as shown in section 2.3.
The k-Means clustering [AV07] problem aims to partition a given dataset into k
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distinct clusters, such that the within-cluster sum of squares (WCSS) is minimized.
WCSS represents the sum of squared distances between each data point and its
assigned centroid. For the k-Means problem, an integer k and a set of n data points
X ⊆ Rd are given. The objective is to select k centers C to minimize the potential
function:

ϕ =
∑
x∈X

min
c∈C

||x − c||2 (4.2)

The choice of these centres implicitly defines clustering, where each centre represents
a cluster consisting of data points closer to that centre than to any other. Datapoints
closest to the cluster centre are called centroids. The k-Means problem is known to
be NP-hard, making it difficult to find an exact solution.

Optimal clustering is denoted as COPT and its corresponding potential as ϕCOPT.
For a given clustering C with potential ϕ, ϕ(A) represents the contribution of subset
A ⊆ X to the potential, defined as ϕ(A) = ∑

x∈A minc∈C ||x − c||2.

The k-Means algorithm is a simple and efficient method that aims to improve an
arbitrary k-Means clustering locally. The algorithm follows these steps:

1. Arbitrarily choose k initial centers C = {c1, . . . , ck}.

2. For each i ∈ {1, . . . , k}, assign the points in X closer to ci than to any other
center cj (j ̸= i) to cluster Ci.

3. Update each centre ci to be the centre of mass of all points in cluster Ci: ci =
1

|Ci|
∑

x∈Ci
x.

Repeat Steps 2 and 3 until the clustering C no longer changes.

It is common practice to initialize the centres randomly from X. In Step 2, ties
can be broken arbitrarily as long as the method is consistent. Both Steps 2 and
3 guarantee a decrease in the potential function, leading to local improvements in
the clustering. The decrease in potential in Step 3 can be demonstrated with the
following:
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Let O be a set of points with a centre of mass c(O), and let z be an arbitrary point.
It follows that,

∑
x∈O

||x − z||2 −
∑
x∈O

||x − c(O)||2 = |S| · ||c(O) − z||2 (4.3)

Monotonicity in step 3 follows by considering O as a single cluster and z as its initial
centre.

The k-Means algorithm is appealing in practice due to its simplicity and efficiency.
However, it is only guaranteed to find a local optimum, which can often be subop-
timal for the clustering problem and is highly dependent on the initialization of the
centroids. To mitigate this problem, the computation is typically repeated multiple
times, each time initializing the centroids differently. One approach that aims to
alleviate this issue is the k-Means++ initialization scheme. At any given time, let
D(x) denote the shortest distance from a data point x to the closest centre that has
already been chosen. k-Means++ is defined as follows:

1a. Choose an initial center c1 uniformly at random from X.

1b. Choose the next center ci by selecting ci = x0 ∈ X with probability D(x0)2∑
x∈X

D(x)2 .
1c. Repeat Step 1b until a total of k centers have been chosen.

2-3. Proceed as with the standard k-Means algorithm.

The weighting used in Step 1b, where centres are chosen with probabilities propor-
tional to D(x0)2, is referred to as "D2 weighting".

4.1.2. DBSCAN

Density-Based Spatial Clustering of Applications with Noise, DBSCAN, [EKSX96,
p. 2-3] [SEKX98, p. 170-181] [SSE+17, p. 2-5] is a density based clustering method,
already used for anomaly detection, e.g. in [HB16], that groups together data points
based on their density in the feature space. It does not require the user to specify
the number of clusters beforehand.
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Let X be the set of data points to be clustered. The fundamental idea is that each
point in a cluster should have a neighbourhood with a minimum number of points
within a given radius, indicating a higher density in that region, as described in
equation (4.4). The shape of the neighbourhood Neps(xi) of point xi is determined
by the chosen distance function, denoted as dist(xi, xj), between two points xi and
xj.

Neps(xi) = {xj ∈ X|dist(xi, xj) ≤ eps} (4.4)

To determine clusters, a naive approach would require a minimum number (minpts)
of points in the eps-neighbourhood of each point. However, this approach fails due
to the presence of two types of points within a cluster: points inside the cluster (core
points) and points on the cluster’s border (border points).

Definition 4.1.1. Core point: A data point xi ∈ X is a core point if there are at
least minpts data points within a distance of eps from it, including itself.

Definition 4.1.2. Border point: A data point xj ∈ X is a border point if it has
fewer than minpts data points within a distance of eps from it, but it is within the
eps-neighbourhood of a core point.

Figure 4.1 shows an example with core points in red and border points in yellow,
minpts is set to 4. Since the eps-neighbourhood of a border point generally contains
significantly fewer points compared to the eps-neighbourhood of a core point it
would be necessary to set the minimum number of points minpts to a relatively low
value to include all points within the same cluster. However, this value would not
be representative of the cluster, especially in the presence of unwanted noise (blue
point N). To address this, it is required for every point xi in a cluster C that there
is a point xj in C so that xi is inside the eps-neighbourhood of xj and Neps(xj)
contains at least minpts:

xi ∈ Neps(xj) and |Neps(xj)| ≥ minpts

This is called directly density-reachable, which is symmetric for pairs of core points.
The density postulation by DBSCAN allows to canonical extend-density reachable
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for chains of points. A point xj is density-rachable from point xi w.r.t. eps and
minpts if there exists a chain of points x1, ..., xn where x1 = xj and xn = xi,
such that xi+1 is directly density-reachable from xi. In figure 4.1 the red coloured
points A are core points and directly density-reachable. For example the leftmost
and rightmost points A in figure 4.1 are density reachable. The relation is transitive
but not symmetric in general, except for core points.

Figure 4.1. – Clustering using DBSCAN. Red points A are core points, B
and C are border points, N denotes an outlier with a distance

> eps to the next core point. Figure in accordance with
[SSE+17, p. 3]

While it is possible that two border points within the same cluster C may not
be density-reachable from each other due to the core point condition not being
satisfied for both of them, it is necessary to have a core point in C from which
both border points are density-reachable. To address this situation, the concept
of density-connectivity is introduced, which encompasses the relationship between
border points. A point xj is density-reachable from point xi w.r.t. eps and minpts

if there is a point xo such that xi and xj are density reachable from xo

Using these definitions, clusters can be defined as sets of density-connected points
that are maximal in terms of density-reachability. Noise refers to points in X that do
not belong to any cluster. A cluster C with respect to eps and minpts is a non-empty
subset of X satisfying the following conditions:

1. ∀ xi, xj: if xi ∈ C and xj is density-reachable from xi with respect to eps and
minpts, then xj ∈ C (Maximality).
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2. ∀ xi, xj ∈ C: xi is density-connected to xj with respect to eps and minpts

(Connectivity).

One major advantage of DBSCAN is it ability to sort out noise points in clustering.

Definition 4.1.3. Noise point: Noise is defined as the set of points in the database
X that do not belong to any cluster Ci, i.e., noise = {xi ∈ X|∀i : xi /∈ Ci} for all
clusters C1, ..., Ck w.r.t. epsi and minptsi, i = 1, ..., k.

A noise point is shown as a blue outlier in figure 4.1.

4.1.3. Mdc-CNN

k-Means and DBSCAN utilizing the Euclidean distance, as described above, can
not be applied to time series classification if candidate shapelets are of different
lengths. For multi-length shapelet clustering, ShapeNet adopts a few existing studies
as building blocks to embed all the shapelet candidates from the original space into
a new unified space [LCX+21a, p. 8375f.].

As basis a Convolutional Neural Network (CNN) [LHBB99] is used. Deep CNNs
have demonstrated remarkable performance in image recognition tasks, achieving
human-level accuracy, as well as in natural language processing tasks. Inspired by the
success of CNN architectures in these domains, researchers have started to explore
their application in time series analysis [FFW+19, p. 924f.][CYPY21, p. 120054f.].
In the context of time series analysis, a convolution for two real-valued time series
f, g : Rn → R operation can be viewed as the application of a sliding filter over the
time series. The filter f can be seen as a generic non-linear transformation applied
to the time series g [GBC16, p. 327f.]:

[f ∗ g](t) =
∫

Rn
f(u)g(t − u)du =

∞∑
u=−∞

f(u)g(t − u) (4.5)

where the second part of the formula denotes the discrete convolution under the
assumption, that f and g are defined only on integer t. The general formulation
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for applying one-dimensional continuous convolution F at a centred time stamp t is
given by the following equation [FFW+19, p. 924f.]:

Ft = a(f ∗ Xt−l/2:t+l/2 + b) | ∀t ∈ [1, T ] (4.6)

where Ft denotes the result of a convolution (dot product ∗) applied on a univariate
time series X of length T with a filter f of length l, a bias parameter b and a final
non-linear activation function a. As can be noted in the calculation of Ft, the original
convolution violates the temporal causality, because values after a given time point
t are included (t + l/2). [BKK18, p. 3f.] presented the dilated causal convolutional
network (dc-CNN) which is designed such that the future data does not "leak" to
the past. Secondly, dc-CNN can take sequences of any length and map them to an
output sequence of equal length. The dilated convolution operation f on element t

of a sequence X is defined as:

F (t) = (X ∗d f)(t) =
fs−1∑
i=0

f(i) · Xt−d·i (4.7)

with dilation factor d, filter size fs and t − d · i accounting for the direction of
the past. For d = 1, dilated convolution equals conventional convolution. For every
layer, the number of accessible input points for one filter, the receptive field, can be
increased by a larger filter size or dilation factor, where the effective history of one
such layer is (fs − 1)d. Commonly, d is exponentially increased with the depth of
the network, i.e. d = O(2i) at level i of the network. Although the dc-CNN output
can be of the same length as the input, it can not handle inputs of various lengths
simultaneously. ShapeNet [LCX+21a, p. 8377] modified the dc-CNN by stacking a
max pooling layer and a linear layer on top of the last dc-CNN layer, to embed
different sized shapelets into a unified space. The output of the new multi-length-
input dilated causal CNN (Mdc-CNN) is called the shapelet candidate embedding.
A further illustration of the Mdc-CNN can be seen in figure A.1.

The Mdc-CNN can be trained in an unsupervised manner. The objective of learn-
ing/training is to ensure, that similar shapelets obtain similar representations and
vice versa. The cluster-wise triplet loss [LCX+21a, p. 8377f.] takes multiple posi-
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tive and negative samples and the distances among them as input. One candidate
shapelet is randomly selected as anchor sample s. Then from the same cluster, top
S+ other shapelet candidates nearest to the anchor are chosen as positive samples
s+. For negative samples s− candidates are randomly picked from other clusters.
Various triplet tuples (s, s+, s−) are constructed, namely (s, ∪i∈[1,S+]s

+
i , ∪i∈[1,S−]s

−
i )

from shapelet candidates at the beginning of each iteration. For simplicity, in the
following, the loss is demonstrated for two clusters. First, the normalized distance
of the positive (negative) samples from the anchor is denoted as DAP , DAN and a
margin tmargin is enforced as regulation parameter:

DAP + tmargin < DAN (4.8)

With implementation of squared mean Euclidean distance, DAP and DAN can be
defined as

DAP = 1
S+

S+∑
i=1

||f(s) − f(s+
i )||22 (4.9)

and

DAN = 1
S−

S−∑
i=1

||f(s) − f(s−
i )||22 (4.10)

where f(·) ∈ Rz is the representation embedded by Mdc-CNN of length z. Addi-
tionally to the distances between the anchor and the positive (negative) samples, the
distance among the positive Dpos (negative Dneg) samples are included and should
be small (large):

Dpos = max
i,j∈(1,S+)∧i<j

{||f(s+
i ) − f(s+

j )||22} (4.11)

and
Dneg = max

i,j∈(1,S−)∧i<j
{||f(s−

i ) − f(s−
j )||22} (4.12)

The intra-sample loss is defined as:

Dintra = Dpos + Dneg (4.13)
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Putting all together, the cluster-wise triplet loss function for training the Mdc-CNN
unsupervised is given as:

L(f(x), f(s+), f(s−)) = log
DAP + tmargin

DAN

+ tintra · Dintra (4.14)

with hyperparameter tintra. Following the standard practice [GBC16, p. 330], Mdc-
CNNs use shared weights for training models of shapelet candidates of different
lengths and variables. The derivation of the loss function for the network training
is given in A.

4.2. Shapelet selection

Shapelet selection determines the final shapelets SfS
. Methods are the in section 2.3

introduced information gain [AA22] or a utility function by ShapeNet [LCX+21a, p.
8379]. Since information gain, as introduced in anomaly detection, rely on labelled
data, the utility function will be used within this work. Shapelet selection ranks the
candidate shapelets and selects the most representative ones by a utility measure
denoted by U(si). The first term in U(si) represents the size of the candidate’s
cluster. A larger cluster indicates that the candidate represents a greater number of
candidates. The second term measures the candidate’s distance to other candidates
in different clusters. A larger distance suggests that the candidate is distinct from
the other candidates. For k-Means, a simplification can be made by considering only
centroids as shaplelet candidates, since these correspond to the average of a cluster
and the computational effort is thus reduced:

U(si) = γ · log(size(C(si)))
log (maxY

i=1(size(C(si))))
+

(1 − γ)
log∑Y

j=1 ||C(si) − C(sj)||22
log(maxY

i=1(
∑P

j=1 ||C(si) − C(sj)||22))

(4.15)

where si with i = 1, ..., Y is the currently evaluated shapelet of all Y initial shapelets.
C(si) denotes the cluster of shapelet si and γ ∈ [0, 1] controls the trade-off between
cluster size and distance to other candidates. To further simplify the calculations,
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for k-Means only shapelets that are centroids or closest to them are considered for
evaluation.

The top-fS candidates among all Y clusters based on the ranking provided by equa-
tion (4.15) are selected. These selected candidates correspond to the original time
series subsequences and are denoted as SfS

, representing the final shapelets.

4.3. Shapelet transformation

Shapelet transformation was proposed for the Shapelet Tree algorithm. Shapelets
were used to form rules within a decision tree. It was later shown, that using shapelets
in data transformation produces significantly better accuracy for complex classifiers
combined with faster enumeration [BB17, p. 1]. Hence, by interpreting anomaly
types as classes, shapelet transform achieved comparable to above-average anomaly
detection scores for supervised studies [BKS+18][AA22]. Shapelet transformation,
for a chosen set of shapelets S = (S1, ..., SfS

), is a method to transform a multivariate
time series dataset D of dimension M ×V ×N into a new data space, by calculating
the distance between each shapelet in S and each multivariate time series instance
Xm in D [LCX+21a, p. 8379][ASW15, p. 23]:

Φ(Xm; SfS
) = dist(Xv

m; SfS
) (4.16)

where the variable v ∈ V of Xv
m and SfS

is the same. The M ×k-dimensional feature
representation of the MTS instance Xm is then given as:

Φ(Xm; S) = Φ(Xm; S1, ..., SfS
) (4.17)

After the transformation of the multivariate time series is completed, some standard
classifiers can be applied to learn a classification model from the representation
[LCX+21a, p. 8379] [BKS+18, p. 951-953].

The originally proposed method for obtaining dist(Xv
m; SfS

) conducts a striding
euclidean distance calculation between a given shapelet SfS

of length |SfS
| and a
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time series Xv
m with length |Xv

m| > |SfS
| for all subsequences (xv

m,j, ..., xv
m,j+|SfS

|−1)
in Xv

m. As the final representation value is the minimum along all initial time points
j returned, as seen in formula (4.18) [LCX+21a, p. 8379] [BKS+18, p. 950]:

dist(Xm; SfS
) = min

j=1,...|Xv
m|−|SfS

|+1

1
|SfS

|

|SfS
|∑

l=1
(xv

m,j+l−1 − xSfS
,l)2 (4.18)

Intuitively, Φ(Xm; SfS
) is the distance of the shapelet to the most similar subse-

quence in Xv
m. If time series Xv

m consist of more than one class, it needs to be split
in sub parts of length larger than |SfS

|, each representing one class.

Using the minimum Euclidean distance as an anomaly score metric has a few major
drawbacks. The minimum Euclidean distance was admittedly successfully used to
determine if a given time series, or sub part of it, is anomalous or not. But only
for supervised experiments, where the time series, or sub parts, can be assigned to
one class and is labelled as such [BKS+18, p 951-959][BB17, p. 3-4][AA22, p. 5-12].
For example, [AA22] manually labelled every time series part as normal class or as
a member of different anomaly types. This is not applicable for truly unsupervised
environments, where the number of anomaly types is unknown and little to no
information is present to their exact position in the dataset, making it impossible
to draw clear class boundaries. The decision, whether a data point or a subsequence
is anomalous or not and a subcategorization of anomaly types, needs to be possible
without further information, but the raw dataset.

Regarding those problems, an adapted distance metric for time series transformation
is proposed. Instead of using the minimum Euclidean distance, the squared distance
was used. For all subsequences (xv

m,j, ..., xv
m,j+|SfS

|−1) in Xv
m starting at initial time

point j, it is defined as:

distj(Xv
m; SfS

) = (xv
m,j − xSfS

,j)2; j = 1, ..., |SfS
| (4.19)

resulting in distj(Xv
m; SfS

) to be of length |SfS
|. The overall distance dist(Xm; SfS

)
between the whole time series instance and shapelet SfS

is then found by striding
the shapelet over all starting points j = 1, ..., |Xv

m| − |SfS
| + 1 and only updating
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dist(Xm; SfS
) if the current distance distj+1(Xv

m; SfS
) = distj+1 is smaller for every

value than distj(Xv
m; SfS

) = distj, for all matching x:

dist(Xm; SfS
) =

distj(Xv
m; SfS

); distj+1 > distj, ∀x ∈ distj

distj+1(Xv
m; SfS

); distj+1 < distj, ∀x ∈ distj

(4.20)

Figure 4.2 shows the distance calculation and the final distance vector dist(X; SfS
)

between a generic anomalous time series X and a shapelet SfS
, where the distance

values are given for every tenth x ∈ X.

Figure 4.2. – Time series transformation for a generic time series X and a
exemplary shapelet SfS

with the proposed distance
calculation

The new time series representation Φ(Xm; S) is now of shape V × N × fS, instead
of a vector, depicted in figure 4.3. One major advantage of this calculation is the
possibility to implement anomaly detection methods on time point level, while the
time dependency within the shapelet sequence is not lost. Most importantly it al-
lows completely unsupervised anomaly detection since no prior time series labelling
is needed. With a large enough amount of shapelets SfS

, anomalous points, or sub-
sequences, should manifest by having large distances to many and small distances
to few shapelets, assuming normal class majority in the dataset. An unsupervised
clustering method should be able to identify those points and associated shapelets,
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Figure 4.3. – Multivariate time series transformation for a time series
instance Xm and fS shapelets SfS

allowing to trace back these shapelets within the shapelet clusters, indicating if a
given shapelet cluster accounts for a unique type of anomaly or normal class.

4.4. Shapelet-based anomaly detection

In this work, the proposed classification case of the transformed time series in
ShapeNet is transitioned to an unsupervised anomaly detection task by implement-
ing already examined algorithms. Current shapelet-based anomaly detection does
not support unsupervised anomaly detection utilizing the representation Φ(Xm; S)
[AA22, BKS+18]. As a result, algorithms from the broader field of time series clus-
tering and anomaly detection are employed. Given the absence of labelled data,
the approach essentially resorts to clustering techniques, which are already ap-
proved for anomaly detection [BGCML21, p. 26]. Among the various clustering
algorithms, k-Means has proven to be effective and extensively researched [ASW15,
p. 26-28][YKH01]. Therefore, k-Means was adopted for the task.

The primary objective is to cluster time points or sequences into anomalous or non-
anomalous categories. Due to the unknown number of anomaly types, the clustering
process often aims to identify patterns and groupings that distinguish anomalies from
normal instances, a binary decision making [AAXJ21, p. 8]. By leveraging k-Means,
the only parameters to discover meaningful clusters that capture the underlying
structure of the representation are the cluster number k set to 2.
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As mentioned in the previous chapter, the closest final shapelet to an anomalous
point or sequence is easily identifiable, by searching for the index k of the lowest
distance in Φ(Xm; S). Following the denotation in chapter 3 those shapelets are
called the anomaly prototypes. Tracing back the anomaly prototypes to its adjunct
cluster in shapelet discovery gives interpretable information about the estimated
number of anomaly types and their distance to other types in the shapelet space.
With described shapelet-based anomaly detection, an operator receives information,
where possible anomalies are and if the detection was based on normal class or
by finding an anomaly prototype. As shapelet discovery and selection reduced the
size of the shapelet space while maintaining validity, anomaly prototypes account
for a significantly smaller number of shapelets than initial candidates accelerating
anomaly type labelling.
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In this chapter, the fundamentals of the implementation are described. The first part
describes both the measured dataset in section 5.1 and subsequently the synthetic
dataset in section 5.2, while evaluation measures are explained in section 5.3. Lastly,
in section 5.4 the experimental design is shown.

5.1. Eden ISS FEG Dataset

In this work, the dataset from the Future Exploration Greenhouse (FEG) within
the EDEN ISS Project [ZBV+15, Dan17, BV17] was used. The FEG is part of the
mobile test facility with two major objectives [ZBV+15, p. 8]:

"Design of a space analogue mobile test facility for a 12+ month mission in Antarc-
tica to provide representative mass flows and proper test environments for plant
cultivation technologies as an essential on-ground preparatory activity for future
space exploration."

and

"Integration and test of key elements for plant cultivation in 1) an ISPR-like system
(International Standard Payload Rack) for future tests on-board ISS and 2) a Fu-
ture Exploration Greenhouse (FEG) to prepare for closed-loop bio-regenerative life
support systems."

A schematic view of the mobile test facility can be seen in figure 5.1. It is divided into
two parts, the FEG and a service section, containing all monitoring and controlling
systems. The FEG is the main plant growth area of the mobile test facility, including
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multilevel plant growth racks operating in a controlled environment [ZBV+15, p. 12].
Cultivated crops include lettuce, spinach, tomatoes, cucumbers, radish and more 1

[ZBV+15, p. 152].

Figure 5.1. – The schematic structure of the FEG and affiliated service
station [Sch17]

Monitoring inside the FEG started on 11.01.2018 and ended on 31.12.2020, with a
sample every five minutes, resulting in 312642 samples. The used dataset consists of
measurements taken from nine different sensors. Sensors include: temperature, CO2

concentration, relative humidity and photosynthetic active radiation. Photosynthetic
active radiation is the radiation emitted by the lighting system and accounts for the
range of light usable for photosynthesis processes [ZBV+15, p. 141]. The dataset
is entirely unlabeled, i.e. unsupervised. Exemplary anomalies were found by visual
inspection and a sparse logbook, more information is given in section 5.2.3. Before
the proposed methods could be applied, data preprocessing was conducted. Two
sensor time series were disregarded because the values for the entire first year were
missing. The remaining sensors had between 52 and 58 missing samples during
recording. Interpolation was done by overriding with the last existing value. Finally,
the multivariate time series dataset consists of 7 variables with 312643 samples each.
The characteristics and modalities of the dataset will not be discussed further here,
as they will be discussed in detail in the next section on generating a synthetic
dataset. An excerpt of the dataset can be seen in Appendix A.2.

1for more information about the EDEN ISS Project, visit: https://eden-iss.net/
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5.2. Synthetic dataset

Before applying the described methods to the EDEN ISS FEG dataset, experiments
will be conducted on a synthetically generated dataset. This allows for better control
of anomaly types, their clear properties and the use of labels. Generating a synthetic
data set with similar properties and identical anomalies is a common practice for
evaluating model capabilities [GCC+23, p. 4]. Various studies have introduced syn-
thetic strategies, but they focus on their specific application or miss a sufficient type
diversity and can not serve as a general synthetic criterion for anomaly clustering
benchmarking. The synthetic dataset serves as a blueprint to optimize the proposed
methods, while ensuring the transferability of findings to the FEG dataset, since they
are approximately equal in statistic characteristics and anomaly types [LZX+21, p.
6][LIPJ21, p.12][BRGD19, p. 9].

The synthetic dataset was built according to the principle design of the EDEN ISS
project design report and related documents [ZBV+15, Dan17, BV17]. Values or
dynamics which are not explained or defined within this project are taken from the
literature about similar greenhouse environments. The dataset is divided into four
independent and two dependent variables.

5.2.1. Independent variables

Concerning anomaly generation, independent variables are those that are modelled
from the EDEN ISS FEG documentation, whereas dependent variables are calcu-
lated. Independent variables are plantmass, photosynthetic active radiation, tem-
perature and relative humidity.

The main goal of the FEG is a constant supply of fresh food for eventual future space
stations and explorations. One crucial metric for project success was the constant
rate of fresh food yield. Therefore plantmass [g] was included as one of the indepen-
dent variables. In addition to the data gathered inside the FEG, growth modelling
was supported by findings from similar closed, controlled environment experiments
for example the controlled ecological life support system conducted by the National
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Aeronautics and Space Administration (NASA) in the 1990s [WMS+94]. plantmass,
or its derivative: growth, are key factors that describe the efficiency and success of
the FEG. Inside FEG different harvesting techniques are used, from steadily harvest
to clear growth and harvest periodic cycles [ZBV+15, p. 146][MDSK17, p. 18, 20,
24]. Plant growth modelling was done exemplarily on lettuce, one of the successfully
tested crops, which showed extraordinary usability for closed, controlled environ-
ments due to its modest demands. The lettuce will be fully grown before being
harvested. In general, lettuce growth in controlled, encapsulated environments can
be divided into three stages: a logarithmic, an exponential and, after reaching near
maximum mass, a stationary phase. Approximation of fresh weight per time period is
often done by a fitted sigmoid curve matching the three stages [van80, p. 6-8][SKF08,
p. 2-7][WMS+94, p. 611-613][DPA05, p.310]. Vegetation periods range between 30
- 45 day periods with a final weight of approximately 170g - 190g [KMRH19, p.
51-53][SKF08, p. 2-7][KKA+13, p. 502]. For synthetic data generation, the growth
period was set to 40 day periods, as taken from the FEG documentation [MDSK17,
p. 20], followed by a complete harvest with a final weight of 180g.

Photosynthetic active radiation is the radiation emitted by the lighting system and
accounts for the range of light usable for photosynthesis processes [ZBV+15, p. 141].
It is measured in µmolm−2s−1. The optimal PAR for all different types of lettuces
was found to be around 300 µmolm−2s−1 for a day period and 0 for the night period
respectively [Dan17, p. 11]. One day period consists of 16h illumination time and
8h of darkness for all crops [ZBV+15, p. 139-140].

Temperature [°C] was modelled according to the project design document. The tem-
perature inside the FEG needs to fit a general regime to be in the "sweet spot" for
all plants and was therefore set to 20-22°C during day period and 16-18°C during
night period [ZBV+15, p. 139-140]. The temperature control automatically follows
this periodic cycle and makes it therefore unnecessary to include effects like heat ex-
change with the environment. The temperature control can only match the desired
temperature within a range [BV17, p. 74-81]. Temperature mean, in the synthetic
dataset, was set to 21°C and 17°C for day period and night period respectively, with
a Gaussian standard deviation. Given a mean µ, σ can be chosen, so that 99.7% of
the realisations lie within a given interval, µ±3σ ↔ σ = µ/3. Setting µ to the maxi-
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mum allowed divergence, sigma can be easily found by σ = |21◦C −22◦C|/3 ≈ 0, 33,
meaning that with calculated σ temperature divergences are with a probability of
99.7% within the range of ±1°C. The duration of heating and cooling of the FEG
was not given and could only be approximated by visually inspecting the measured
data. Heating and cooling were both simulated by an adapted sigmoid function:

T (x) = Tdayperiod + (Tnightperiod − Tdayperiod)Tnightperiod − Tdayperiod

1 − e−a·x (5.1)

whereas Tdayperiod conforms 21°C and Tnightperiod conforms 17°C. a denotes a silhou-
ette parameter, influencing the slope of the function and was set to a = 5 ∨ 1 for
heating or cooling, while x equals x or −x, mirroring the function axisymmetrical.
The duration of heating was set to one hour and cooling to 20min. Cooling the FEG
can be modelled faster than heating because the FEG was tested in Antarctica,
where cooling can be conducted by inserting external air.

Relative humidity (RH) in [%] is an important factor for plant growth. Values be-
low 50% leads to plants closing their stomata which affects the uptake of CO2.
On the other hand, a high relative humidity (>90%) can be a starting point for
fungal diseases. For the duration of all FEG experiments, the relative humidity
was set constant to 70% ± a maximum percentage deviation (mdp) of 5%. Mod-
elled RH was set accordingly with an added sinus daily cycle reciprocal propor-
tional to temperature and an amplitude of 0.5. Deviation for modelled RH is taken
from Gaussian standard deviation. Similar to temperature, σ was determined by
σ = (meanRH · mpd − 1)/3 = (70 · 0.05 − 1)/3 ≈ 1 [ZBV+15, p. 139-140].

5.2.2. Dependent variables

One major aim of this research is the examination of shapelet clustering for anomaly
detection in complex environments. The EDEN ISS is such an environment, where
causal connections appear between various variables. Still, it only includes one calcu-
lated variable within the dataset, the vapour pressure deficit. It defines the difference
between actual vapour pressure and saturation vapour pressure and can be expressed
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dependent on relative humidity and temperature. For a higher system complexity,
another dependent variable is added to the dataset, the photosynthetic rate.

Vapour pressure is an important value for plant growth regulation. In contrast to
relative humidity, vapour pressure has a more direct effect on the evaporation rates
of leaves. To convert relative humidity to vapour pressure deficit [kPa] the Antoine
equation is used [dLFRA21]. The Antoine equation represents the non-linear ther-
modynamic relationship between equilibrium vapour pressure P and temperature T

[°C] [dLFRA21, p. 1-2] by:

P (T ) = η(T ) + ϵ = 10a− b
c+T + ϵ (5.2)

a, b and c are numerical constants related to the enthalpy and entropy of vaporization
and vary for different pure substances. Within a temperature range T ∈ [1, 100]°C
the best guesses are a = 8.07131, b = 1730.63 and c = 233.426 for water above sea
level [dLFRA21, p. 6-7]. Because of the underlying normality assumption ϵ represents
the constant error and is taken from the normal distribution with V ar(P (T )) = σ2

0

with ϵ ∼ N (0, σ2
0) for the homoscedastic case and ϵ ∼ N (0, σ2

eη(T )2) for the het-
eroscedastic case, where normally a homoscedastic case can be assumed. By mul-
tiplying equilibrium vapour pressure and relative humidity RH the actual vapour
pressure can be received Pact = RH

100 ∗ P to obtain vapour pressure deficit V PD

with:
V PD(T ) = P (T ) − Pact(T ) (5.3)

Photosynthetic rate, PR, determines how much CO2 can be absorbed, measured
in µmolm−2s−1, and has a direct influence on O2 production, a critical resource
for space exploration missions. With PR being a natural process, a lot of fac-
tors have an influence, resulting in a wide range of studies evaluating different
photosynthetic rate models for lettuce in controlled, encapsulated environments
[ZLW22, JKY+16, VBBD17, LKO+12, WMS+94, van81]. The EDEN ISS FEG does
not provide an explicit photosynthetic model, CO2 consumption for the whole FEG
and different crop types were taken from a simple constant estimation [ZBV+15,
p. 142-143, 151]. PR models forecast either for single leaves, whole plants or whole
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canopy. For easier adaption, a single lettuce leaf model was chosen from literature,
depending on temperature (T), photosynthetic active radiation (PAR) and CO2

concentration [VBBD17, p. 129-130]:

PR = 1
2θ ·

(
q · PAR + PRmax −

√
(q · PAR + PRmax)2 − 4θq · PAR · PRmax

)
(5.4)

where q is the quantum yield and θ is dependent on the leaf angle. θ can be set to
1 for simplicity since leaves of lettuce plants inside the FEG will be automatically
growing to an optimal light absorbing position. PRmax denotes the theoretically
maximum photosynthetic rate and is found experimentally by a fitted asymptotic
curve parameterized by constants c1, c2 and c3. Its main influence is CO2 concen-
tration as shown in Equation 5.5. CO2 concentration was set to a constant 750ppm
inside the FEG and will not be handled as a dependent variable due to its regulation
by the environment control system [ZBV+15, p. 63][BV17]. Values for constants are
c1 = −0, 116, c2 = 1, 136 and c3 = −0.002 [VBBD17, p. 131].

PRmax = c1 + c2 · (1 − ec3·CO2) = −0, 116 + 1, 136 · (1 − e−0.002·CO2) (5.5)

The quantum yield q expresses the photochemical efficiency and is a temperature-
dependent parameter [van81, p.3]. Temperature is measured in °C. As for PRmax,
constants for the polynomial function of q were determined by curve fitting [VBBD17,
p. 130].

q = c4 − (c5T ) − (c6T
2) = 0, 0843 − (0, 0003T ) − (0, 0000341T 2) (5.6)

Documentation of the FEG suggests an estimated quantum yield of 4%, which would
account for a temperature of around 30°C in equation 5.6, still, for a more precise
model the quantum yield will not be taken as constant [ZBV+15, p. 142]. A limitation
of equation 5.4 is the incorrect behaviour for periods involving turned-off lighting
system. The model would assume a PR of zero, while in real world research a dark
respiration rate can be observed, which describes the changing modality of lettuce
being a sink of CO2 to becoming a source during night periods [ZBV+15, p. 142].
Dark respiration rate Rd is an empirical value [van81, p. 14] and was estimated to be
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5g/h for the whole FEG, values for different types of crops were not given [ZBV+15,
p. 142]. In literature, under similar conditions, values for Rd for single leaf models
differ, therefore a value from the most similar study was chosen, estimating Rd to
be at 3µmolm−2s−1 [ZLW22, p. 4-5], extending equation 5.4 to:

PR = 1
2 ·
(

q · PAR + PRmax −
√

(q · PAR + PRmax)2 − 4q · PAR · PRmax

)
− Rd

(5.7)
Light use efficiency is known to be influenced by leaf size and growth stages. [JKY+16,
LKO+12] propose a simple multiplication model. [LKO+12, p. 1258] suggest the de-
viation of plantmass, the growth rate in [ g

d
], as multiplication factor, while [JKY+16,

p. 488] adapt this to be not only accountable for whole plants but also single leaf
models by making the deviation impartial of the weight and only dependent on time.
Normally, the derivative of the sigmoid function is expressed as

d

dt
sig(t) = d

dt

1
1 + e−t

= 1 + e−t

1 + e−2t
(5.8)

but because harvesting is directly followed by newly planting, the plantmass is not
a steady function, hence using the simplification of d

dt
sig(t) [Cop04, p. 302]:

d

dt
sig(t) = 1 + e−t

1 + e−2t
= sig(t)(1 − sig(t)) (5.9)

By combining equation 5.7 and 5.9, the final equation for the photosynthetic rate
of one lettuce leaf can be expressed by:

PR =
[1
2 ·
(

q · PAR + PRmax −
√

(q · PAR + PRmax)2 − 4q · PAR · PRmax

)
− Rd

]
· [sig(t/lcl)(1 − sig(t/lcl))]

(5.10)

with life-cyclus-length, lcl, of 40dayperiods · samples
dayperiod

and depending on temperature,
photosynthetic active radiation, plant growth and CO2 concentration.

For model discussion, the PR model was evaluated against literature and available
information from the FEG. With a maximum of 4.4479µmolm−2s−1 it is in a typical
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range for single leaf lettuce models [VBBD17, p. 132-133],[ZLW22, p. 178],[JKY+16,
p. 489-490], [KKA+13, p. 506-507] [LKO+12, p. 1258 -1259], [WMS+94, p. 612].
The FEG data only provides a single estimation for CO2 consumption at one
timepoint for a whole crop of lettuce of 12gm−2h−1 [ZBV+15, p. 151]. To con-
vert 4.4479µmolm−2s−1 to gm−2h−1, only the molar mass of CO2 (44.01gmol−1)
is needed:

4.4479µmolm−2s−1 ⇒ 4.4479molm−2s−1 · 44.01gmol−1 · 3600s
106m−2h−1 = 0.704707gm−2h−1

(5.11)
For an actual comparison, the number of leaves per crop is missing. In controlled
greenhouse environments the number of leaves per plant, which accomplish a life
cycle, is 18 on average [DPA05, p. 308-311]. This brings the final CO2 consump-
tion to 0.704707gm−2h−1 · 18 = 12.6847gm−2h−1 per lettuce. Even though scal-
ing up the CO2 consumption rate of single leaves up to crop or canopy levels is
not straightforward and may cause errors [LKO+12, p. 1259], with the proposed
PR model the MAPE against the FEG estimations is at a low enough level of
|12gm−2h−1−12,6847gm−2h−1

12gm−2h−1 | · 100% = 5, 71%.

5.2.3. Anomaly generation

In this section, the anomaly types and their generation are explained. First of are
general design principles introduced, followed by the description and implementation
of the anomalies themselves. Anomaly types were identified by visually inspecting
the FEG dataset. Overall, seven types were found, spike, drop, zero, missing, noise,
level shift and time shift anomalies. Each will be explained subsequently, while
also giving an example from the dataset aided by a cause explanation, if available.
Anomalies can be generated both multivariate and univariate, but are always in-
dependent from each other. Multivariate anomalies, manifesting simultaneously in
all six variables, are counted as one since anomalies are counted regarding their
origin. Anomalies are added using a Monte-Carlo simulation, with an independent
and adjustable likelihood for every anomaly type to occur or start, for sequential
anomalies, at a time step xt. Anomalies can not overlap. Termination criteria are an
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adjustable maximum anomalous rate MAR = number of anomalous timesteps
number of timesteps

or a prior
defined maximum number of anomalies, whatever will be exceeded first. Anomalies
in dependent variables can be handled in two ways. The first is that anomalies are
added by error propagation, where the dependent variables are calculated based on
the anomalous modelled data. This would account for real world scenarios, where
flawed sensor data will produce flawed calculated data. The second way is to cal-
culate dependent variables with correct recorded data and add anomalies on the
full dataset without the dependence of the individual time series variables. For the
whole thesis, the first case will be set as standard as it suits to be closer to the real
process.

Shapelets are a length-sensitive clustering method, so the length of the sequential
anomalies was computed correlating to the current time series length, by multiplying
the current time series length with a variable factor. The multiplication factor was
randomly drawn from an exponential distribution [EH04, p. 94-96]. The exponential
distribution ensures that the probability of the anomaly length declines with a high
probability of lower lengths and a low probability of high lengths. Hence it is often
used in modelling failure rates and senescence. The probability density function is
parameterized in terms of λ, the rate parameter, or β = 1/λ, which is called scale
parameter:

f(x; λ) = λ · e−λ·x = 1
β

· e− 1
β

·x; x ≥ 0 (5.12)

Given the expected value of the exponential distribution function E(x) = 1
λ

= β,
the α-quantile ξα with α ∈ [0; 1] can be expressed as:

ξα = − 1
λ

· ln(1 − α) = −β · ln(1 − α) (5.13)

with a median of ξ0.5 = β · ln(2) and the mean of β. The exponential distribution
was also used to calculate the magnitude of spike, drop and level shift anomalies.

Spike and drop anomalies are part of the point anomalies or outliers. Such anoma-
lies are often caused by sensor errors or abnormal system operations [CYPY21, p.
120044]. To account for the diverse variances of the time series variables, a draw
from the exponential distribution was utilized. This draw, denoted as magnitude m,
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was then multiplied with the mean value of the current variable µ(Xi) within the
time series. This approach facilitated the computation of spikes and drops in the
data. [LZX+21, p. 6].

x̂t = xt ± m · µ(Xi); m ∼ exp( 1
β

) (5.14)

Four for the dataset typical drop anomalies can be seen in figure 5.2. One form of
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Figure 5.2. – Four drop anomalies with unknown reason occurring on the
22nd of may

shapelet outliers are zero-anomalies. Those can be observed in scenarios where the
system or subsystem was shut off due to unforeseen reasons, while sensor data is still
being tracked. During operation time of the FEG, at least three full environmental
control system shutdowns are recorded in 2018 [ZZ19, p. 5]. zero-anomalies from
timestep xi to xj with length l = j − i can be synthesized by setting all values to
zero. The length l was modulated according to the description above. Figure 5.3
shows a zero-anomaly recorded in the telemetries of a part of the lighting system,
due to a shut-off caused by a failure in the temperature control module [BNZ19,
14].

x̂t = 0; ∀t ∈ [a, b], b = l + a, l ∼ exp( 1
β

) (5.15)

An enlargement of zero-anomalies are null or missing anomalies [CYPY21, p. 120045].
Missing anomalies are caused by sensor or system failures which lead to missing data
recording. They manifest by an empty time value or, for easier programming im-
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plementation, a nan value at the specific set of data points. The time/frequency
response becomes 0. [BNZ19, p. 14].

x̂t = nan; ∀t ∈ [a, b], b = l + a, l ∼ exp( 1
β

) (5.16)
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Figure 5.3. – A zero anomaly in parts of the lighting system due to a
failure in its temperature controlling module

Noise is a general term for unwanted changes to signals during their capture, storage,
transmission or conversion in signal processing. In many cases, noise is due to minor
fluctuations in the sensor sensitivity [CYPY21, p. 120046]. For synthetic generation,
every value in a sub-sequence of length l from point xa to xb is added with scaled
white noise s ∼ N (0, V ar(Xi)) of variance equal to the variance of the variable,
ensuring that none additional information will be added to the time series:

x̂t = xt + 0, 1 · st; ∀t ∈ [a, b], b = l + a, l ∼ exp( 1
β

), s ∼ N (0, V ar(Xi)) (5.17)

Reasons for noise anomalies can be various. In one case noise was generated by a
malfunctioning cooling loop, leading to faltering cooling circulation and consequently
to glimmering lighting (figure 5.4) [BNZ19, p. 14].

The last two anomaly types are shift anomalies. Level shift refers to a subsequence
of length l where a random, but constant magnitude m is added to or subtracted
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Figure 5.4. – Noise anomaly in a lighting module, caused by
malfunctioning cooling system leading to glimmering

from the data [BRGD19, p. 9]. The calculation resembles spike and drop anomalies,
but is extended for whole sequences:

x̂t = xt ± m · µ(Xi) ; m ∼ exp( 1
β

), ∀t ∈ [a, b], b = l + a (5.18)

Figure 5.5 shows a level shift, among other anomaly types. The reason was a partial
failure of the lighting system which needed to be compensated [BNZ19, p. 14]. Time
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Figure 5.5. – A level shift anomaly. The failure of some lighting system
modules had to be compensated by others

shifts are part of contextual anomalies, which do not deviate from the normal range
of the time series. However, considering the given context, the data points are out of
the expected pattern. Time shifts are frequency-based and therefore these anomalies
are hard to detect [CYPY21, p. 120045][BGCML21, 17-19]. In this work, time shift
anomalies are defined as anomalous finite frequency-changing behaviour in time
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series variables with periodic cycles for whole patterns. For time shift anomalies the
patterns were divided in two parts at breaking point p. For example a PAR pattern
of length b − a, where a equals to the first xt of the night period and b to day
periods period last xt, is divided by point p in a night period and a day period.
The time shift applies on the full day period length of b − p with a shift amount sa.
Time shifts do mostly depend on human mistakes rather than on machine errors.
A typical example would be a forgotten lighting system restart after maintenance
operations. The FEG is operated mostly autonomously without workers, so such
mistakes will not be noticed until a distinct period of time has elapsed. Therefore the
exponential distribution can not be applied to determine sa for time shifts. Instead
the continuous uniform distribution was chosen [EH04, p 92-94]. The boundaries
are 1 as minimum shift amount and the length of p − a, or in the example of PAR
a whole night period, as maximum, to guarantee that day periods cant interfere.
With given boundaries, the probability density function of the continuous uniform
distribution within boundaries is defined as f(x) = 1

(p−a)−1 . Time shift sequences of
length b−a with breaking point p and a shift amount of sa are accordingly expressed
as:

x̂t =

xt ; a < t < p

xt−sa ; p < t < b + sa, sa ∼ U(1, p − a)
(5.19)

An example of a time shift anomaly can be found in figure 5.6. After an emergency
shutdown the daily pattern can be seen to have shifted, visible through the increased
gap between two daily periods [BNZ19, p. 15].
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Figure 5.6. – A time shift anomaly among other anomaly types.
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5.3. Evaluation measures

The evaluation of anomaly detection is divided in two measure categories, the in-
ternal and external measures.

5.3.1. Internal measures

Internal measures account for all evaluation metrics, that do not rely on supervised
methods. Quantitative measures for interpreting and validating the results of cluster
analysis are a success indicator in unsupervised anomaly detection. Most internal
metrics rely on a variant of measuring cluster size or density against distances to
other clusters.[ASW15, p 31f]

Silhouette score

A given set of data points X = x1, x2, . . . , xn will be clustered into k clusters.
Let C = C1, C2, . . . , Ck be the set of resulting clusters, where each Ci contains a
subset of the data points. The silhouette score for a particular data point xi can be
calculated as follows and takes into account both the within-cluster and between-
cluster distances of data points [Rou87, p 54-57]: The average distance ai between
xi and all other data points in the same cluster xi is computed as:

ai = 1
|Ci| − 1

∑
xj∈Ci,xj ̸=xi

dist(xi, xj) (5.20)

For each cluster Cj where j ̸= i, the average distance between xi and all data points
in Cj is received. The cluster with the minimum average distance is chosen, and
denote as bi:

bi = min
j ̸=i

1
|Cj|

∑
xj∈Cj

dist(xi, xj) (5.21)
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For distance calculations, both in ai and bi the Silhouette Score mainly utilizes the
Euclidean distance function. bi and ai finally compose the silhouette score for xi

as:
sci = bi − ai

max(ai, bi)
(5.22)

The silhouette score ranges from -1 to 1, where a score of 1 indicates that xi is very
well matched to its cluster and poorly matched to neighbouring clusters, a score of
-1 indicates the opposite. A score of 0 indicates that xi is equally distant from both
its own cluster and neighbouring clusters. The overall silhouette score for the entire
clustering is the average of the silhouette scores for all data points in X. For outline
Clusters with a number of xi = 1, ai can not be computed, therefore sci is simply
set to 0.

The silhouette score is a measure of clustering quality that takes into account both
the cohesion of data points within clusters (measured by ai) and the separation be-
tween clusters (measured by bi). A higher silhouette score indicates better clustering
quality, and it can be used to compare different clustering algorithms or parameter
settings.

Davies-Bouldin Index

The goal of the Davies-Bouldin-Score is to define a general cluster separation mea-
sure, which allows computation of the average similarity of each cluster with its
most similar cluster. Let k again be the number of clusters in a clustering result,
and let Ci be the set of data points in the i-th cluster. The Davies-Bouldin index is
defined as follows [DB79, p. 224-226]: For each cluster in Ck, the centroid ci, which
is the mean of all data points in a specific Ci, is found by:

ci = 1
|Ci|

∑
xj∈Ci

xj (5.23)
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For each cluster Ci, the average distance between each data point in Ci and the
centroid ci is denoted as di:

di = 1
|Ci|

∑
xj∈Ci

dist(xj, ci) (5.24)

Here, dist(xj, ci) represents the distance between the data point xj and the centroid
ci. For simplicity reasons, the computation of di is often done using the Euclidean
distance.

Per each pair of clusters (Ci, Cj), the similarity between them is defined regarding
the distance between the centroids dist(ci, cj) of clusters Ci and Cj.

Each cluster maximum similarity mi,j between Ci and all other clusters Cj is found.
As distance measure of choice is again mostly the Euclidean distance implemented
in literature:

mi,j = di + dj

dist(ci, cj)
(5.25)

The value Ri represents the maximum similarity between cluster Ci and all other
clusters. A low value of Ri indicates that cluster Ci is well separated from other
clusters, while a high value of Ri indicates that cluster Ci is poorly separated from
other clusters.

Ri = max
j ̸=i

mi,j (5.26)

The final Davies-Bouldin index is the average over all Ri:

DB = 1
k

k∑
i=1

Ri (5.27)

The Davies-Bouldin index ranges from 0 to ∞, where a lower score indicates better
clustering quality. A score of 0 indicates perfectly separated clusters, while a higher
score indicates clusters that are less well separated.

The Davies-Bouldin index is useful for comparing different clustering algorithms
or parameter settings. It provides a quantitative measure of clustering quality that
takes into account both the within-cluster and between-cluster distances of data
points, but always in consideration of cluster centres.
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Calinski-Harabasz score

The Calinski-Harabasz (CH) score [CH74, p.3-12], also known as the Variance Ratio
Criterion, is a metric used to evaluate the quality of a clustering solution based on
its ability to form clusters that are well separated from each other. It is defined as
the ratio of the between-cluster variance and the within-cluster variance, multiplied
by a scaling factor that adjusts for the number of clusters and data points.

Let k be the number of clusters, n be the total number of data points, and Ci be
the i-th cluster with ni data points. Let X be the entire dataset, and x̄ be the mean
vector of all data points in X. The CH score can be computed as follows:

First, total sum of squares (TSS) is computed, which is a measure of the total
variability in the dataset:

TSS =
∑

xj∈X

∥xj − x̄∥2 (5.28)

Here, ∥·∥2 denotes the Euclidean norm. If x̄i denotes the mean vector of all data
points in cluster Ci the within-cluster sum of squares (WSS), which is a measure of
the variability within each cluster, is calculated:

WSS =
k∑

i=1

∑
xj∈Ci

∥xj − x̄i∥2 (5.29)

leading to the between-cluster sum of squares (BSS), a measure of the variability
between the clusters:

BSS = TSS − WSS (5.30)

The CH score is defined as the ratio of BSS and WSS, multiplied by a scaling
factor that adjusts for the number of clusters and data points:

CH = BSS/(k − 1)
WSS/(n − k) (5.31)

The scaling factor in the CH score adjusts for the fact that increasing the number
of clusters k tends to increase the BSS and decrease the WSS, which can lead to
an inflated CH score. The scaling factor ensures that the CH score is maximized
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when the clusters are well separated and the number of clusters is appropriate for
the dataset.

In practice, CH score can be used to evaluate different clustering solutions and
choose the one that maximizes the score. A higher CH score indicates a better
clustering solution, with clusters that are well separated from each other and have
low within-cluster variance.

5.3.2. External measures

The proposed internal measures are the main resources in evaluating shapelet clus-
tering and subsequently anomaly detection for the unsupervised EDEN ISS FEG
Dataset. They can be used as indications for well-suited hyperparameter optimi-
sation. For more robust results, a more precise anomaly detection score is needed,
which can be implemented for the fully labelled synthetic dataset. The external mea-
sures fill in that role and account for all metrics that rely on labelled data [ASW15,
p 31f]. In the following paragraph are all used external measures explained for the
simple binary case.

Accuracy

Let TP be the number of true positives, TN be the number of true negatives, FP

be the number of false positives, and FN be the number of false negatives. Accuracy
measures the proportion of correctly classified examples and is defined as [Met78,
p. 283-286]:

Accuracy = (TP + TN)
(TP + TN + FP + FN) (5.32)
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Precision

Precision measures the proportion of correctly classified positive examples among
all examples classified as positive, and is defined as[FK15, p. 3]:

Precision = TP

TP + FP
(5.33)

Recall

Recall measures the proportion of correctly classified positive examples among all
actual positive examples, and is defined as[FK15, p. 3]:

Recall = TP

TP + FN
(5.34)

F1-Score

F1 score is a harmonic mean of precision and recall. Both recall and precision con-
tribute equally [Sas07, p. 1-3]:

F1score = 2 · Precision · Recall

(Precision + Recall) = TP

TP + (FP + FN)/2 (5.35)

Average Precision

The trade-off between precision and recall means both of them must be considered
simultaneously when comparing and evaluating different detection algorithms. AP
(average precision) is a measure of the area under the precision-recall curve and is
often used in information retrieval. It is defined as the integral of the precision-recall
curve over the range of possible recall values (i.e., from 0 to 1) [EGW+09, p. 314]:

AP =
∫ 1

0
P (R)dR (5.36)
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where P(R) is the precision at a given recall R. The AP ranges from 0 to 1, with
higher values indicating better performance.

5.4. Experimental design

In this chapter, the experimental design is presented to evaluate the derived unsuper-
vised, interpretable anomaly detection method. Two experiments were conducted,
one for each dataset. Evaluation for the synthetic dataset is done via internal and ex-
ternal metrics while for the EDEN ISS dataset, only internal measures are applicable
due to lack of labels.

5.4.1. General hyperparameters

Hyperparameters account for all parameters that are not changed during a test-
ing session [YS20, p. 1-3]. For all experiments, constant hyperparameters are pre-
sented in this chapter. γ for shapelet selection in equation 4.14 was inherited from
[LCX+21a, p. 8379] with 0.5, constituting an equal decision between clustering size
and between cluster distance. The number of final shapelets for time series trans-
formation can be seen as one of the most important hyperparameters and its hy-
perparameterspace was set to fS ∈ [5, 10, 20, 30, 40, 50] for every different shapelet
length, as taken from [LCX+21a, p. 8381]. For hyperparameter optimization grid
search [YS20, p. 4] was used. All experiments were repeated at least three times on
a Ryzen 5 5600X with 64Gb of RAM.

5.4.2. Synthetic dataset

The synthetic dataset was generated over a span of two years, with data collected
every five minutes, resulting in a total of 210240 time steps for the six variables con-
sidered. Anomalies for dependent variables were indirectly implemented, resulting
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from the calculation with anomalous independent variables. The maximum anoma-
lous rate (MAR) was set to 0.05, or 5%. Two values for the scale parameter of the
exponential distribution (see chapter 5.2.3) for all anomalies were given, a height
parameter, determining the magnitude of anomalies: βheight = 0.4 and the length pa-
rameter for sequential anomalies: βlength = 0.00137, resulting in an average anomaly
length of 288 time steps, equivalent to one day period. The likelihood of each anomaly
type to occur at a given time point xt was set to 0.1, with a 30% chance of being a
multivariate anomaly. Table 5.1 gives an overview of every variable and the whole
dataset about the amount of each anomaly type, as well as the percentage of anoma-
lous time steps. In general, 4.85% of all time steps can be counted as anomalous.

Synthetic dataset anomaly properties

anomalies
nr. & perc. plantmass PAR T RH VPD PR overall

spike 15 0.0071% 11 0.005% 11 0.0052% 10 0.0048% 12 0.0057% 18 0.0086% 77
drop 7 0.0033% 7 0.0033% 7 0.0033% 11 0.005% 14 0.0067% 13 0.0062% 57
zero 6 0.58% 5 0.64% 6 0.84% 6 0.7% 8 1.08% 9 1.13% 40
missing 1 0.08% 1 0,11% 1 0.28% 1 0.13% 2 0.41% 3 0.48% 9
noise 8 1.78% 7 1.43% 6 1.14% 6 1.25% 8 1.35% 12 2.25% 47
level shift 7 1.38 8 1.43% 6 1.23% 7 1.32% 8 1.36% 11 1.65% 47
time shift 0 0 11 1.24% 10 1.23% 0 0 10 1.11% 14 1.57% 45
overall 43 3.83% 50 4.86% 47 4.61% 41 3.41% 62 5.31% 80 7.09% 4.85 %

Table 5.1. – Number and percentage of anomaly types in the different
variables, as well as for the whole synthetic dataset

The length of shapelets is calculated based on time series length. Previous literature
suggests that the value of α in equation 4.1 varies between 5% and a maximum of
30%, depending on the specific dataset being analyzed [LCX+21a][BKS+18, p. 961].
In the case of the synthetic dataset, the presence of known periodicities provides valu-
able information for selecting appropriate window sizes to extract initial shapelets.
Four different α values were employed: α ∈ [0.000685, 0.00137, 0.002055, 0.055], ac-
counting for a timespan of half a day period, one day period, one and a half day
period and 40 day periods, respectively. All variables, except plantmass, exhibit a
periodicity of one day period, but can also be subcategorised in smaller subparts,
for example, heating and cooling periods, therefore the periods of one half and one
and a half day periods were also considered. For simplicity, instead of the numerical
values, the alphas are named by the time span covered: α12h, αday, α36h and α40days.
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5.4.3. EDEN ISS dataset

Even though periodicities for every variable in the FEG dataset are limited by set
regulation values within the controlling system [ZBV+15], as explained in chapter
5.2, it is still suggested to perform a time series analysis to obtain meaningful val-
ues for α. Most monitored values inside the FEG should show a 24h-cycle, since
no other cycle values are defined and the FEG was designed autonomously from
environmental influences.

Simple methods to determine linear cycles are the autocorrelation [BJR08, p. 57f.]
and partial autocorrelation [BJR08, p. 66f.] plot of the dataset. The autocorrelation
function (ACF) is a statistical tool that evaluates the correlation between observa-
tions within a time series across different lags. It signifies the extent to which the
data points in the time series are correlated with their past values, hence the term
"lags". The ACF sequence for a time series X is defined as Corr(xt, xt−l), where
l = 1, 2, ....

The partial autocorrelation function (PACF) is similar to the ACF, but it focuses
solely on the correlation between two observations that cannot be explained by
shorter lags. For instance, the partial autocorrelation at lag 3 represents the correla-
tion that is not accounted for by lags 1 and 2. In essence, the partial autocorrelation
at each lag captures the unique correlation between two observations after removing
the influence of the intermediate correlations.

Figure 5.7 and 5.8 show the exemplary ACF and PACF for one lighting system. As
expected, the ACF indicates a strong linear periodicity at multiplies of 288 lags,
accounting for a daily cycle. This hypothesis is supported by the PACF, whose
maxima are also to be found at these points.

The only variable indicating longer cycles was CO2, with a higher amplitude at
lag 2016, representing one week. Figure 5.8 shows also that some variables inherit
correlations of smaller lag than day period length. Therefore, α values are, similar
to the synthetic dataset, set so that corresponding shapelets obtain a length of
half a day period, one day period, one and a half day period and finally one week:
α ∈ [0.000691, 0.0009212, 0.001382, 0.00645]
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Figure 5.7. – Autocorrelation function of one lighting system: PAR 1.
Visible are the maximum values at multiples of 288 lags. The

light blue area marks the confidence interval above which
values are significant
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Figure 5.8. – Partial autocorrelation function of one lighting system: PAR
1. In addition to the ACF plot, the PACF shows maxima at

multiples of 288 lags

5.4.4. k-Means

The only k-Means specific hyperparameter is the number of clusters k. Values for k

were taken from the literature [LCX+21a, p. 8380f.] and expanded for a wider grid
search optimisation, for example, k = 8 was included, hoping to find one normal
class and the seven anomaly types. Values are: k ∈ [8, 10, 25, 50, 100, 150, 200, 300]
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5.4.5. DBSCAN

Hyperparameters for DBSCAN clustering are eps and minpts. For both various
heuristics exist [SSE+17, SEKX98]. For many datasets, minpts can be kept at the
initial value of four, in general [SSE+17, p. 11] or [SEKX98, p. 182] suggest setting
it to minpts = 2 · dataset dimension. Results can improve for datasets that have a
lot of noise or that are very large if minpts is increased further. Since the definition
of "large" datasets is vague, for this work the datasets will be counted as such, to
guarantee the best possible hyperparameter coverage. Consequently, the hyperpa-
rameterspace is set as minpts ∈ [3, 4, 5, 6, 8, 10, 15, 20, 25]. eps can be estimated by
sorting the calculated average distances of a shapelet to its minpts nearest neigh-
bours in ascending order [EKSX96, p. 5][SSE+17, p. 11]. The optimal value for eps

can be found at the point of maximum curvature (i.e. where the graph has the great-
est slope). This heuristic is called the elbow method, well illustrated in figure 5.9.
Shown is the average distance of each shapelet with α = 0.000685 to its minpts = 25
nearest neighbours in ascending order for the synthetic dataset. Between the shapelet
indices 1800 and 2000, the curve exhibits a sudden change in slope, resembling the
shape of an elbow, from which the method derives its name. In this case, an approx-
imate value of 0.3 is inferred as the best estimate for eps. By visually inspecting all

Figure 5.9. – An elbow plot for the synthetic dataset, α = 0.000685 and
minpts = 25, indicating the best possible value of eps to be

approximately 0.3

elbow plots, for all combinations of α values and minpts for both datasets, the hyper-
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parameter range of eps can be restricted to eps ∈ [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8].
Shapelets that DBSCAN filters as noise are consolidated in their own clusters since
they can represent valuable rare anomalous shapelets.

5.4.6. Mdc-CNN

The Mdc-CNN framework was originally tested on the UEA archive [BDL+18], with
an average time series length of 1073 time steps. Because examined datasets in
this thesis, and therefore shapelet candidates, are significantly longer, the proposed
ShapeNet network depth hyperparameter was reduced in size (10 → 5) while also
increasing batch size (10 → 256) to achieve reasonable computation time1. For em-
bedding optimisation, adopted triplet loss variables are tmargin = 0.2 and tintra = 1
[LCX+21a, p. 8379]. The remaining hyperparameters follow the default of the net-
work and network training from [BKK18] and [LCX+21a], for example with number
of channels and kernels size of the convolutional network set to 40 and 3 respec-
tively. The Hyperparameterspace for the Mdc-CNN is identical to k-Means experi-
ments, with k ∈ [8, 10, 25, 50, 100, 150, 200, 300]. The number of final shapelets was
prior defined depending on the number of alpha values. Since ShapeNet can cluster
shapelets of various lengths, this definition is not necessary and is therefore changed
to fS ∈ [8, 10, 20, 40, 80, 120, 160, 200]

1This resulted in a reduction of the calculation time of a complete iteration from three weeks
to one week
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In this chapter, the results of the conducted experiments are presented. The results
are split into internal and external metrics for the synthetic and EDEN ISS FEG
dataset, to asses shapelet discovery and finally the anomaly detection ability. The in-
ternal metrics are used to identify meaningful intervals for the hyperparameters used,
which are specified to concrete values using F1 score and average precision. Finally,
there is an evaluation of all metrics, including the ability to find individual anomaly
types. Since the anomaly detection takes place at time point level, all evaluations
were calculated likewise. The determination of the F1 score and the average precision
is not possible without a label, hence for the EDEN ISS FEG dataset, a more intu-
itive metric was used for the external assessment, the number of visually identifiable
anomaly prototypes. For k-Means and DBSCAN, no deviation was found for any of
the internal metrics. The standard deviation for the external metrics, averaged over
all iterations, are 1.123e−10 for k-Means and 0 for DBSCAN. The Mdc-CNN was
the only clustering method with noteworthy deviation, therefore mean values across
the iterations are presented with associated standard deviations.
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6.1. Synthetic dataset

6.1.1. Evaluating shapelet discovery

Internal metrics can give an intuition which of the clustering algorithms can find
more representative shapelets, by comparing their ability to define dense and well
separated clusters. In general, comparing internal metrics can be seen as the evalu-
ation of the shapelet discovery and shapelet selection, since the selection function is
only dependent on clustering results.

k-Means k-Means distinct hyperparameter is the number of clusters k. Figure 6.1
shows the results of the grid search for internal metrics for the hyperparameter k

across all α values. The figure is divided into three subplots, one for each met-
ric. To assess shapelet length influence on clustering and representation capability,
each subplot consists of a five-line plot, colour coded for the different alpha values:
(α12h; blue), (αday; orange), (α36h; green) and (α40days; light red). For simpler com-
parison, the mean across all alpha values αmean was included, encoded as dark red
dotted line. As mentioned in section 5.3.1 best/worst measure values are Silhouette
score: [(1,-1);0], Calinski-Harabsz score: [∞; 0] and for Davies-Bouldin index: [0;
∞].

As one could expect, shapelet clustering is length sensitive, with best results for
the shortest shapelets, but figure 6.1 shows no linear correlation between length
and clustering metrics because even though the length difference from α12h to αday

and αday to α36h remains equal, difference between metric values are not. Over all
number of clusters, αday and α36h are much denser and more correlated than α12h

and αday, especially visible at the Silhouette score for cluster number k = 200. The
Silhouette score, as well as the Calinski-Harabsz score, indicate two possible regions
for the best number of clusters, k ≤ 50 and k ≥ 200. Adding the Davies-Bouldin
index puts the statement into perspective, showing, on average, the worst results
for k ≤ 50. Reasons in curve course discrepancy can arise from various influences,
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6.1. Synthetic dataset

for example, noise, different density regions or close subclusters, that distort the
validation [LLX+10].
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Figure 6.1. – Internal metrics for k-Means shapelet discovery across all α
values and averaged. Best/Worst values for metrics are:
Silhouette score [(1,-1);0], Calinski-Harabsz [∞; 0] and

Davies-Bouldin index [0; ∞]

DBSCAN DBSCAN results for internal metrics are shown in figure 6.2, divided
in one column per metric and one row per α value, while the last row shows aver-
aged results. eps and minpts combinations that lead to just one cluster or otherwise
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useless clustering are left blank, apparent by the visible steps. The colours of the
rectangles encode the achieved values, ranging from dark blue for lower values to
higher values shown in yellow. As can be seen for nearly all α values, for some hy-
perparameter subspaces eps and minpts can be increased and decreased correlated
and uncorrelated in a certain range without affecting the outcome. For defining
hyperparameter space the elbow criterion was used in the experimental design, sug-
gesting small eps values for smaller and higher values for longer shapelets. The
results confirm the assumption because an expected slight right shift for best hyper-
parameter regions is visible across ascending shapelet length. Evaluating DBSCAN
supports the findings in k-Means, showing better results for shorter shapelets, al-
though differences for the three smallest α are less distinctive. Interestingly, in some
cases, the Davies-Bouldin contradicts statements that can be derived from the Sil-
houette score or Calinski-Harabasz score. This accounts for single rectangles, for
example, eps, minpts = (0.3;25), or that α40days is the worst performing shapelet
length for the first two. In contrast to k-Means, even the Silhouette and Calinski-
Harabasz score can diverge for some hyperparameters, for example, eps ∈ [0.2; 0.5]
and minpts ∈ [3; 6] for a shapelet length of one day. However, without a more in-
depth cluster analysis, which is only possible to a limited extent, no statement can
be made as to where this deviation could come from. By focusing on the average
best performing regions, assumptions can be made about the hyperparameters eps

and minpts. In general, it seems to be a good choice for setting minpts ∈ [20, 25]
and eps ∈ [0.3; 0.6], which contradicts previous proposed heuristic minpts values of
minpts = 2 · dataset dimension.

Mdc-CNN The main hyperparameter for deep learning based clustering is the
number of clusters k, resulting from Mdc-CNN employing k-Means for embedding
clustering. Results are shown in figure 6.3. In contrast to k-Means and DBSCAN,
deep learning based clustering showed a noticeable variance in results, even with a
fixed random initiation both for the network and clustering algorithm. The coloured
opaque lines represent the mean across all experiments, transparent shaded areas
account for standard deviation. Although the Mdc-CNN relies on k-Means, little
similarity can be found in the results and curve progressions. The Silhouette score
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Figure 6.2. – Comparison of internal metrics for all alpha values for
DBSCAN. Excluded are all combinations that resulted in

only one cluster being formed.

and Davies-Bouldin index show a clear favour of higher cluster numbers. In this
regard, the Calinski-Harabasz score falls out of line, with a strong preference for
small cluster numbers, which is evident from the almost exponentially, asymptoti-
cally decreasing curve strong. Considering that two metrics generally favor higher
values and only one lower, the number of clusters was chosen so that the Silhouette
score and Davies-Bouldin index are near their maximum with decreasing slope but
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before the Calinski-Harabasz score reaches its minimum, which corresponds to a
final interval k ∈ [100; 200].

0 100 200 300
number of clusters

0.325

0.350

0.375

0.400

0.425

0.450
Silhouette score

0 100 200 300
number of clusters

1500

2000

2500

3000

Calinski-Harabasz score

0 100 200 300
number of clusters

0.9

1.0

1.1

1.2

1.3
Davies-Bouldin index

Figure 6.3. – Internal metrics for ShapeNet clustering. Transparent areas
represent standard deviation from the mean value shown as

opaque lines

For a more comprehensive comparison, an additional survey was conducted, where
the Mdc-CNN was restricted to one shapelet length per iteration. This constraint
aligns with sequential length-dependent shapelet clustering, used by k-Means. This
approach allows for a direct and meaningful evaluation of the Mdc-CNN’s perfor-
mance against shapelet clustering using k-Means, considering the impact of different
shapelet lengths on the clustering results. Figure 6.4 shows, similar to figure 6.1 in
the k-Means evaluation, internal metrics for each alpha value individually and on
average.

On the whole, the curves of both clustering methods are almost identical. Likewise,
when comparing the best values for each internal metric, no significant difference
is evident, except for the Calinski-Harabasz score. Best values for k-Means were
found to be approximately 0.45 for Silhouette score, 4000 for Calinski-Harabasz
score and 0.6 for Davies-Bouldin index. Therefore, no advantage of the use of deep
learning-based clustering can be determined with a fixed shapelet length. An im-
proved anomaly detection can only result from the fact that Mdc-CNN can process
shapelets of different lengths, which can be examined using external metrics.
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Figure 6.4. – Internal metrics for ShapeNet clustering, for each alpha
individually. Transparent areas represent standard deviation

from mean value shown as opaque lines

In general, no clustering method showed a clear preference for certain hyperparam-
eter values, as in each study one metric conflicted with the others, highlighting the
importance of using different metrics to increase the meaningfulness of the results.
In summary, the intervals of the hyperparameters for the clustering methods are
k ≥ 200 for k-Means, eps ∈ [0.2; 0.5] and minpts ∈ [20, 25] for DBSCAN and
k ∈ [100; 200] for Mdc-CNN, presented in table 6.1. Before the final comparison

clustering method preliminary best hyperparameter interval

k-Means k ≥ 200
DBSCAN eps ∈ [0.2; 0.5]; minpts ∈ [20, 25]
Mdc-CNN k ∈ [100; 200]

Table 6.1. – Preliminary best hyperparameter intervals for all examined
clustering methods, based on the findings from internal

metrics

regarding the ability to find anomalies, the intervals are further refined using the
external metrics to reduce the selection to one combination per method if possible.
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6.1.2. Anomaly detection ability

In this section, found hyperparameter intervals for each clustering method are fur-
ther investigated using the external metrics and finally best found results are com-
pared against each other w.r.t. their anomaly detection ability.

k-Means To finalize hyperparameter choice and evaluate anomaly detection abil-
ity, hyperparameters were plotted against the pointwise F1 score and average pre-
cision, shown as mean for k-Means in figure 6.5. Findings are colourcoded, ranging
from high (blue) to low (yellow), for both figures. In addition to the number of clus-
ters, the number of final shapelets is included in the study space in order to make a
final evaluation. Since a higher number of final shapelets than number of clusters is
pointless, those combinations were left out of the experiments. It is noticeable that
for both values results are below expectation with a low maximum F1 score of ap-
proximately 0.19 and average precision of 0.148. The question of what could be the
reasons and how anomaly detection can be improved in future work are discussed
in section 7.
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Figure 6.5. – k-Means F1 score and average precision for number of cluster
k and number of finally selected shapelets fS
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As a supporting aspect for the validity and reliability of the best hyperparameters,
it can be noted that both the F1 score and the average precision locate their optima
at congruent positions. Although both metrics are based on recall and precision,
both graphs also show that the results are not always congruent, for example for
k ∈ [10; 150] and fS = 5 where F1 suggests local optima, but average precision does
not. At first glance, k = 200 and fS = 5 look like the optimal combination, which
is also supported by the results from the previous chapter k ≥ 200), but the view
shifts on closer examination.

Table 6.2 presents accuracy (for anomalous and normal class combined) and preci-
sion, recall, F1 score and average precision for anomalous class.

no.
cluster

no. final
shapelets

accuracy precision recall F1
average
precision

200 5 0.9565 1 0.1049 0.1899 0.1483

Table 6.2. – External metrics for hyperparamters k = 200 and fS = 5

The high accuracy and precision are striking. Taking the recall values for all anomaly
types individually in table 6.3 into account, it becomes clear how these values are
generated. The model has found anomalies either sparsely, or not at all, for example
for missing, noise or time shift anomalous time steps. However, almost no false
positives were detected. Therefore, it seems, the model was only able to detect few
anomalous points and anomaly types, but with high precision. Thus, high F1 and
AP results are generated, but the significance and usefulness of these models can
be doubted. For further consideration, only hyperparameters are used, which can
reliably find all anomalies. A main focus of this work is the question, of whether
anomalies are not only found but also interpretable by assignable shapelets. Since
shapelets can only be traced back for anomalies that have been identified, the values
for the found maximum are not wrong, but give little scope for the investigation of
interpretability and are therefore not considered further and are seen as outliers.
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no.
cluster

no. final
shapelets

recall
spike

recall
drop

recall
zero

recall
missing

recall
noise

recall
level shift

recall
time shift

200 5 0.0909 0.0677 0.3571 0 0 0.1519 0

Table 6.3. – Recall for all anomaly types for hyperparamters k = 200 and
fS = 5

As can be seen in both graphs, the next best hyperparameters are located at the
same positions. Therefore, the hyperparameter combination of k = 200 and fS = 30
with measured values 0.143 for F1 score and 0.062 for average precision is taken as
final values, which also corresponds to the interval previously defined by means of
internal metrics
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DBSCAN Internal metrics for DBSCAN supported intervals of eps ∈ [0.2; 0.5]
and minpts ∈ [20, 25]. The F1 score supports these results only to a limited extent,
because although it shows the best results in the range of the interval, other combi-
nations also lead to a similar score, for example, (eps, minpts, fS) = (0.2, 10, 5)
in figure 6.6. With the addition of the average precision, the dark rectangles be-
come denser for the entire range of eps = 0.5 where also the best value, marked by
red borders, can be found. A similar condensation can also be observed in the F1
heatmap, but less pronounced.
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Figure 6.6. – F1 score and average precision for DBSCAN
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As can be seen from both figures, there are several possible combinations of hy-
perparameters, with good results. Since the results for both metrics are not consis-
tent, a high F1 score does not necessarily mean a high average precision and vice
versa, the top 10 hyperparameters for both metrics were weighted and ranked. The
combined rank consists of equal parts of the F1 score rank and average precision
rank. Table 6.4 shows the top three hyperparameter combinations, along with the
results and their combined rank. It was not necessary to discard combinations be-
cause they did not find all anomaly types, as with k-Means. For final comparison,
(eps, mintpst, fS) = (0.5, 20, 10) will be chosen.

combined
rank

eps minpts
no. final
shapelets

accuracy precision recall F1 average precision

1 0.5 20 10 0.695 0.079 0.496 0.136 0.0637
2 0.5 20 5 0.693 0.078 0.496 0.135 0.0634
3 0.2 10 5 0.841 0.093 0.260 0.138 0.06

Table 6.4. – External metrics for best DBSCAN hyperparameters and their
combined rank, consisting of equal shares of F1 score rank and

average precision rank

Mdc-CNN As noted for figure 6.4, clustering using Mdc-CNN for fixed shapelet
lengths is not superior to that of pure k-Means. However, there may be an advantage
in embedding different lengths to make shapeled discovery and selection independent
of alpha. This can be investigated by figure 6.7, showing the number of clusters
against the number of final shapelets with associated mean F1 score and mean
average precision over all experimental iterations. In contrast to k-Means, fS refers
to all shapelet lengths, so a final number of 8 means that a total of 8 shapelets were
selected over all shapelets, whereas in k-Means this was done per alpha value.

Similar to k-Means, and in contrast to DBSCAN, the local and global maxima
are consistently located at the same positions for both metrics. The range of the
results is similar to that of k-Means, the F1 score ranges from 0.075 to 0.146 as well
as the average precision from 0.049 to 0.062. However, it is noticeable that Mdc-
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CNN produces significantly more results in the higher range, colourcoded green and
cyan.
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Figure 6.7. – F1 score and average precision for Mdc-CNN. Values
represent the mean across all iterations.

This also becomes clear when comparing the mean values of both clustering methods.
k-Means achieved on average 0.106 for F1 and 0.055 for average precision, Mdc-CNN
on the other hand a 4.7% higher F1 score of 0.111 and equal average precision of
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0.055 respectively. With k-Means, however, the considerably small peak at k = 200
and fS = 5 should be taken into account, whereby, with elimination, the mean
values drop to 0.104 and 0.0532. On average, the Mdc-CNN seems to produce more
robust results 1. As with the other methods, the results were examined in descending
order to determine whether all anomaly types were found. The highest result with
comprehensive type detection is 0.134±0.02 and 0.06±0.005 with hyperparameters
k = 100 and fS = 8 falling into the range defined through internal metrics of
k ∈ [100; 200].

Comparison for best hyperparameters After all investigated clustering methods
have been examined concerning their results and hyperparameters, results for best
found hyperparameters are compared. It is positive to note that in all cases internal
and external metrics matched in the selection of hyperparameters, which supports
the validity of the results. When focusing on the internal metrics in table 6.5, best
performing shapelet discovery was achieved by k-Means, with a cluster number of
k = 200. On average, k-Means exceeded DBSCAN by 987% and the Mdc-CNN by
46%. k-Means was also the only clustering method, that achieved near-optimal clus-
tering of all shapelets, at least for one metric, the Davies-Bouldin index. Regarding
the second metric with clear interval boundaries, the Silhouette score, no method
managed to achieve near-optimal results, or at least within the top 50% of the in-
terval, which would correspond to values ∈ [≤ −0.5 ∨ ≥ 0.5]. Worst performing
clustering method, was by far DBSCAN. However, the results must be viewed with
a certain degree of caution. Reasons for DBSCANS performance are discussed in
chapter 7. Due to its exclusive utilization of shapelets of all lengths, the Mdc-CNN
produces results that can only be compared to a limited extent with other methods.
A final decision can only be made by comparing the external metrics.

Findings in the evaluation of anomaly detection do not align with the results for
shapelet discovery. Table 6.6 summarizes results for external metrics and the recall
for each anomaly type individually. The Mdc-CNN showed best results for accu-
racy of normal and anomalous class combined and precision, DBSCAN for recall

1A.6 shows a histogram comparison for both scores and both clustering methods. The shift to
the right of the distribution curve for MDC-CNN is visible
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6.1. Synthetic dataset

Hyper-
parameter Silhouette score Calinski-Harabaszs score Davies-Bouldin index

k-Means k = 200 0.456 2480 0.66

DBSCAN eps = 0.5
minpts = 20 0.202 313 14.81

Mdc-CNN k = 100 0.424±0.023 1419±88 1.03±0.022

Table 6.5. – Comparison of internal metrics for best found
hyperparameters for all clustering methods

and average precision and k-Means had the highest F1 score. Thus, it cannot be
confirmed that a better clustering result, as measured by the internal metrics, nec-
essarily leads to better anomaly detection. When looking at the individual types of
anomalies, the situation is more uniform, with DBSCAN consistently achieving the
highest values.

external
metrics

hyper-
parameter

Accuracy
both classes precision recall F1 score average

precision

k-Means k = 200
fS = 30 0.849 0.0986 0.26 0.143 0.0615

DBSCAN
eps = 0.5
minpts = 20
fS = 10

0.695 0.0791 0.496 0.136 0.0637

Mdc-CNN k = 100
fS = 8

0.897
±0.0097

0.115
±0.023

0.162
±0.013

0.134
±0.02

0.0596
±0.005

recall for
anomalies

recal
spike

recall
drop

recall
zero

recall
missing

recall
noise

recall
level shift

recall
time shift

k-Means k = 200
fS = 30 0.208 0.220 0.603 0.073 0.174 0.312 0.046

DBSCAN
eps = 0.5
minpts = 20
fS = 10

0.416 0.441 0.831 0.393 0.442 0.457 0.358

Mdc-CNN k = 100
fS = 8

0.136
±0.0065

0.136
±0.017

0.448
±0.021

0.037
±0.037

0.098
±0.045

0.168
±0.064

0.023
±0.023

Table 6.6. – Comparison of external metrics for best found
hyperparameters for all clustering methods

Recall, a measure of the algorithm’s ability to correctly identify positive instances
(in this case, anomalies), implies that DBSCAN successfully captured a significant
portion of the true anomalies present in the dataset. On the other hand, the ac-
curacy score for both classes and precision for the anomalous class was the lowest,
suggesting that the DBSCAN algorithm generated a considerable number of false
positive predictions.
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6.1.3. Interpretability and anomaly prototypes

A primarily motive of shapelet-based anomaly detection was the drastically im-
proved interpretability. Unfortunately, interpretability can neither be assessed by
qualitative or quantitative methods, since it is a sorely subjective perception. There-
fore the idea of anomaly prototypes was introduced, shapelets, that are visually
definable as anomalous, with lowest distance to anomalous points or sequences in
the time series and which are the maximum representative of their cluster. Anomaly
prototypes should enable the user to quickly classify anomaly types. For their iden-
tification, the following consideration is limited to the best clustering method.

No clustering method showed a distinct superior anomaly detection ability. However,
the identification of the anomaly prototypes strongly depends on the results of the
shapelet detection and selection, in which k-Means achieved the best results, as
the internal metrics make a statement about the representational capability of a
centroid. With the given hyperparameter combination, a number of 30 final shapelets
per α were selected. These overall 120 final shapelets were further investigated.

The distance-based nature of the shapelet transformation allows for the detection
of anomaly prototypes. These prototypes correspond to shapelets with the smallest
distance to the time series points identified as anomalies. A shapelet closest to an
anomalous time point or sequence is a potential prototype. The occurrence of a
shapelet having the smallest distance to multiple anomalies diminishes the number
of potential anomaly prototypes. Out of the final 120 shapelets, 46 were found to
be closest to at least one anomalous location. All 46 shapelets can be found in
Appendix A.7 and A.8. 50% of those shapelets had a length of 40 days, as can
be seen from table 6.7, and 45.7% of all shapelets inherited an anomaly. However,
none among them were shorter than 40 days. Below, three examples illustrate the
process of determining anomaly prototypes. Initially, two examples of a normal
class are presented, followed by an explanation of an anomalous shapelet. For a
better overview, two variables are used whose detected anomalies can be completely
assigned to the shown shapelets.

80



6.1. Synthetic dataset

length α12h αday α36h α40days
percentage
of all [%]

anomalous 0 0 0 21 45.7
normal 7 5 11 2 54.3
percentage
of all [%] 15.2 10.9 23.9 50 100

Table 6.7. – Breakdown of final shapelets, with the least distance to time
points and subsequences detected as anomalies, by length and

anomalous or normal class

Normal class The selection of the two normal shapelets was based on the observa-
tion that, despite not being anomaly prototypes themselves, they can be distinctly
assigned to one anomaly type, almost exclusively. Figure 6.8 shows the normalized
relative humidity and all anomalous points, marked red, that were closest to shapelet
no. 42 plotted in figure 6.9. The six anomalies just below the 0.2 line are zero anoma-
lies, as shown in the enlarged section. This corresponds to an identification rate of
100% for this type of anomaly, as can be noted from table 5.1. The third anomaly
marked from the right is a drop anomaly.
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Figure 6.8. – Closest anomalous points to shapelet in figure 6.9. All six
zero anomalies were identified, additionally to a drop

The shapelet itself can be classified as normal class, as evident from the comparison
using A.3 and A.4. To get an overview of the associated cluster, the shapelets from
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Figure 6.9. – Normal shapelet for relative humidity associated to zero
anomalies, extracted using α36h

the same cluster were reviewed. A section of this can be seen in figure 6.10, where
the nearest four shapelets are shown. Every shapelet corresponds to a normal class,
making it possible to assess the shapelet as a representative of that particular normal
class. Thus, the identification of the anomalies was done by means of a large distance
to the normal case. It is worth noting that a certain type of anomaly, except for a
drop, can be assigned to a normal class of shapelets.
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Figure 6.10. – The shapelet in figure 6.9 (leftmost) and four nearest
shapelets within the same cluster

Another illustration of anomaly detection using only normal class shapelets can be
observed for shapelet no. 43 in Figure 6.11. This time, the shapelet successfully
detects six out of seven level shifts in the relative humidity time series. To classify
the associated cluster, the associated shapelets were again examined. 6.13 shows
a section of the cluster created identically to 6.10, with the final shapelet in the
first position. Both the maximum representative shapelet and the cluster are to
be classified as normal. The two shapelets above were the only ones returned as
final shapelets for relative humidity and α36h. The reason for this can be found
in the shapelet discovery. Figure 6.14 is an estimation of a graph network for all
shapelets for α36h extracted from relative humidity. Every dot represents a shapelet
and the estimated visual distance represents the actual distance of the shapelets
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Figure 6.11. – Closest anomalous points to shapelet in figure 6.12. Six out
of seven level shift anomalies were identified in the relative

humidity data

Figure 6.12. – Normal shapelet for relative humidity associated to level
shift anomalies, extracted using α36h

using Euclidean distance in shapelet discovery. As visible, no single shapelet or group
can be identified as an outlier, resulting in only two clusters, colour coded in green
and blue. The reason for two clusters with no discernible cluster boundary comes
from the given number of clusters k for k-Means. Although no anomaly prototype
emerged for relative humidity from the final shapelets, since they consist only of
normal class, it is nevertheless possible within certain limits to assign two types of
anomalies to one shapelet each.
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Figure 6.13. – The shapelet in figure 6.12 (leftmost) and four nearest
shapelets within the same cluster

shapelets in variable 1 shapelets in variable 2 shapelets in variable 3

shapelets in variable 4 shapelets in variable 5 shapelets in variable 6

Figure 6.14. – Graphnetwork estimation for all shapelets for α36h

extracted from relative humidity. Dots represent the
shapelets, visual distance estimates Euclidean distance and

colour code accounts for corresponding cluster

Anomalous class Of all the found anomalous final shapelets, shapelet no. 46 shown
in figure 6.15 will be used. It was chosen based on its ability to demonstrate the
interpretability of shapelets in the context of the study. The shapelet was extracted
from the photosynthetic rate, using α40days. Visible is the anomaly around timestep
2000 for a period of over 500 timesteps. The marked closest anomaly is visible in
figure 6.16. In contrast to above, only one anomaly was identified in the entire PR

time series, but this one is of particular interest.

Figure 6.15. – Anomalous shapelet for photosynthetic rate associated to
level shift anomalies, extracted using α40days
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6.1. Synthetic dataset

PR is a dependent variable and the found shapelet allows an unambiguous identifica-
tion, which of the influencing variables, plantmass, temperature and photosynthetic
active radiation PAR, initially inherited an anomaly and of what type. The anomaly
seems to be a level shift, since no other sequential anomaly would allow a similar
behaviour. Noise is not visible at the subsequence and a zero anomaly cannot simul-
taneously increase the PR for the day and decrease it for the night. A zero anomaly
in the temperature or PAR would automatically set the PR, according to formula
5.10, to zero, or negative, since only the dark respiration Rd remains. Also, without
a known formula, a failure of cooling or illumination systems, in reality, would not
increase the PR, as described in section 5.2.2. A zero anomaly for the plantmass
would set the total subsequence to zero. By exclusion, only a level shift remains as
possibility.
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Figure 6.16. – Closest anomalous points to shapelet in figure 6.15. Shown
is the only found level shift for the photosynthetic rate

The identification, in which of the three variables the anomaly occurred, is also
possible. Temperature only affects the photosynthetic rate at day, Rd is not affected,
so temperature alone cant explain the anomaly. PAR does also not effect Rd. The
only variable that affects PR both for day period and night period is plant mass.
Yet, the plant mass, or more precisely the growth, is a linear factor, it cannot explain
the different amplitude increases for both periods. Thus, monocausal explanations
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are out of the question. It therefore seems to be a multivariate level shift anomaly.
In fact, there is a multivariate level shift anomaly at this time steps. Thus, the
interpretability of the shapelet allows to make statements about the rest of the data
set and to increase the number of identified anomalies from one to at least 5, since
plantmass, PAR, temperature and therefore also V PD must be affected.

The shapelet is not an anomaly prototype since the cluster consists of various
shapelets with different types of anomalies, as shown in figure 6.17. Still, being the
only shapelet for this time series, the cluster contains valuable information, because
it inherits all types of anomalies.

Figure 6.17. – The shapelet in figure 6.15 (leftmost) and four nearest
shapelets within the same cluster

6.2. Eden ISS FEG dataset

The subsequent chapter provides a summary of the outcomes obtained from the
EDEN ISS FEG dataset. Unlike the artificial dataset, this particular dataset lacks
labels. Therefore, when choosing the best clustering technique and searching for
anomaly prototypes, additionally to internal ones, a different metric is employed
compared to the external metrics used before.

6.2.1. Hyperparameter optimisation

k-Means By inspecting the internal metrics for the FEG dataset in figure 6.18,
colourcoded for each alpha value and on average, it becomes clear that k-Means as
clustering method deteriorates for larger k. The only metric favouring larger cluster
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6.2. Eden ISS FEG dataset

numbers is the centroid-based Davies-Bouldin index, but only by a small extent of
1.16 against 1.02 for k = 300.
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Figure 6.18. – Internal metrics for k-Means shapelet discovery across all α
values and averaged.

As final number of clusters is k = 8 chosen, with a Silhouette score of 0.42, a
Calinski-Harabasz score of 2440 and the second smallest Davies-Bouldin index of
1.16 on average. This limits the number of possible anomalies that can be detected
by direct anomaly prototypes since the number of selectable shapelets is restricted
to a maximum of 4 · 8 = 32. When comparing results for the synthetic and FEG
dataset, scores for α12h, αdayandα36h are denser, especially for the Calinski-Harabsz
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score and Davies-Bouldin index, which indicates a smaller influence of the shapelet
length, but only to a limited extent, as alpha week still has a much more distant
course. Curve progress remains, except the Calinski-Harabasz, nearly identical.

DBSCAN DBSCAN shows clear favoured hyperparameter intervals for almost ev-
ery metric and shapelet length, recognizable by the bright regions for the Silhouette
score and Calinski-Harabasz score in figure 6.19 and no particular outliers can be
identified in any of the metrics.

The Davies-Bouldin index is significantly less selective for the first three alpha values,
which is reflected by the large dark blue coloured areas. Among all the shapelet
lengths, αweek stands out as the only one with a shift of the optimal range towards
smaller regions at the edges concerning minpts. It should also be noted that the areas
of the best results are almost congruent for all metrics and all shapelet lengths, i.e.
the metrics match, which is not the case with k-Means and Mdc-CNN. A movement
of the optimal region through the hyperparameter space depending on the shapelet
length, like for the synthetic dataset in figure 6.2, is only slightly noticeable for
the first two metrics and first three alpha values. The determination of the final
combination of hyperparameters is heavily influenced by which metric is given more
emphasis, as the results exhibit ambiguity. Employing a simple majority decision,
the best hyperparameters are eps, minpts = 0.8, 20 , with the corresponding scores
of 0.185(1. SH), 904(1. CH) and 3.48(7. DBI) for αmean, since they deliver better
results in 2 of the three metrics. The numbers in brackets represent the placement
of the hyperparameters in the respective metric.
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Figure 6.19. – Comparison of internal metrics for all alpha values for
DBSCAN

Mdc-CNN For the Mdc-CNN all three internal metrics indicate a small number
of clusters for best results, as can be seen in figure 6.20. Transparent areas represent
the standard deviations of each metric. The Davies-Bouldin index is the only one
with a significant improvement after deteriorating as the cluster count increases,
however, not to a degree that would reach or surpass the previous optimum. Both
the Silhouette score and the Calinski-Harabasz score start at or near their maximum

89



6. Results

values and steadily decrease from there. With an increasing number of clusters, the
clusters overlap, expressed by the silhouette score of almost 0. Values near 0 indicate,
that a one-to-one assignment to a cluster is no longer possible for a single shapelet.
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Figure 6.20. – Internal metrics for ShapeNet clustering. Transparent areas
represent standard deviation from mean value shown as

opaque lines

There are two possible best values for cluster number k, depending on which metric
the emphasises lies, see table 6.8. This is problematic since it reduces the number

no. clusters k Silhouette score Calinski-Harabaszs score Davies-Bouldin index
8 0.283±0.0057(2.) 4057±114 (2.) 1.39±0.067 (1.)
10 0.304±0.0055 (1.) 4109±99 (1.) 1.59±0.052 (2.)

Table 6.8. – Best two number of clusters k for Mdc-CNN. The number in
brackets stands for the ranking in the individual metrics

of available shapelets for anomaly detection to maximally 10. Therefore, Mdc-CNN
was evaluated for each alpha individually, under the assumption that the reduced
complexity caused by the fixed shapelets length for each clustering iteration leads
to better clustering results. Figure 6.21 shows the results for all alpha values and on
average, again with standard deviation. Reducing complexity did not meet expec-
tations, since the results remain nearly equal. The curve progression only displays
changes for the Davies Bouldin index, surpassing its local optima at a lower level
of cluster numbers. The silhouette score and Calinski-Harabasz score do not exhibit
such variations. Both these metrics consistently yield the best results for the smallest
possible number of clusters.
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6.2. Eden ISS FEG dataset

Even if the internal metrics are not compared with each other until later, it can be
seen in comparison to k-Means that with the clustering of fixed shapelet lengths,
the curves for individual alphas are significantly denser than with k-Means.
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Figure 6.21. – Internal metrics for ShapeNet clustering, for each alpha
individually. Transparent areas represent standard deviation

from mean value shown as opaque lines

Comparison for best hyperparameters Table 6.9 shows the final comparison of all
three clustering methods. Similar to the findings for the synthetic dataset, k-Means
achieved the best results. The Mdc-CNN was the only clustering method to surpass
it for one metric, namely for the Calisnki-Harabasz score. The internal metrics for
DBSCAN do not necessarily indicate poorer clustering, as the discussion in chapter
7 will show, but has its reasons in the implementation.

In a direct comparison with the synthetic data set, it is noticeable that the curves are
similar, but the results for individual hyperparameters are much less obvious, which
makes it more difficult to define clear interval boundaries. Even though the EDEN
ISS FEG dataset is much more complex than the synthetic one, the final internal
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results are quite comparable, since the range of values has only shifted slightly.
Some methods even seem to cluster more compactly and with clearer boundaries,
e.g. DBSCAN, which achieved results of Silhouette = 0.202, Clainski-Harabasz =
313 and Davies-Bouldin = 14.81 in the synthetic experiments. All in all, the ranking
of the methods has not changed, although the simultaneous clustering of all shapelets
by Mdc-CNN should also be considered here.

hyper-
parameter Silhouette score Calinski-Harabaszs score Davies-Bouldin index

k-Means k = 8 0.417 2440 1.16

DBSCAN eps = 0.8
minpts = 20 0.185 904 3.48

Mdc-CNN k = 10 0.304±0.0055 4109±99 1.59±0.052

Table 6.9. – Comparison of internal metrics for best found
hyperparameters for all clustering methods

6.2.2. Interpretability and anomaly protoypes

Since no clustering method was found to be the best and labels are missing to eval-
uate anomaly detection, the selection of the method to identify anomaly prototypes
and evaluate their interpretability is based on the number of possible candidates for
anomaly prototypes, more precisely the number of final shapelets. As centroid-based
clustering methods, k-Means and Mdc-CNN explicitly specify this number as part of
the clustering, namely 4*8=32 and 10, respectively. DBSCAN is the only clustering
method that does not explicitly specify fS. In order to keep the set of selectable
final shapelets as large as possible, DBSCAN is examined with the hyperparameters
eps = 0.8, minpts = 20 and fS = 50, which theoretically corresponds to 200 possible
anomaly prototypes. Still, the maximum number of final shapelets corresponds to
the number of clusters.

A total of 108 potential anomaly prototypes were found, more than would be possible
using k-Means or Mdc-CNN. All 108 shapelets are shown in A.9, A.10 and A.11.
In total, 52.07% of the FEG dataset was labelled as anomalous. This value initially
appears to be elevated, but the following examples show that it is quite realistic.
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Each of the 108 shapelets was sorted according to its length and examined to de-
termine whether it should be classified as normal or abnormal. The assessment was
based on the normal case defined in chapter 5.1 for each variable. The boundary is
not always clear-cut; small deviations (5%) are not directly classified as abnormal
unless they are classifiable anomalies, such as a spike. Shapelets that nevertheless
cannot be clearly assigned to a category are recorded as "undefinable". Table 6.10
shows the result of the analysis. The proportion of anomalous shapelets has remained

length α12h αday α36h αweek
percentage of

all [%]

anomalous 9 12 13 21 50.9
normal 15 10 7 4 33.3

undefinable 3 3 6 5 15.8
percentage of

all [%] 25 23.15 24.07 27.77 100

Table 6.10. – Breakdown of final shapelets, with the least distance to time
points and subsequences detected as anomalies, by length
and anomalous or normal class for the FEG dataset

nearly equal, but in contrast to the synthetic data set, they are almost uniformly
distributed across all shapelet lengths. Out of the 108 potential shapelets, only 17
(15.8%) could not be assigned to a class.

Normal class The first case demonstrates the identification of different anomalies
as deviations from the normal pattern. In the excerpt from the second illumination
time series in figure 6.22, it is evident that all illumination periods deviating from the
normal pattern during the day have been labelled as anomalies. This classification
holds true as long as these periods achieve the specified illuminance. Additionally,
the course of an illumination period, as specified in the FEG documentation, is dis-
tinguishable and represented by the second rectangle from the left. This example
also highlights the inherent ambiguity in classifying shapelets into distinct cate-
gories. Despite the shapelet, shown in figure 6.23, roughly aligning with the normal
progression, a drop anomaly is apparent in the right part. It demonstrates that the
classification of shapelets into two classes is not always straightforward or definitive.
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Figure 6.22. – Closest anomalous points to shapelet no. 31 in 6.23.
Anomaly types identified are mainly small spikes, drops and

level shifts

Figure 6.23. – Normal shapelet no. 31 for PAR light 1, extracted using
α12h

Even if the shapelet individually would be considered as normal class only without
the right part, it was nevertheless assigned to this class, because first of all the part
important for the anomaly detection corresponds to the normal class. Secondly, the
cluster, excerptwise depicted in 6.24, contains mainly normal shapelets, which show
the target course of the maximum illumination according to specification. A second
example, for identified level shifts in temperature time series, can be found in A.12

cluster: 2 var.: PAR_light 1 cluster: 2 var.: PAR_light 1 cluster: 2 var.: PAR_light 1 cluster: 2 var.: PAR_light 2 cluster: 2 var.: PAR_light 2

Figure 6.24. – The shapelet no. 31 in 6.9 (leftmost) and four nearest
shapelets within the same cluster
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6.2. Eden ISS FEG dataset

Anomalous class The initial case example where an anomaly prototype could be
identified, relates to level shift anomalies in the second illumination system. As
depicted in the plot excerpt referenced as 6.25, these instances involve illumination
durations that do not align with the specified intensity. In the majority of cases, the
illumination fell short by less than 20% of the required level. Notably, the maximum
lighting intensity during these periods exhibits flickering, indicating a system failure
rather than a deliberate reduction. The anomaly prototype candidate is shown in
figure 6.26. This image displays the normal case on the left, while the level shift
candidate is evident on the right. This is particularly helpful for interpretability, as
case discrimination for points marked as anomaly can be done with one image.
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Figure 6.25. – Closest anomalous points to shapelet no. 108 in 6.26.
Detected anomalies are mainly level shifts, as visible in the

excerpt

Figure 6.26. – Anomalous shapelet no. 108 for PAR light 2, extracted
using α36h

All shapelets contained in the associated cluster correspond to a level shift anomaly,
although the manifestation in each case can have significant differences, as shown
in figure 6.27. It is also apparent that the distinction between level shift and noise
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anomaly is often ambiguous, which can be explained by flickering of the lighting
system in the event of a power loss.

cluster: 2 var.: PAR_light 2cluster: 2 var.: PAR_light 2 cluster: 2 var.: PAR_light 2cluster: 2 var.: PAR_light 2cluster: 2 var.: PAR_light 1

Figure 6.27. – The shapelet no. 108 in 6.26 (leftmost) and four nearest
shapelets within the same cluster

The following example illustrates the challenge of precisely categorizing the specific
type of anomaly in question. Within illumination system 2, multiple instances of
spike anomalies were detected. These anomalies manifested as transient surges in
illumination, followed by immediate cessation, as depicted in the magnified segment
in plot 6.28 The spike anomalies were caused by the short illumination pulses. The
short lighting pulses reached on average 10% to 20% of the actual illuminance. The
normal intensity level can be seen in the snippet at the right edge.
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Figure 6.28. – Closest anomalous points to shapelet no. 106 in 6.26.
Detected anomalies are mainly spikes, as visible in the

excerpt

The associated closest shapelet is shown in figure 6.29. While visually resembling a
spike, the anomaly needs to be formally evaluated as a level shift due to its dura-

96



6.2. Eden ISS FEG dataset

tion spanning multiple sequence points. Similarly, the associated cluster, depicted
in figure 6.30, exhibits a comparable behaviour. Consequently, it is reasonable to
designate the anomaly prototype as an impulse anomaly, since these can extend
over short periods of time, which corresponds to its behaviour in the time series. An
impulse is characterized by a sudden rise, with impulse width Pw → 0 and is thus
very closely related to a spike.

Figure 6.29. – Anomalous shapelet no. 106 for PAR light 2, extracted
using α14h

cluster: 21 var.: PAR_light 2 cluster: 21 var.: PAR_light 2 cluster: 21 var.: PAR_light 1 cluster: 21 var.: PAR_light 1 cluster: 21 var.: PAR_light 1

Figure 6.30. – The shapelet no. 106 in 6.26 (leftmost) and four nearest
shapelets within the same cluster
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7. Discussion

The following section delves into a comprehensive discussion of the results obtained
from all conducted experiments, with a primary focus on evaluating the effectiveness
and performance of the proposed workflow. The workflow, derived from existing time
series classification frameworks, was specifically designed to detect anomalies and
anomaly types in an unsupervised manner while providing interpretable anomaly
prototypes.

One aspect was to evaluate different clustering methods and their use for shapelet
selection. A surprising result was the worse performance of the Mdc-CNN in compar-
ison to k-Means and DBSCAN, concerning both internal and external metrics. Al-
though it was initially assumed that the simultaneous clustering of different shapelet
lengths could have caused a negative effect, it was shown that clustering of individ-
ual alpha values did not yield any advantage over k-means. The only difference
between k-means and the Mdc-CNN for a single α value is the embedding. Identi-
fying the reasons behind this behaviour is a challenge due to the Mdc-CNN, which
is the underperforming component, functioning as a black box model. The lack of
transparency in its inner workings makes it difficult to gain a comprehensive under-
standing of its mechanisms and potential sources of underperformance. One aspect
could be the missing hyperparameter optimizaiton because initial hyperparameter
values were taken as is. Another aspect could be the length of examined shapelets.
The Mdc-CNN was originally proposed for the UEA Archive for time series classifica-
tion and it showed superior classification results for 14 out of 30 datasets [LCX+21a,
p. 8381]. On closer inspection, it is noticeable that the average length of the time
series, for which the Mdc-CNN yielded the best results, is 853, which is smaller
than the average length of all time series in the dataset, of 1073. This leads to two
assumptions: first, the length of the time series used was significantly greater than
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that of all the data sets in the UEA Archive. At the same time, the length ratio of
the used shapelets was significantly larger. For alpha values between 0.05 and 0.3,
as used in literature [BKS+18, p. ], the maximum length ratio is 1:6. The shapelets
used in this work can reach a length ratio of 1:80, which could be problematic for the
Mdc-CNN. Second, it can be assumed that the Mdc-CNN, in its current form, is only
suitable for shorter time series, which is evident from the results by [LCX+21a] and
since the results for individual α values were also below those of the other clustering
methods.

By comparing k-means and DBSCAN it was observable that DBSCAN shows weaker
and less distinctive clustering results than k-means. This can be explained by two
possible reasons: Firstly, k-means favours convex clusters [MCT21, p. 176] that tend
to have a smaller within-cluster distance, which is used for most internal metrics.
Another factor is the influence of shapelets labelled as noise or outliers. DBSCAN
was developed for more robust clustering by separating noise points that can not be
allocated to a core point. As mentioned in section 4.1.2, all noise labelled shapelets
are consolidated in a distinct noise cluster, to find far-distant, rare anomaly types.
Density of this noise cluster can expected to be low since it is in the nature of noise
points to be widely distributed and in less dense regions.

It was possible, with the presented workflow, to identify all anomaly types and,
mainly for the FEG dataset, also to find anomaly prototypes, but the anomaly
detection generally remained below expectations. Consequently, the results of the
external metrics are further discussed to gain deeper insights into the reasons behind
this discrepancy.

All external metrics were calculated on a point-by-point basis to evaluate the most
accurate detection possible. In order to assess that this method of calculation does
not have a significant impact on the error values and distort the result, the results
were also calculated using less precise sequencewise metrics. A detection is considered
a true positive if the detection occurred somewhere within the anomaly. Correctly
identifying a single point of the anomaly is sufficient for marking the entire anomaly
as found. False negatives are all anomalies (not their sequence points) that were
not found. False positives are all labelled subsequences that do not overlap with an
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anomaly. The results obtained using this approach for the best clustering method
found, k-means, are presented in the table below. 7.1. The sequencewise calculation
improves the results, but only to a certain level. Thus, the methodology of the metric
calculation has an impact, but other sources of error still need to be identified for
a final evaluation. Furthermore, the methodology of the calculation is always a
question of trade-off, for the highest possible precision (pointwise) or whether it is
sufficient, e.g. in application, to issue a warning as soon as an anomaly is detected,
no matter how much of it (sequencewise).

method recall precision F1 score average
precision

pointwise 0.26 0.0986 0.143 0.0615
sequencewise 0.24 0.159 0.192 0.129

Table 7.1. – Pointwise and sequencewise calculated external metrics for
best k-means

For all three clustering methods, shapelet clustering itself can initially be ruled out
as a source of error, justified by the good internal metrics, some of which came close
to the best possible results, e.g. close to 0 for the Davies-Bouldin index. The next
decisive step is the multivariate time series transformation, which was used in this
form for the first time. The final anomaly detection is distance-based, which is why
anomalies should show up accordingly in the MTST. To test this hypothesis, the
MTST Φ(X; SfS

) for the k-means clustering was averaged over all final shapelets
in order to reduce it from dimension V × N × fS to V × N and thus make it
visually presentable. An excerpt for all variables for the first 75000 timesteps can
be found in A.15, in the following are two representable examples shown. In figure
7.1 is the averaged MTST excerpt for relative humidity shown. Additionally, all
true positives, false positives and false negatives are colourcoded in green, yellow
and red respectively. Most anomalies within the relative humidity are visually easily
identifiable, e.g. the first four anomalies that were identified as level shift and zero
anomalies with a corresponding shapelet in section 6.1.3. A distance-based detection
method should therefore be able to recognize points and sequences distant from the
baseline as anomalies, even if this has not always worked. Thus, even though only
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7. Discussion

Figure 7.1. – The multivariate time series transformation for relative
humidity for the first 75000 timesteps, with overlaying

anomaly detection results

normal shapelets were found for relative humidity, they were sufficient to produce a
MTST that could be meaningfully interpreted.

Figure 7.2 shows how the MTST behaves if no anomalous shapelets are found and
the normal shapelets do not have enough variety to separate normal and anomalous
behaviour. For the plantmass, only shapelets that were similar to the centrepiece
of a growth period of 40 days were selected (shapelet no. 1 - 11 in A.7) For this
area the MTST shows the lowest distance values. In the absence of a final shapelet
that encompasses both the initial and final phases, the distance values in that region
increase, resulting in frequent false positives and blurring the sharp delineation of
anomalies based on their distance. Nevertheless, these anomalies remain visible in
the MTST despite the challenges posed by the absence of a comprehensive shapelet
that spans the complete anomaly.

Figure 7.2. – Leftmost shapelet represents cluster centroid of cluster 0.
The next four shapelets are the closest shapelets from the
same cluster. Shapelets are derived from variables relative

humidity, temperature, and VDP

In the case of k-means, two variables, plantmass and PAR, contain frequent, periodic
false positives, from which the low results can be derived. For the other two clus-
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tering methods, the behaviour of the MTST is similar with frequent false positives
for individual variables, especially plantmass. Several factors can be considered as
reasons for a low shapelet variance and a low occurrence of anomalous shapelets.

While reviewing the final shapelets to identify anomaly prototypes, the first factor
was found that can negatively influence external metrics and shapelet variety. It was
noted that point anomalies and short collective anomalies tend to vanish in a clus-
ter consisting of normal class shapelets. This phenomenon will be called vanishing
anomalies. Figure 7.3 shows the centroid (left) of a normal cluster extracted from
the synthetic dataset experiments by k-means and its four closest shapelets of the
same cluster. Even though shapelet no. 3 inherits a visible spike anomaly, it was
assigned to the same cluster. All clustering methods utilized the Euclidean distance.

cluster: 2 var: photosynthetic rate cluster: 2 photosynthetic rate cluster: 2 photosynthetic ratecluster: 2 var: photosynthetic rate cluster: 2 var: photosynthetic rate cluster: 2 var: photosynthetic rate cluster: 2 photosynthetic ratecluster: 2 var: photosynthetic rate

Figure 7.3. – The centroid shapelet and four closest shapelets from the
same cluster from the synthetic dataset. Visible is the
anomalous third shapelet, containing a spike anomaly.

For two shapelets S1 and S2, both of length |S|, where s denotes one timestep, the
Euclidean distance is calculated as:

dist(S1, S2) =

√√√√√ |S|∑
i=1

(s1i
− s2i

)2 (7.1)

Even for the smallest shapelet length α12h, the shapelets consist of 144 timesteps.
The influence of spikes, drops or other very short anomalies on clustering is therefore
small. This probably has a direct influence on the anomaly detection. Anomalous
points can only be clustered according to the fact that their MTST has a large dis-
tance to all shapelets. In the optimal case, there are also a few anomalous shapelets
with a small distance to make the classification more accurate. Of course, the selec-
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tion of anomaly prototypes is also restricted, since these vanishing anomalies do not
play a role in the further interpretability and representation evaluation.

Another factor influencing shapelet selection is γ, the tradeoff between cluster size
and cluster distance, in the utility measure for each shapelet. γ was not optimised
but inherited from literature. This can explain why, for example, the experiments
for the synthetic data set did not produce any anomaly prototypes for a shapelet
length smaller than 40 days. The synthetic data set is homogeneous, normal class
shapelets of one variable differ little or not at all. The probability of containing an
anomaly decreases with shapelet length, which means that many normal shapelets
exist, but only a few with anomalies. Since the normal shapelets are also extremely
similar, the clusters without anomalies are significantly larger and denser than those
with them. For short shapelets, this effect seems to have been so large that the equal
weighting of cluster size and cluster distance resulted in the significant cluster size
predominating and mainly nearly equal normal class shapelets being selected. For a
more complex data set, such as the EDEN ISS FEG, this effect appears to cancel out;
here the distribution of abnormal to normal shapelets was 50.9% to 33.3% across all
lengths, with no precise identification possible for the remainder. For future research,
γ should be implemented as an optimizable hyperparameter.

The phenomenon of false equal weighting has had a discernible impact on anomaly
detection, especially for plantmass, where the majority of recurrent false positives
occurred. Furthermore, the length of the shapelets exerted a significant influence on
the dynamics. As mentioned, longer shapelets have a higher probability of containing
anomalies and exhibiting greater variations, such as including the harvest period.
However, an increase in shapelet length corresponded to a decrease in the cluster size
of normal shapelets. Consequently, shorter normal shapelets are preferred over those
that encompass a complete period of 40 days, resulting in a lower chance of them
being included in the final set of shapelets, thereby yielding observable consequences
for the MTST. All other variables had a factor that made the shapelet clusters much
more fine-grained, even for short lengths, and thus shapelets of different lengths
or with anomalies were selected, noise. The presence of noise leads to a broader
dispersion of normal shapelets, which in turn prevents obtaining dominant normal
clusters, as larger clusters have the potential to fragment.
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This must be followed by a critical appraisal of the alpha values adopted. Since
anomalous shapelets are of particular interest, the focus should be on extracting
them through a well-adjusted shapelet length. In both data sets, the alpha values
are based on periodicities within the data set, e.g. determined using autocorrelation
and partial autocorrelation. Figure 7.4 shows that this approach alone may not
be enough. Shown is a section of an anomalous shapelet cluster for the synthetic
dataset, the centroid is at the first position, followed by the closest four shapelets.
The centroid fulfils all requirements for an anomaly prototype, it is closest to as an
anomaly detected location in the dataset and the cluster contains only shapelets of
the same anomalous type from different variables, but the visualization is impaired
by its length. Nevertheless, since the cluster belongs to level shift anomalies with a
length greater than 1000 time steps, α40days is the only way to detect anomalies of
this length. For future research, it is therefore, necessary to also derive the shapelet
length from manually recorded anomalies to obtain the shortest but visually most
meaningful length.

cluster: 0 var: relative humidity cluster: 0 var: relative humidity cluster: 0 var: temperature cluster: 0 var: VDP cluster: 0 var: relative humidity

Figure 7.4. – Leftmost shapelet represents cluster centroid of cluster 0.
The next four shapelets are the closest shapelets from the
same cluster. Shapelets are derived from variables relative

humidity, temperature, and VPD
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8. Conclusion & Outlook

In this thesis, a novel workflow was proposed for shapelet-based unsupervised mul-
tivariate time series anomaly detection and unsupervised anomaly protoype identi-
fication. The workflow includes shapelet discovery and selection, multivariate time
series transformation and unsupervised anomaly detection. The shapelet discovery
process identifies windowed subsequences and filters outliers while preserving repre-
sentative shapelets, utilizing distance, density and deep learning clustering methods.
The multivariate transformation, based on a point-by-point squared distance calcu-
lation, tackles the challenge of representing different anomaly types without labels.
The anomaly detection uses the transformed time series in a k-Means clustering to
identify anomalies in time points, sequences, or entire time series. Also, a multi-
variate time series anomaly generator was created, based on four independent and
two dependent variables derived from the EDEN ISS FEG dataset and implemented
seven different anomaly types, in a univariate or multivariate manner to provide a
more adjustable environment for future anomaly detection studies.

Experiments were conducted on a labelled synthetic and unlabeled real-world teleme-
try dataset to compare the different clustering methods and to verify the general
suitability and functionality of the workflow. With regard to the internal metrics for
evaluating the clustering and thus the meaningfulness and representability of the
shapelets, values were achieved for both data sets that in some cases approached
the best possible. k-Means consistently asserted itself as the best clustering method,
although it must be taken into account that in the case of DBSCAN, shapelets
are also included that DBSCAN would normally remove as noise, which negatively
influences the evaluation. As a deep learning method, Mdc-CNN fell significantly
short of expectations. For parallel clustering over all shapelet lengths as well as for
single shapelets, Mdc-CNN could never reach beyond k-Means, although it is based
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on it. Possible explanations are, on the one hand, that Mdc-CNN has only been
used successfully for shapelets that were significantly shorter and that the model
was adopted unchanged, i.e. hyperparameter optimisation did not take place.

It was observed that the application of various clustering methods enabled the detec-
tion of diverse anomalies. Nevertheless, the outcomes were found to be inconclusive
and did not exhibit a distinct preference for any particular clustering technique, as
indicated by the quantitative internal evaluation metrics. Reasons for this are, on
the one hand, that the multivariate time series transformation is not always reli-
ably able to clearly separate anomalies from the normal class. On the other hand,
that k-Means incorrectly classified easy-to-detect anomalies as normal and many
false positives due to the ambiguous transformation. Several factors that negatively
influence the predictive power of the MTST were detected. Among them, the not
optimized weighting of cluster size and cluster distance during shapelet selection is
a significant issue. Additionally, the problem of vanishing anomalies caused by the
Euclidean distance used for clustering also impacts the performance of the method.
These factors contribute to suboptimal anomaly detection results and merit further
investigation for potential improvements in the MTST approach.

The shapelets that could be used as anomaly prototypes were, without exception, of
the greatest possible length for the synthetic dataset. This contradicts the definition
of shapelets as short subsequences and shows the importance of the alpha values
that corresponded to the periodicities in the individual time series. For future inves-
tigations, the implementation of a noise factor for the synthetic data set can lead
to improved results for certain variables. In the EDEN ISS dataset, the anomaly
prototypes were more clearly scattered over different lengths, which was probably
also related to the greater complexity of the dataset.

All in all, the goal of finding different types of anomalies unsupervised in a mul-
tivariate time series was achieved. However, it was also shown that there is still
room for improvement and the need for further research. The alpha values used are
critical factors for achieving accurate anomaly detection. Nonetheless, finding the
best possible shapelet length can be challenging, even when utilizing methods like
autocorrelation or partial autocorrelation. An extension could be to include alpha
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values based on individual hand-identified anomalies to obtain more samples for a
better length distribution. The shapelet selection can also be improved or extended,
for example by taking the density of the clusters into account, or by replacing the
distance calculation between the clustered shapelets with the scatter-sensitive Maha-
lanobis distance instead of the Euclidean distance. The proposed multivariate time
series transformation and unsupervised anomaly detection in this study have shown
promise, but further investigations and enhancements are needed to optimize the
performance. The transformation should be enhanced to better distinguish between
normal and abnormal classes, ensuring a more precise identification of anomalies.
Additionally, anomaly detection needs refinement to avoid disregarding easily de-
tectable anomalies within the transformed data.

The possibility of incorporating direct feedback into the workflow has not yet been
addressed. The anomaly prototypes can be used to let the proposed framework
learn better detection decisions using labelling. By manually labelling the related
cluster or only subparts, more shapelets can be used as comparison patterns for the
detection, thus spreading the probability of finding anomalies more widely. With
each cluster that can be assigned to an anomaly type and with each iteration,
the potential to improve the anomaly detection rate increases. Simultaneously, this
iterative approach allows for more precise and well-founded statements about the
dataset, leading to a deeper understanding of the anomalies present. In this way,
not only individual parts would be able to learn from data, but the entire process
would be able to optimize.
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A. Appendix

Differentiation of the triplet loss function, [LCX+21b, p. 3]: The Definition for the
differentiation is given for a generic anchor point x, positive samples x+ and negative
samples x−, were K+ denotes the top candidates from the same cluster and K− the
number of randomly picked candidates from other clusters in proportion. For the
sake of clarity, D+

i,j represents:

D+
i,j = ∥f(x+

i ) − f(x+
j )∥2

2

and D−
i,j represents:

D−
i,j = ∥f(x−

i ) − f(x−
j )∥2

2

By using the estimations:

Dpos ≈ D̃pos =
∑K+

i=1
∑K+

j=1 D+
i,j · eα·D+

i,j∑K+
i=1

∑K+
j=1 eα·D+

i,j

Dneg ≈ D̃neg =
∑K−

i=1
∑K−

j=1 D−
i,j · eα·D−

i,j∑K−
i=1

∑K−
j=1 eα·D−

i,j

where α > 0 yields a smooth maximum approximation, the gradients of overall
maximum distance are:

∂D̃pos

∂D+
i,j

=
eα·D+

i,j

(
1 + α(D+

i,j − D̃pos)
)

∑K+
i=1

∑K+
j=1 eα·D+

i,j
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and
∂D̃neg

∂D−
i,j

=
eα·D−

i,j

(
1 + α(D−

i,j − D̃neg)
)

∑K−
i=1

∑K−
j=1 eα·D−

i,j

Thus, the gradients of the full loss function with respect to f(x), f(x+
i ), and f(x−

i )
are as follows:

∂L
∂f(x) = 2 ·∑K+

i=1∥f(x) − f(x+
i )∥2∑K+

i=1∥f(x) − f(x+
i )∥2

2
− 2 ·∑K−

i=1∥f(x) − f(x−
i )∥2∑K−

i=1∥f(x) − f(x+
i )∥2

2

∂L
∂f(x+

i ) = 2 ·∑K+

i=1∥f(x) − f(x+
i )∥2∑K+

i=1∥f(x) − f(x+
i )∥2

2
+

K+∑
j=1

∂D̃pos

∂D+
i,j

· 4∥f(x+
i ) − f(x+

j )∥2

∂L
∂f(x−

i ) = 2 ·∑K−

i=1∥f(x) − f(x−
i )∥2∑K−

i=1∥f(x) − f(x−
i )∥2

2
+

K−∑
j=1

∂D̃neg

∂D−
i,j

· 4∥f(x−
i ) − f(x−

j )∥2

Since the last two equations are differentiable, backpropagation can be used over
the entire neural network based upon minibatch stochastic gradient descent together
with Adam [KB15] optimizer to optimize the Mdc-CNN parameters.

Figure A.1. – An elaboration of the Multi-length-input dilated causal
Convolutional Neural Network (Mdc-CNN), showing the
encoder architecture, one residual block and the dilated
causal convolution layer, in accordance with [LCX+21a]
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Figure A.6. – Histogramm for F1 score and average precision for
Mdc-CNN and k-Means, without the k-Means outlier for a

better comparability
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Figure A.7. – Part 1 of all 46 shapelets, that are closest to at least one as
anomalous detected timestep or subsequence of the synthetic

datdaset.
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Figure A.8. – Part 2 of all 46 shapelets, that are closest to at least one as
anomalous detected timestep or subsequence of the syntethic

datdaset.
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Figure A.9. – Part 1 of all 108 shapelets, that are closest to at least one as
anomalous detected timestep or subsequence of the EDEN

ISS FEG datdaset.
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Figure A.10. – Part 2 of all 108 shapelets, that are closest to at least one
as anomalous detected timestep or subsequence of the

EDEN ISS FEG datdaset.
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Figure A.11. – Part 3 of all 108 shapelets, that are closest to at least one
as anomalous detected timestep or subsequence of the

EDEN ISS FEG datdaset.

XII



te
m

pe
ra

tu
re

 2

timestep [5min]

Figure A.12. – Closest anomalous points to shapelet no. 68 in A.13.
Detected anomalies are mainly level shifts, as visible in the

excerpt

Figure A.13. – Normal shapelet no. 68 for temperature 2 extracted using
α24h

cluster: 1 var.: temp. 2 cluster: 1 var.: temp. 2 cluster: 1 var.: temp. 2 cluster: 1 var.: temp. 2 cluster: 1 var.: temp. 2

Figure A.14. – The shapelet no. 68 in A.13 (leftmost) and four nearest
shapelets within the same cluster
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Figure A.15. – First 75000 averaged time steps for the multivariate time
series transformation of the synthetic dataset
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CD Structure

A soft version of the current work is submitted. Following, the CD structure is
presented.

1. Masterarbeitstext

2. Masterarbeitscode

• Shapelet Based Anomaly Detection

• Time Series Anomaly Generator

3. Masterarbeitsergebnisse

• Realdatensatz

• Synthetischer Datensatz
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