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Abstract— The anticipation of future geospatial population 

distributions is crucial for numerous application domains. Here, 

we capitalize upon existing gridded population time series data 

sets, which are provided on an open source basis globally, and 

implement a machine learning model tailored for time series 

analysis, i.e., Long Short Term Memory (LSTM) network. In 

detail, we harvest WorldPop population data and learn an LSTM 

model for anticipating population along a three-year interval. 

Experimental results are obtained from Peru’s capital Lima, 

which features a high population dynamic. To gain insights 

regarding the competitive performance of LSTM models in this 

application context, we also implement multilinear regression 

and Random Forest models for comparison. The results 

underline the usefulness of temporal models, i.e., LSTM, for 

forecasting gridded population data. 
 

 
Index Terms— spatiotemporal population modeling; time 

series data; LSTM models; Lima, Peru 

 

I. INTRODUCTION 

eospatial modeling of the population is crucial for 

numerous application domains such as natural hazard risk 

assessment [1], accessibility assessment of medical support 

[2], and general monitoring of the progress towards 

development goals [3], among others. The dynamic change of 

population distributions due to population growth and 

urbanization processes [4] induces the need to constantly 

update and eventually anticipate future geospatial population 

distributions. 

To anticipate future geospatial population distributions, 

various techniques can be considered generally: Rule-based 

methods establish a set of explicitly defined rules for transition 

trajectories over time. This family of methods contains i) 

Cellular Automata techniques [5] which represent discrete 

spatiotemporal dynamic systems based on local rules; ii) 

Agent-based Modelling which simulates dynamic interactions 

among agents in a virtual environment [6]; iii) Markov Chain 

Models which represent a stochastic process that produces 

sequential states in which each prediction is dependent on the 

previous state [7]. 

Techniques of empirical inference were also utilized for 

predicting transition trajectories in the context of population 

modeling. The underlying idea is to infer a decision rule (e.g., 

a function) from limited but properly encoded prior 

knowledge (i.e., labeled training samples). For instance, Chen 

et al. [8] integrate high‐resolution historical population maps 

and multiple machine learning models, i.e., XGBoost, 

Random Forest (RF), and Neural Network, to predict future 

built‐up land and population distributions. Kubota et al. [9] 

implemented a Graph Convolutional Network for short-term 

population prediction based on population count data collected 

through mobile phones. Zheng and Zhang [10] implement a 

Convolutional LSTM (ConvLSTM) network for weekly 

population distribution prediction based on geolocated social 

media data, i.e., Tencent positioning data.  

In contrast to previous works, to alleviate the frequently 

costly compilation of training data, here we capitalize upon 

existing gridded population time series data sets, which are 

provided on an open source basis globally, and implement a 

machine learning model tailored for time series analysis, i.e., 

Long Short-Term Memory (LSTM) network [11]. Different 

initiatives offer continuous gridded geospatial population data 

over a long time frame: WorldPop [3],[12], and LandScan [13] 

provide yearly geospatial population estimates starting in the 

year 2000. The data sets are created with a top-down approach 

by disaggregating census information based on satellite 

imagery and ancillary spatial covariates. 

For this study, we uniquely harvest WorldPop population 

data and learn an LSTM model for anticipating population 

along a three-year interval. Experimental results are obtained 

from Peru’s capital Lima, which features a high population 

dynamic. To gain insights regarding the competitive 

performance of LSTM models in this application context, we 

also implement multilinear regression (MLR) and RF models 

for comparison. 

The remainder of the paper is organized as follows. In 

Section 2 we detail the proposed methodology. We describe 

the study area and experimental setup in Section 3. 

Experimental results are revealed in Section 4 and concluding 

remarks are given in Section 5. 
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II. METHODOLOGY 

Fig. 1 provides an overview of the proposed workflow for 

spatiotemporal forecasting of population data. First, we 

compute a set of geospatial covariates, i.e., driving factors. 

Subsequently, multitemporal gridded population data are 

compiled. The population data of time steps ��, ��, … , �� and 

the corresponding driving factors are concatenated as the input 

for the LSTM, which maps the input to a prediction of the 

population at time step ����. The main model architecture 

comprises an LSTM recurrent unit with: 

�	 
 �����	 � ���	�� � �� ∘ �	�� � ��� (1) 

�	 
 �����	 � ���	�� � �� ∘ �	�� � ��� 

�	 
 �	 ∘ �	�� � �	 ∘ tanh ����	 � ���	�� � ��� 

!	 
 ���"�	 � �"�	�� � �" ∘ �	 � �"� 

�	 
 !	 ∘ tanh ��	� 

where �	 represents the input to the cell, �	 the memory state, 

and �	  the hidden state. The notation ‘∘’ denotes the 

Hadamard product or element-wise product. In the equations, 

�	, �	, and !	 refer to the input, forget, and output gates, 

respectively, � is the time-step, � the sigmoid activation 

function, tanh the hyperbolic tangent function, and  are the 

weight matrices and � the biases, respectively. 

III. DATA SETS AND EXPERIMENTAL SETUP 

The study area comprises the settlement area of Peru’s capital 

Lima with a spatial coverage of approximately 6500 square 

kilometers. The data set consists of yearly multi-temporal 

gridded population data with a spatial resolution of 100 meters 

from WorldPop [3],[12] for the period 2000-2020 and land 

change driving factors. The latter includes (1) slope, (2) 

distance to water, (3) distance to roads, (4) ancillary land 

cover, (5) distance to the city center, and (6) distance to the 

urban boundary. The slope was calculated from the 

Copernicus Digital Elevation Model. The data source for 

computing road distances was extracted from OpenStreetMap. 

To compute the distance to water, water bodies from the 

Copernicus layer were combined with waterways from 

OpenStreetMap. 

The data set is split into training data set and validation data 

set along the temporal dimension. The training data set 

contains earlier six time steps (2002, 2005, …, 2017), whereas 

the validation dataset contains later six time steps (2005, 2008, 

…, 2020). In both training and validation data sets, the 

variables of the first five time steps were adopted as input and 

the last time step was used as the ground truth labels. As such, 

the target of the training data set is to predict the population of 

the year 2017, and the goal of the validation dataset is to 

forecast the population map for the year 2020 (Fig 2). 

 
All the tested models were trained for 50 epochs, the 

optimizer was Adam, the loss function was mean squared 

error loss, and the initial learning rate was set to 0.0012 and 

was reduced by the factor 0.1 through a learning rate 

scheduler, when the error reached a minimum plateau. To 

evaluate the proposed framework, two baseline methods were 

adopted, i.e., MLR and RF. Thereby, the hyperparameters of 

RF were tuned as follows: ntree = 500 and mtry = 1,2,⋯,51. 
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IV. EXPERIMENTAL RESULTS 

To 

provide a first comparative overview, Fig. 3 contains scatter 

plots of the methods for the predicted year 2020. It reveals that 

all models feature a strong concentration of the density along 

the one-to-one line. However, the uncertainty in terms of 

RMSE could be reduced from 4.298 (RF) and 4.161 (MLR), 

respectively, to 3.952 (LSTM) while maintaining an excellent 

model fit (R = 0.994). 

Fig 4a shows the ground truth and corresponding model 

estimates which reflect the spatially strongly varying 

population distribution in Lima. Thereby, abrupt changes in 

population numbers along inner-city administrative boundaries 

can be observed, while a continuous decrease of the 

population along the border of the settlement body is 

traceable. Fig. 4b captures the momentum, i.e., population 

change between 2017 and 2020. Thereby, the LSTM can 

provide pronounced change patterns which, however, exceed 

the reference with respect to magnitude. In contrast, both 

MLR and RF are hardly able to capture the change of dynamic 

areas properly. Nevertheless, all models reflect areas of 

dominantly decreasing (blue) and increasing (red) population 

numbers. 

Finally, to visualize actual differences in the predictions 

regarding the reference population distribution, Fig 4c 

provides prediction differences to the actual numbers of 2020. 

Thereby, it can be traced that the LSTM-based predictions 

overestimate population numbers, while both the MLR-based 

and RF-based predictions underestimate population numbers 

for a majority of areas (also revealed by the regression line in 

Fig. 3).  

V. CONCLUSIONS AND OUTLOOK 

This study underlines the usefulness of temporal models, 

i.e., LSTM, for forecasting of gridded population data. In the 

future, we aim to equip LSTM with a bidirectional learning 

mechanism, i.e., running the model inputs in two ways, one 

from past to future and one from future to past, and also 

implement and evaluate ConvLSTM models [14] that are 

dedicated to process spectral-spatial sequential data.  
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