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Jet noise physics for normal velocity pro�les are highly relevant operation states

in the aerospace industry. Typically, a high velocity jet stream propagates into the

surrounding sky and causes an airplane to move at a �ight velocity which is smaller

than the jet speed. The di�erence velocity between jet speed and �ight speed has been

identi�ed to be a characteristic contributor for jet noise and historically has been in

the focus for noise reduction. Even though jet noise could be fortunately reduced and

is often not anymore the most prominent noise source, new interaction sources, such as

jetf lap interaction noise, evoke the need for a fundamental understanding of its physics.

Lots of acoustic problems scale with a characteristic velocity which is proportional to

a single �ow potential. For example, cold jet noise scales according to Lighthill's famous

I ∝ U8
jet-analogy. With an additional co-�ow, two �ow potentials are present, namely

�ight speed and jet speed. The acoustically relevant velocity scaling speed depends

on both of them, since the noise depends on the physical e�ects in the common shear

layer.

This paper uses an ansatz from mixing layer theory which is used to approximate

the acoustical source volume of the Lighthill equation for an isothermal shear layer. For

low velocity ratios, the derivation results in the relation of I ∝ (∆U)6U2
c , which claims

that jet noise in co-�owing �ight stream depends on power 6 of the velocity di�erence

and the convection speed squared. The derivation allows for a hypothesis that for

near unity velocity ratios, the relation changes into I ∝ (∆U)4U4
c , whereby a transition

into I ∝ (∆U)5U3
c at r ≈ 0.25 is suggested. Furthermore, the I ∝ (∆U)6U2

c scaling law

is approximated wrt. formerly used ∆U scaling as I ∝ (∆U)5U3
jet . . . (∆U)4U4

jet, allowing

for negligibly small error terms.

The velocity scaling is challenged by experimental data gathered at the Aeroacoustic

Windtunnel in Braunschweig. Hereby, a variety of academic special cases, among others

similar velocity pro�les, similar shear layer mean velocities, similar di�erence velocities,

as well as similar Strouhal numbers have been tested.

With the results from this paper, a new velocity scaling for jet noise has been

proposed. If the scaling proves to be good against any jet noise data long term, the

�ndings may help to improve the understanding about jet related noise challenges.

The derived approximations for certain velocity pro�les might also help characterize

jet related problems, such as jet �ap interaction noise or for investigating the role of

inner shear layer mixing noise of dual stream engines with and without co-�owing �ight

stream.
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Nomenclature

δω [m] shear layer width
∆U [m/s] di�erence velocity in shear layer
ΣU [m/s] Ujet + U∞, a measure for the shear layer propagation speed
ρ′ [kg/m3] �uctuating density
ρ [kg/m3] density
ρ∞ [kg/m3] ambient density
τ [kg/ms2] shear stress tensor
τ [s] retarded time
θ [o] polar angle
a∞ [m2] speed of sound
Anoz [m2] nozzle outlet area of single stream nozzle
Ast [m2] source stretching factor1

AByp [m2] bypass nozzle outlet area
ACor [m2] core nozzle outlet area
c [-] convection parameter
cid [-] convection parameter of an idealized trapezoid normal velocity pro�le
D [m] engine diameter at nozzle outlet (w/o nozzle TE)
Dmix [m] mixed (or equivalent) jet diameter
er0 [-] unit vector
f [Hz] frequency
fnb [Hz] narrowband frequency
H [m] vertical distance between engine MRP and �ap MRP
I [-] identity matrix
I [W/m2] Sound Intensity
L [m] horizontal distance between engine MRP and �ap MRP
m [-] velocity scaling exponent for di�erence speed
n [-] velocity scaling exponent for convective speed
p′ [Pa] �uctuating sound pressure
q [-] (overall) velocity scaling exponent
R [m] radial coordinate
rU [-] velocity ratio
R0 [m] special radial position
R1/2 [m] jet half width
r0 [m] distance form source
SPL [dB] sound pressure level
SPLnb [dB] narrowband sound pressure level
Sr [-] Strouhal number
Trr [-] Lighthill's2 turbulence stress tensor
U [m/s] streamwise velocity
U∞ [m/s] �ight velocity
Uc [m/s] shear layer convection velocity
Ujet [m/s] jet velocity
Us [m/s] shear layer mean velocity
Us [m/s] shear layer velocity
U ′s [m/s] shear layer velocity deviation
v [m/s] velocity vector
V [m3] volume
x [m] streamwise engine coordinate
x0 [m] virtual origin of shear layer

AWB Aeroacoustic Windtunnel Braunschweig
Def de�nition
DLR Deutsches Zentrum für Luft- und Raumfahrt e.V., i.e. the German Aerospace Center
ENG centerpoint of engine (bypass) nozzle outlet, a measurement reference point
ISL inner shear layer, between bypass �ow and core �ow
IVP inverted velocity pro�le (outer velocity faster than inner velocity)
JFI jet �ap Interaction
mix mixed jet property
nb narrowband
NVP normal velocity pro�le (inner velocity faster than outer velocity)
MRP measurement reference point
OSL outer shear layer, between ambient an bypass �ow
p. page
S/L shear layer
TE trailing edge
UHBR ultra high bypass ratio
wrt with respect to
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I. Theory of Jet Acoustics with co-�owing �ight stream

I.A. Problem Statement

The physical problem of jet acoustics with co-�owing �ight stream consists of a circular jet which exits
an engine nozzle and propagates with a characteristical jet speed Ujet into the ambient. The ambient is a
constant co-�owing �ight stream characterized by the �ight speed U∞. At the trailing edge of the nozzle
exit, a shear layer (S/L) develops between jet and �ight stream. The shear layer increases with increasing
streamwise (x) position, whereas the jet's potential core decreases until it vanishes at x/Dmix ≈ 5. At a
distinct position x (in �gure 1), a normal velocity pro�le (NVP) is portrayed, i.e. a velocity pro�le where
the inner velocity is greater than the outer velocity. Characteristic velocities within the shear layer are
the convection speed Uc, which is proportional to the propagation speed of the shear layer eddies, and
the di�erence velocity ∆U = Ujet − U∞, which is a measure proportional to the size of the shear layer
eddies. The local shear layer width δω is a limit for the maximum size of the local eddies. The virtual
starting point of the shear layer is named x0 and is merely introduced to account for realistic shear layer
developments, where the virtual starting point may di�er from the nozzle exit position, e.g. by a thick
trailing edge or jet contraction due to real expansion. In the sketch (�gure 1), an idealized shear layer
x0 = 0 is portrayed.
A characterizing parameter is the velocity ratio rU , i.e. a dimensionless velocity, which is de�ned as

S/L Shear

Layer
S/L Convection Speed

Jet Speed

Flight Speed

eddy

size

Figure 1: Shear Layer between �ight and jet stream. Above symmetry line: relevant velocities, below
symmetry line: characteristical geometries

the ratio of outer to inner speed. For jets in co�ow, the velocity ratio rU is de�ned as the ratio of �ight
velocity U∞ to the jet speed Ujet. The comparison of velocity pro�les with the same velocity ratio rU
simpli�es the problem complexity, since two independent velocities (i.e. Ujet and U∞) can be replaced
by a single velocity component (e.g. Ujet) and a dimentionless parameter (i.e. rU ). Two velocity pro�les
shall be de�ned as similar to each other, if in terms of non-dimensionless velocity, they are identical, and
in terms of absolute velocity they di�er only by a scaling factor (compare �gure 2).

I.B. Assumptions for estimation of Shear Layer Properties

One of the crucial characteristics of the physical problem is a good estimation of the shear layer convection
speed Uc. In order to examine this, the velocity behind a single stream nozzle is measured by a rake of
pressure probes. One velocity plot of the XZ-plane is displayed in �gure 3). Drawing constant velocity
isolines on the shear layer's outer part (closer to �ight stream potential �ow) results in lines which
increase in radius with increasing streamwise direction. On the shear layer's inner part (closer to the
jet potential core), there are isolines which decrease in radius with increasing streamwise position. In
between, there is one velocity isoline which is located at a constant radius R0 (mathematically expressed
in equation 1 and portrayed in �gure 3) for increasing streamwise position approximately within the
entire initial mixing region of the jet. This velocity appears characteristic for the shear layer, since it
is a constant along 0 . . . 1 < x/Dmix < 5 of the shear layer. Furthermore, the radial position where the
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Figure 2: Two velocity pro�les that ful�ll the velocity similarity criterion rU = const.

Figure 3: Flow downstream a coannular nozzle displayed in constant x-velocity isolines.

characteristic velocity can be observed, is independent of the nozzle exit velocity (compare �gure 4).

dU

dx

∣∣∣∣
R0=const

= 0 (1)

By using experimental data, it can be shown that this constant radius R0 �ts very well to half of the
mixing diameter Dmix of the nozzle (equation 2).

R0 = Dmix/2 (2)

For single stream nozzles, the mixing diameter is equivalent to the nozzle outlet diameter. For annular
single stream �ows, the mixing area is equivalent to the annular nozzle outlet area (when circularly
redistributed in the free �ow region) and therefore, the mixing diameter is smaller than the nozzle outlet
diameter (Dmix = 2 ·

√
Anoz/π < D, compare �gure 4, where the velocity isoline at the nozzle diameter

D is not constant, but drifting away from the jet axis.). The mixing diameter for bypass nozzles depends
on bypass ratio and its maximum is (Dmix = 2 ·

√
(AByp +ACore)/π < D):

Dmix =


D, single stream or long cowl dual stream nozzle

2 ·
√
Anoz/pi, annular nozzle

≤ 2 ·
√

(AByp +ACore)/π, short cowl dual stream nozzle

(3)
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Figure 4: Localization of a characteristical shear layer speed at jet mixing diameter.

An interesting challenge concerns the value of the convective speed, de�ned like (equation 4).

Uc : = U(R0) = U(Dmix/2) (4)

The convective speed shall be described as the product of the sum of jet and �ight velocity with a
convection parameter c, which is assumed to be mainly dependent on the velocity ratio rU , but also on
the shape function of the velocity pro�le.

Uc = c(rU ) · ΣU (5)

ΣU = Ujet + U∞ (6)

For dimensional approximations, the mean is often taken to approximate convection speed, i.e. c(rU ) =
1/2 (equation 5). In mixing layer theory, the half width R1/2(x) of a jet is introduced, which is the local
position of the mean shear layer velocity (Ujet + U∞)/2. However, the proposed criterion (equation 1)
cannot be met for c(rU ) = 1/2, and for normal velocity pro�les, the mean velocity isoline drifts away from
the engine axis with increasing streamwise direction. This can be observed in �gure 4, where the identi�ed
velocity of Uc ≈ 71 m/s is signi�cantly higher than the shear layer mean velocity Ū = 0.5 ·108 m/s = 54 m/s.
This means, that for normal velocity pro�les, the convective speed of the shear layer is greater than the
mean.
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Di�erent authors suggested other convective speeds, e.g. Fuchs and Michel3 found c(rU = 0) = 0.65 for
jets without co�ow.

I.C. A simpli�ed mean pressure function cmp

The mixing speed of the inner shear layer of dual stream �ows is calculated by using the momentum
equation, an equation that balances forces. However, the use of extensive �ow properties is necessary, i.e.
the bypass and core mass �ow rates. This is possible because of their character as two internal �ows. For
the outer shear layer, a mass �ow rate based analogy cannot be used, since the ambient is characterized
by an ideally in�nite volume. The external �ow cannot be characterized by extensive �ow properties.
Therefore, another mechanism must be found to identify the velocity at the boundary between jet and
ambient. A �rst approach is to use a force-based postulation where it is assumed that at the mixed
diameter position, the shear layer centroid is located. If this is true, then the centroid velocity can be
calculated by calculating the mean of the dynamic pressures. (Since the static pressure is assumed to be
constant (subsonic) outlet condition, the mean of the total pressure can also be chosen to calculate the
centroid velocity.)

∆p = 1/2 · (∆pjet + ∆p∞) (7)

In order to get a simple relation for the convection parameter, the assumption of constant density is
made. Note, that with the subsonic outlet condition p = const and a unity total temperature pro�le
(where T0,∞ = T0,jet), static temperatures (and thus density) for very large subsonic Mach numbers
M = 1 are o� by factor 1.2 compared to M = 0.

T0

T
=

1 +
γ − 1

2
M︸︷︷︸
=1

2

 = 1.2 (8)

Using the formula for dynamic pressure, ∆p = ρ/2 ·U2, and the velocity ratio, the centroid value can be
calculated.

U2
c,mp = 1/2 · (U2

jet + U2
∞) (9)

Uc,mp = U∞

√
2

2

√
1 +

1

r2
U

(10)

cmp =
Uc,mp

Ujet + U∞
=

rU
1 + rU

(√
2

2

√
1 +

1

r2
U

)
(11)

cmp =

√
2

2

√
1 + r2

U

1 + rU
(12)

This model shows the right trend, but unfortunately does not correlate well with the measured data
(see 6).

I.D. The idealized trapezoid approximation cid

A better approximation is to use a �t function between the two known boundary values: For an ideal
unity velocity pro�le (rU = 1), the shear layer convection velocity is Uc = 1/2 ·ΣU , i.e. c(rU = 1) = 1/2,
and for an idealized triangular shear layer pro�le (rU → 0) , the velocity at the centroid is Uc ≈ 2/3 ·ΣU ,
i.e. c(rU → 0) = 2/3, which �ts well with Fuchs' and Michel's experimental value of c(r = 0) = 0.65.
One could argue that physically relevant velocity pro�les should be de�ned as continuously di�erentiable
which would "round out" the break points and thus, decrease the centroid velocity below Uc = 2/3 ·ΣU .
However, this is only possible if the "round out" between shear layer and jet is counted to the jet (as in
�gure 5). With these assumptions, c(rU ) ≈ 2/3 could be an upper boundary for normal velocity pro�les.

1/2︸︷︷︸
r→1

≤ c(rU ) < 2/3︸︷︷︸
r=0

(13)

Even though this function describes the centroid velocity of an idealized trapezoid-like normal velocity
pro�le, it should be rather counted as a �tting function or approximation, since velocity by itself is not
known as a conservation property.
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Figure 5: Steady (black) and discretized (blue) velocity pro�le model, where the jet velocity is the mean
velocity Ujet = Ū within the boundaries of the mixed jet radius Rmix and thus the shear layer is similar
to a trapezoid.

The derivation uses the centroid formula for combined single centroids for rectangle and triangle
(equation 14).

Rc =
ΣiRc,iAi

ΣiAi
(14)

Note, how Ai is the integrated "area" underneath the velocity pro�le curve of dimension velocity times
length (equation 15.

Rc =

(
2
3δω
)
δω·∆U

2 +
(

1
2δω
)
δωU∞

1
2δω ·∆U + δωU∞

(15)

Rc
δω

=
2

3
· Ujet − U∞
Ujet + U∞

+
Ujet

Ujet + U∞
(16)

The idealized convection parameter reduces to the triangular centroid (for r = 0) and rectangular centroid
(for r = 1, see equation 17.

cid(rU ) :=
Rc
δω

=
2

3
· 1− rU

1 + rU
+

rU
1 + rU

(17)

The convection parameter of idealized NVPs is plotted in �gure 6 where it is also compared against
a small set of experimental velocity pro�les. As expected, the values of real rounded velocity pro�les
without any breakpoints ful�lls the criterion of slightly smaller centroid values c < cid.

I.E. Sensitivity of sound intensity w.r.t. velocity ratio rU

Note, that the di�erent values of the function c have implications on velocity scaling with the mean speed
U ∝ ΣU instead of convection velocity Uc. Take the example of two velocity pro�les with the same shear
layer mean velocity, but a di�erent set of jet and �ight speed. Let us assume a dependency of sound
intensity scaling with convection velocity squared.

I ∝ U2
c = c(rU )2ΣU2 (18)

SPL ∝ 20 lg (c(rU )) + 20 lg (ΣU) (19)

The maximum velocity scaling error between both of the pro�les is ∆SPL ≈ 2.50 dB (equation 21).

[∆SPL]
r→0
r→1 = 20 lg

(
2/3

1/2

)
+
�
��

�
��*

0

20 lg

(
ΣU

ΣU

)
(20)

[∆SPL]
r→0
r→1 = 20 lg

(
4

3

)
≈ 2.50 dB (21)
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Figure 6: Approximation for the convection parameter and experimental data (data plots are partly
displayed in �gures 4)

For another assumed dependency of sound intensity scaling directly with the convection velocity, the
velocity scaling error due to function c is ∆SPL ≈ 1.25 dB. Note, however, that for a variety of velocity
pro�les with rather similar velocity ratio rU , this type of scaling error can be neglected.

I.F. Ansatz

The new idea to solve the Lighthill equation2 is based on the estimation of the source volume which
accounts for the acoustically relevant source volume by using a similarity from the shear layer theory
(see Eisfeld4). For this paper, a similarity from the mixing layer theory of turbulent �ows is used
(equation 22), which sets the turbulent shear layer width δω at the local position x in relationship to the
the di�erence shear layer velocity ∆U and shear layer convection velocity Uc.

δω(x)

x− x0
∝ ∆U

Uc
(22)

Note, how this relationship (compare �gure 1) can be derived by applying an intercept theorem type of
approach. Also note, that the mixing layer theory approach uses the shear layer mean velocity Ū , which
equals the convection velocity at the velocity ratio of rU = 1.

Uc =

 1
2 · ΣU, mixing layer theory, rU → 1

c(rU ) · ΣU, used in this paper, 0 < rU � 1
(23)

The reformulation of equation 22 is a measure for the retarded time (24).

∆τ ∝ δω(x)

∆U
∝ x− x0

Uc
(24)

I.G. Normalization of frequency

With several prospective characteristic velocities and geometries available, di�erent de�nitions for the
Strouhal number may be suggested. The �rst canditate which comes into mind, is a commonly used
equation referenced to the di�erence velocity and mixed jet diameter Dmix.

SrDmix
∝ f ·Dmix

∆U
(25)

This de�nition suggests that the Strouhal number is similar for the same nozzle as long as the di�erence
velocity between jet velocity and �ight velocity remains identical. Note, that the comparison of narrow-
band testdata for two datapoints indicates that the frequencies appear to be rather �xed. Therefore, the
Strouhal numbers of those two datapoints should be already "fairly similar". In praxis, this is not the
case.
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As a second candidate, let us examine a de�nition which is to some extent analogously de�ned as in
van Kármán's vortex street. The characteristical geometry is the local eddy size (proportional to the
shear layer width δω). Such an eddy propagates with the shear layer convection speed Uc (equation 26):

Srδω =
f · δω
Uc

(26)

Here, the shear layer width δω can be replaced using equation 22:

Srx ∝
f

c(rU ) · ΣU
· ∆x ·∆U
c(rU )ΣU

(27)

Since the eddies grow in streamwise direction x, a distinct location ∆x could be de�ned, e.g. at the end
of the jet potential core, where ∆x ≈ 5 ·Dmix. In other words, location ∆x and mixing diameter Dmix

formulate a characteristical proportionality or aspect ratio of the physical problem.

Srx∝Dmix
∝ f

c(rU ) · ΣU
· Dmix ·∆U
c(rU )ΣU

(28)

(29)

Using the velocity ratio, the Strouhal number de�nition can be rede�ned wrt. to a characteristic velocity
of choice and error terms to formerly used de�nitions calculated.

Sr ∝ f ·Dmix

∆U
· (1− rU )2

c2 · (1 + rU )2
(30)

Sr ∝ f ·Dmix

Ujet
· (1− rU )

c2 · (1 + rU )2
(31)

Sr ∝ f ·Dmix

U2
c

· (1− rU )

(1 + rU )
(32)

I.H. Derivation of the Normalization wrt. velocity

In order to derive the velocity scaling law, Lighthill's2 turbulence stress tensor Trr (1) as well as the
source volume dV (2) need to be estimated (equation 33):

p′(x, t) = 1
4πr0a

2
∞

∫
V∞

T̈rr︸︷︷︸
(1)

dV︸︷︷︸
(2)

(33)

1. Lighthill's turbulence stress tensor Trr is simpli�ed for cold jet �ow (equation 34): Changes of
velocity (term 1) are relevant, changes of entropy (term 2) are neglected for isothermal jet �ow and
changes in the viscous friction stresses are dimensionally negligible.

Trr : =er0 ·
(
[ρvv+���

���:
0

(p′−a2
∞ρ
′)I −��>

≈ 0
τ ]er0

)
(34)

(35)

The �rst time derivative of ρvv uses the product rule (equation 36) and evaluated for 1D shear
layer �ow with Reynolds decomposed shear layer velocity Us = Us+U ′s. The second time derivative
uses this result and produces two terms (equation 37) which need to be dimensionally compared
against each other. In the further derivation, it is assumed that the product of �rst order time
derivates is greater than the second order time derivated term.

∂T
∂τ
∝ ρ∞

[
∂v
∂τ
v + v∂v

∂τ

]
∝ ρ∞

∂U ′s
∂τ

Us (36)

∂2T
∂τ2 ∝ ρ∞

[
∂2U ′s
∂τ2 Us︸ ︷︷ ︸
A

+
∂U ′s
∂τ

∂U ′s
∂τ︸ ︷︷ ︸

B

]
(37)

The shear layer mean velocity is proportional to the sum of jet and �ight velocity (equation 38),
whereas the shear layer �uctuation velocity is proportional to the di�erence of both velocities
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(equation 39). With the approximated time derivative in equation 40, the time derivations to the
Lighthill turbulence stress tensor can be approximated (equation 41).

Us ∝ (Ujet+U∞) (38)

U ′s ∝ (Ujet − U∞) (39)

∂
∂τ
∝ 1

∆τ
∝ U ′s
δω

(40)

∂2T
∂τ2 ∝

ρ∞
δ2
ω

(U ′s)
4 (41)

Note, that if term A and term B in equation 37 were in fact dimensionally similar, the dimensional
estimation would depend on weighing the importance of the shear layer mean velocity Us against
the shear layer di�erence velocity ∆U (see equation 42 and 43). The criterion of r = 1/3 sets apart
velocity pro�les with greater di�erence velocity for r < 1/3 and velocity pro�les with greater shear
layer mean velocity (r > 1/3).

∆U = Us (42)

Ujet − U∞ =
1

2
(Ujet + U∞) (43)

U∞ =
1

3
Ujet (44)

(Note, that a comparison of the shear layer di�erence velocity against the convection speed (equa-
tion 45) for an idealized trapezoid NVP (using equation 17) would reduce the critical velocity
ratio to r = 1/4 (equation 47). Thus, for real velocity pro�les, the transition between shear layer
vs. propagation dominating �ow might be expected somewhere in between r > 1/4 . . . 1/3, which
makes r = 1/3 an upper limit.)

∆U = Uc (45)

Ujet − U∞ = cid︸︷︷︸
1/2...2/3

(Ujet + U∞) (46)

U∞ =
1

4
Ujet (47)

Lighthill's turbulence stress tensor might then be estimated as in equation 49 for r � 1/3 which
would therefore result in an I ∝∼ ∆U4(Us)

4 velocity scaling law.

The changing velocity scaling law hypothesis In other words, if in general none of the
terms A and B (in equation 37) can be estimated dimensional larger and they are of similar
dimensions, , then there is a chance for a change velocity scaling law depending on the velocity
ratio of the pro�le. This would result in the following results:

I ∝


(∆U)

6 · U2
c , B � A, for strong NVP, rU → 0

≈ (∆U)
5 · U3

c , A ≈ B, for intermediate NVP, rU ≈ 0.25 . . . 0.33

(∆U)
4 · U4

c , A� B, for unity VP, rU → 1

(48)

However, the measurement data used in this paper is not suited for a thorough test of such a
hypothesis. Therefore, this paper continues with the derivation of the terms which possibly suits
the measurement data best (B � A):

∂2T
∂τ2 ∝

ρ∞
δ2
ω

(U ′s)
3 · Us (49)

2. Acoustic Source Volume. For slim shear layers δω � Dmix the source volume can be estimated
without using the exact inner and outer radius (equation 50). The shear layer width δω between
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jet and �ight stream can be approximated with the 1D mixing layer theory ansatz (equation 51).

dV ∝ δωπDmixdx (50)

δω ∝
∆U

Uc
· (x− x0) (51)

dV ∝ πDmix
∆U

Uc
· (x− x0) dx (52)

∆V ∝ πDmix
∆U

Uc
· 1

2 (x− x0)
2

(53)

∆V ∝ πDmix
Uc
∆U
· 1

2δ
2
ω (54)

The results for the approximation of Lighthill's turbulence stress Tensor (equation 41) and the source
volume (equation 54) are inserted into the starting equation (equation 33). The resulting pressure
�uctuation (equation 55) can be used to estimate sound intensity I (equation 56).

p′ ∝ α2ρ∞
r0a

2
∞

(∆U)3(Uc) ·Dmix (55)

I = p′v′ ∝ p′2

ρ∞a∞
(56)

I ∝ ρ∞D
2
mix

r2
0a

5
∞

(Ujet − U∞)
6

(Uc)
2

(57)

I.I. Velocity Scaling wrt. di�erent velocity related variables

The derivation can be reformulated with respect to di�erent velocity related variables:

I ∝ ρ∞D
2
mix

r2
0a

5
∞

(Ujet − U∞)
6 · c(rU )

2
(Ujet + U∞)

2
(58)

I ∝ ρ∞D
2
mix

r2
0a

5
∞

(∆U)
6 · c(rU )

2
(ΣU)

2
(59)

I ∝ ρ∞D
2
mix

r2
0a

5
∞

U8
jet

(
1− U∞

Ujet

)6

· c(rU )
2

(
1 + U∞

Ujet

)2

(60)

I ∝ ρ∞D
2
mix

r2
0a

5
∞

U8
jet (1− rU )

6 · c(rU )
2

(1 + rU )
2

(61)

In the past, a few attempts have been made to account for source volume stretching. The interested
reader may refer to Michalke and Michel,1 who introduced a jet stretching factor Ast. Their derivation
for an isothermal jet at a polar angle of θ = 90 ◦ looks very similar to equation 61 for q = 8 and Ast = 2:

I ∝ Uqjet (1− rU )
q−2 · [1 + (Ast − 1)rU ]

2
(62)

Michalke and Michel made the following observations (Appendix 2 of their paper1):

• Ast = 1 for a particle moving along the jet axis with in the potential core

• Ast > 1 for path lengths greater than the length of the potential core

� Ast ≈ 2 for a particle moving in the middle of the mixing region

� Ast = 1.5 . . . 3 relevant for low frequency region which contains the peak of the spectrum

� even greater Ast for more rapidly decaying axial velocity pro�les, e.g. for a mixer nozzle

This suggests that the high frequency part of the spectra collapse at q = 6 (where the low frequency part
of the spectrum still underscales) and the low frequency parts collapse approximately at q = 8 (where
the high frequency part of the spectrum should slightly overscale). When testing those �ndings against
data (see �gure 7), there is good agreement to this statement.
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Figure 7: I ∝ Uqjet velocity scaling for rU = 30 %=const. Note, that the high frequencies collapse well
for q = 6 and low frequencies for q = 8.

II. Acoustic Measurements and Analysis

II.A. Test Setup

The test was conducted in the Aeroacoustic Windtunnel Brauschweig (AWB), a DLR testing facility in
Northern Germany. An isolated nozzle was installed to the pressureized air supply, where jet velocities
are limited to the maximum volumetric �ow rate of Q = 9100 Nm3

/h and �ight velocities to a maximum
of approximately U∞ = 60 m/s. Background noise has been measured for �ight stream alone (i.e. without
jet �ow).

Acoustic data is recorded by a microphone setup which is placed in a straight line underneath the
nozzle (ψ = 180 ◦) spanning polar angles of (θ = 66 ◦ . . . θ = 135 ◦).
The noise spectra have been corrected with respect to microphone free �eld characteristics and micro-
phone directivity, shear layer refraction (incl. wave convection), atmospheric absorption (Sutherland),
as well has convective ampli�cation. The propagation radius is normalized to r = 1 m.

II.B. Analysis with narrowband scaled data

The velocity scaling for the narrowband is applied similarly to the derivation of Gaeta and Ahuja5 for
isolated jet noise data. For the changed physical setting from a non co-�ow to a co-�ow problem, the
characteristic velocity and length scale of the Strouhal number de�nition in equation 30 has been used.
Note, that a polar angle of θ = 90 ◦ has been chosen, in order to neglect the Doppler frequency correction
factor for simplicity reasons.

Srnorm = fnb ·
Djet ·∆U
c2 (ΣU)

2 (63)

SPLnorm = SPLnb − 10 · lg (∆f)︸ ︷︷ ︸
PSD

−10 · lg
(
Dmix

∆U
· (1− rU )2

c2 · (1 + rU )2

)
(64)
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III. Experimental Velocity Scaling results

The experimental approach for �nding the velocity scaling is a decomposition of the scaling exponents.
With the previous derivations (equation 57), it is assumed that the sound intensity scales with di�erence
velocity and convection speed (equation 65). For �nding velocity scaling results experimentally, the
exponents m and n are assigned. For jet �ow without co-�ow (equation 66), the velocity scaling law
depends on the jet scaling coe�cient, here assigned as q, which is presumedly the sum of m and n
(equation 67).

I ∝ ∆Um · Ucn (65)

lim
U∞→0

I ∝ Uqjet (66)

q = m+ n (67)

III.A. The dependency on power 8 jet speed

If the derivation of the velocity scaling law is correct, then self-similar velocity pro�les (rU =const) scale
with I ∝ U8

jet (see equation 68). In order to test this hypothesis, test data of strong NVP has been scaled
by velocity. The velocity ratios are rU = 0.2 (�gure 8), rU = 0.25 (�gure 9) and rU = 0.30 (�gure 10),
where the di�erence velocities of the scaled jets di�er between ∆U = 120 m/s and ∆U = 140 m/s. Note,
that the normalization of the frequency (including the special case of the isolated jet rU = 0) can be
done by scaling wrt. any characteristic velocity, as the velocity pro�les are similarly scalable (compare
equations 30 to 32).

I ∝ U8
jet ·���

���
���:

rU = const

(1− rU )
6

(1 + rU )
2

(c(rU ))2︸ ︷︷ ︸
≈const

(68)

Experiments with similar velocity pro�les can be a means to �nd out whether the test facility allows for
U8
jet-scaling or whether other noise sources, e.g. test rig noise are signi�cant. The unscaled data shows

a signi�cant SPL di�erence of approximately ∆SPL = 6 dB. The scaled spectra show:

• for q = 6 an underscaling of the low frequency peak and matching high frequency parts (those are
also the �ndings of Michalke and Michel1),

• slight to no underscaling of the low frequency peak for q = 7, as well as

• slight overscaling for q = 8 (especially for rU = 0.2).

The theoretical expectation for the velocity scaling with self-similar velocity pro�les should result in a
clear indication for low-frequency peak scaling at q = 8. However, the experimental results show slight
overscaling for q = 8 and may rather suggest q = 7 . . . 8. Michalke's and Michel's derivation would solve
this by slightly adjusting the stretching factor Ast.

The neglected convection parameter c, which depends on velocity ratio rU and shape function of
the velocity pro�le, is approximately constant and might rather not be an explanation for overscaling.
However, slight overscaling of lower jet velocities might be even typical, as other authors, i.a. Gaeta and
Ahuja5 as well as Michel and Michalke1 stated the same e�ect.

Note, that if q = 8 (e.g. for a hot jet) cannot be solemnly established, then in the following analysis,
one or both of the exponents m and n may not respond to the theoretical derivations.

III.B. The dependency of the convection speed

Velocity pro�les with constant di�erence speed ∆U = Ujet − U∞ scale with I ∝ U2
c for low velocity

ratios according to the derivation in equation 57. If the velocity ratios are in close vicinity, yet produce
distinguishable velocity pro�les, the convection parameter c(rU ) may be neglected for the normalization
of the frequency. Note, that the narrowband velocity scaling can be conducted using the mean velocity
U or velocity sum ΣU (since 2U = ΣU) as characteristic scaling velocity (see equation 69).

I ∝ (c(rU ))2(ΣU)
2 ·��

��*
const.

(∆U)
6

(69)

Sr ∝ f ·Dmix

(c(rU ))2 · (ΣU)
2 ·�

��*
const.

∆U (70)
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Figure 8: I ∝ Uqjet velocity scaling for rU = 20 %=const.
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Figure 9: I ∝ Uqjet velocity scaling for rU = 25 %=const.

In order to challenge the assumed power 2 convection velocity scaling, constant di�erence velocities
of ∆U = 120 m/s (�gure 11), ∆U = 125 m/s (�gure 12), ∆U = 135 m/s (�gure 13) and ∆U = 140 m/s
(�gure 14) have been de�ned. Normal velocity pro�les with velocity ratios of rU = 0.2 to rU = 0.3
produce spectra with an (unscaled) sound pressure level di�erence of ∆SPL ≤ 5 dB. This SPL peak
di�erence is signi�cant, since it con�rms the theory that the velocity scaling is not only dependent on
the di�erence velocity, but needs another velocity scaling component (e.g. the one derived in this paper).
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Figure 10: I ∝ Uqjet velocity scaling for rU = 30 %=const.

Jet and windtunnel speeds were calculated by using the following relationships:

Ujet (∆U, rU ) =
1

1− rU
·∆U (71)

U∞ (∆U, rU ) =
rU

1− rU
·∆U (72)

Note, that: ΣU (∆U, rU ) =
1 + rU
1− rU

·∆U (73)

The scaled experimental data:

• scales well at n = 2, especially for high frequencies and slightly underscales at higher di�erence
velocities,

• scales well at n = 3, especially for high and low frequencies.

• overscales at n = 4 for high frequencies and only slightly overscales for low frequencies.

Note, that the scaling coe�cient n = 3 delivers reasonable scaling results with the experimental data.
The corresponding velocity ratios rU are very close or even within the critical velocity ratios derived
in equations 44 and 47. This may tend to support a changing velocity scaling law hypothesis (see
equation 48).
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Figure 11: I ∝ Unc velocity scaling for ∆U = 120 m/s = const, U < ∆U
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Figure 12: I ∝ Unc velocity scaling for ∆U = 125 m/s = const

III.C. The dependency on shear layer di�erence speed

Similar convection velocities are not easily created if the convection parameter c(rU ) cannot be estimated
correctly. However, it is easily possible to measure velocity pro�les with the same mean velocity in the
shear layer, here U = 125 m/s, i.e. ΣU = 250 m/s. Those velocity pro�les are supposed to scale with
I ∝∼ (∆U)6 for low velocity ratios.

I ∝ · (∆U)
6

(c(rU ))2
��

��*
const.

(ΣU)
2

(74)

Sr ∝ f ·Dmix ·∆U
c2

·���
�: const.

(ΣU)
−2

(75)
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Figure 13: I ∝ Unc velocity scaling for ∆U = 135 m/s = const
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Figure 14: I ∝ Unc velocity scaling for ∆U = 140 m/s = const

Jet and windtunnel speeds are calculated by using the following relationships:

Ujet (ΣU,∆U) =
ΣU + ∆U

2
(76)

U∞ (ΣU,∆U) =
ΣU −∆U

2
(77)

Note, that: r (ΣU,∆U) =
ΣU −∆U

ΣU + ∆U
(78)

The unscaled spectra (�gure 15) show a SPL di�erence of ∆SPL ≈ 7 dB, which is favorable for good
velocity scaling. The normalized spectra tend to:
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Figure 15: I ∝ (∆U)m velocity scaling for ΣU = 250 m/s = const.
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Figure 16: I1/3 ∝ (∆U)m velocity scaling for ΣU = 250 m/s = const.

• underscale at m = 3,

• scale well at m = 4 for the low frequencies,

• scale well at m = 5, especially for high frequencies,

• overscale for m = 6, whereby merely high frequencies of low velocity ratio datapoints might still
scale well,

• overscale for m = 7

With those experimental results, an experimental scaling exponent of n = 4 . . . 5 appears to be reasonable.
This is surprising, since scaling of presumably strong and intermediate normal velocity pro�les would
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favor a factor of m = 5 with a tendency to m = 6. Thus, this results supports the hypothesis of changing
velocity scaling laws (equation 48) and tends to give indication that velocity pro�les of velocity coe�cients
as low as rU ≥ 0.3 present weak NVP and tend to scale similarly to the hypothetically proposed near
unity region derivation m = 4.

In order to challenge this, combined velocity scaling shall be tested out.

III.D. Combined Scaling for similar Strouhal number and high velocity ratios

First of all, high velocity ratios rU ≈ 0.3 shall be tested, whereby the Strouhal number is approximately
constant. This test case shall be used for combined scaling (see equation 79), whereby a combined power
8 velocity scaling dimension q = m+ n = 8 is assumed. The exponents m and n are chosen to represent

• the theoretical derivation (m = 6, n = 2) which should theoretically apply for strong NVPs.

• the alternative theoretical derivation (m = 4, n = 4), which might apply well for near unity NVPs.

• exponents in between (m = 5, n = 3), which might be a relevant matching condition for interme-
diate NVPs.

I ∝ · (∆U)
m

(ΣU)
n
(c(rU ))n (79)

The velocity scaling results in �gure 17 show how di�erent rather weak NVP cause noise spectra which:
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Figure 17: I ∝ (∆U)nUmc velocity scaling for Sr−1
c ∝ 150 m/s = const.

• underscale for [m = 6, n = 2], especially for the low frequency peak.

• slightly underscale at [m = 5, n = 3].

• scale very well for [m = 4, n = 4].

This result is another support for the changing velocity scaling exponent hypothesis.

III.E. Combined Scaling for constant jet speed

A very common test situation is the testing of di�erent �ight speeds, e.g. U∞ = 40 m/s . . . 60 m/s, for a
�xed engine setting, thereby producing normal velocity pro�les (rU < 1). Note, that this is one of the
few datasets, where a larger number of truely strong velocity pro�les are scaled. The velocity scaling
results in �gure 18 show how di�erent NVP cause noise spectra which:
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Figure 18: I ∝ (∆U)nUmc velocity scaling for Ujet = 205 m/s = const.

• scale great for [m = 6, n = 2], especially for the high frequencies. The highest velocity ratio
rU = 0.29 overscales in the low frequency region. This result is in agreement with the derivations
for low velocity ratios!

• slightly underscale at [m = 5, n = 3] for high frequencies. Note, that the low (peak) frequencies
are in good agreement. This makes [m = 5, n = 3] a good candidate for experimental results.

• underscale for [m = 4, n = 4].

Note, that the scaling results show (see exponent m) as well, that the low frequency peaks of strong
normal velocity pro�les scale well with I ∝ (∆U)4...5 when varying �ight speed. This could lead to
a wrong interpretation where test rig noise is assumed as a dominant sources due to power 5 scaling
(rather than power 8 scaling). In the following section shall be shown, why I ∝ (∆U)5 · U3

jet is a great

approximation for I ∝ ∆U6Uc
2 at constant jet speed.
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IV. Approximation for velocity scaling of normal velocity pro�les

Conventional velocity scaling is based on using a di�erence velocity approach I ∝∼ ∆Uq. The inter-
esting question is how is this approximative scaling related to the I ∝ ∆U6Uc

2 (for rU → 0) derivation
in this paper. As a side condition, the velocity pro�les of the previous sections are used. This means
that jet velocity is a constant whereas �ight velocity varies.

IV.A. Derivation

Starting from the former derived relation (equation 80), the idea is to get a relation for Intensity I
depending on di�erence speed ∆U alone, whereby the jet speed Ujet (i.e. a constant) is also allowed.
Such a derivation leaves an approximation error which must be negligible. The decompositions for
exponents n = 4 . . . 6 are derived in equations 81 to 83 and the approximation error is shown for normal
velocity pro�les (yet valid for rU < 0.25) see �gure 19).

I ∝ (∆U)
6

(Ujet + U∞)
2
���

��:assume negligible
(c(rU ))

2
(80)

n = 6 : I ∝ (∆U)
6
U2
jet (1 + rU )

2
(81)

n = 5 : I ∝ (∆U)
5
U3
jet (1− rU ) (1 + rU )

2
(82)

n = 4 : I ∝ (∆U)
4
U4
jet︸︷︷︸

const

(1− rU )
2

(1 + rU )
2︸ ︷︷ ︸

approx. error

(83)

(84)

Note, how the approximation error for n = 5 looks similar to a Taylor series like polynomial of order 3,
whereby the linear term rU is compensated by the combination of the quadratic and cubic term r2

U + r3
U

(see equation 85).

I ∝ (∆U)
5 · U3

jet ·
���

���
���

�:≈ 1 for NVP(
1 + rU − r2

U − r3
U

)
(85)

Since jet noise scaling is typically characterized by slight overscaling of smaller jet velocities, small
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Figure 19: Estimation error of I ∝ ∆Um relation to I ∝ ∆U6Uc
2 at constant jet speed for various

exponents m

approximation errors might come in handy to compensate the overscaling.
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V. Summary: Jet scaling with co�ow

This section shall explain how I ∝ (∆U)m · Ucn velocity scaling can be summarized based on the
previous derivations and experimental results. The visual summary is �gure 20, which describes velocity
scaling along the isocontours of constant velocity ratio (compare section III.A), di�erence speed (compare
section III.B) and convection velocity (compare section III.B) as well as the derived velocity regions:
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Figure 20: Velocity scaling approximations for I ∝ (∆U)6 · Uc2 derivation

1. Region of I ∝ U8
jet-Law: Very strong normal velocity pro�les correspond to small velocity ratios of

r ≤ 0.06 and scale with the I ∝ U8
jet-law within an error margin of ∆SPL ≤ 1 dB. Note, that the

I ∝ U8
jet-law scales with an error margin of ∆SPL = 2 dB until velocity ratios of rU ≤ 0.10.

2. Strong NVP Region: In the strong NVP-region, here de�ned with velocity ratio 0.06 < rU < 0.25,
the di�erence velocity ∆U is greater than the shear layer convection velocity Uc. The velocity
scaling law is I ∝ (∆U)6 · U2

c . The transition to the weak NVP-region has been approximated to
occur in the range of velocity ratios 0.25 < rU < 0.33, whereby experimental data indicates that
the transition occurs rather at the lower end rU → 0.25.

3. Weak NVP Region: The weak NVP-region can be de�ned for velocity ratios of 0.25 < rU < 0.75
and scales approximately with I ∝ (∆U)5 · U3

c for lower velocity ratios around rU ≈ 0.25. The
velocity region is de�ned by shear layer convenction speed being greater than the shear layer
di�erence velocity. There is some indication in the experimental data, which hints that a transition
to I ∝ (∆U)4 · U4

c might occur for rather low velocity ratios rU .

4. Near Unity Region: The Near Unity region is here de�ned by velocity ratios of 0.75 < rU < 1.6
(very weak NVPs 0.75 < r < 1, unity r = 1 and very weak IVPs 1 < rU < 1.6) and scales with I ∝
(∆U)4 ·U4

c . The velocity ratio limits have been de�ned corresponding to Segalini's6 experimentally
found near unity limits, where the velocity regions were identi�ed by plotting isocontours of the
maximum peak frequency as a function of outer to inner Reynolds number. Note the singularity
for rU = 1 where the (ideal) shear layer vanishes and ideally no sound is produced. Note, that the
following IVP velocity regions are proposed in an inverted, but similar fashion to the NVP velocity
regions.

5. Weak IVP Region: A weak IVP-region is is de�ned by the shear layer di�erence speed being smaller
than the convection speed |∆U | < Uc.

6. Strong IVP Region: Strong inverted velocity pro�les are de�ned by the shear layer di�erence speed
being greater than the convection speed |∆U | > Uc.
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7. Dead Wake Region: For very strong inverted velocity pro�les, the jet �ow assymptotically approx-
imates zero, thus changing the function of the jet nozzle as a �ow sources to dead wake behind a
blunt (nozzle) body.

VI. Conclusion

The velocity scaling for noise of an cold jet in a co-�owing �ight stream (isothermal shear layer) has
been derived using a new approximation to account for the source volume, especially in the initial �ow
region. For the resulting velocity scaling law, a hypothesis has been formulated which states, that the
scaling law exponents change depending on the velocity region:

• For small velocity ratios rU → 0 (strong NVPs), where di�erence velocity is greater than the
convection velocity: Scaling with 6th power of the di�erence velocity and the convection velocity
squared.

• For near-unity velocity ratios rU → 1, where the shear layer convection velocity is greater than
the di�erence velocity: Scaling with 4th power of the di�erence velocity and the 4th power of the
convection velocity.

• A transition of the scaling law approximately at velocity ratios rU ≈ 0.25, where di�erence velocity
and convection velocity match: Scaling with the 5th power of the di�erence velocity and the third
power of the convection velocity.

A windtunnel experiment has been conducted at the AWB test facility in Braunschweig, Northern Ger-
many. The tested shear layer �ows consist of strong, transitional and weak normal velocity pro�les
(NVP) with velocity ratios of rU = 0.15 . . . 0.32. The following conclusions where drawn based on theory
and experiment:

• Without co-�ow or for similar velocity pro�les, the scaling equation reduces into Lighthill's widely
known power 8 law. Thus, the derivation is consistent to conventional acoustic theory. By exper-
imental means an exponent of q = 7 . . . 8 could be con�rmed. Slight scaling nonconformities are
qualitatively comparable to the �ndings by other authors.

• Velocity pro�les with the same di�erence velocity ∆U were especially compared for transitional
and weak NVPs. Therefore, they scale with the convection speed to the power of 3 and 4 rather
than with the convection speed squared.

• Velocity pro�les with a similar mean �ow speed Ū where examined for transitional and weak NVPs.
They scale with the 4th . . . 5th power of the di�erence velocity.

• This deviation from the scaling factors [m = 6, n = 2] is a support to the hyposthesis of changing
scaling coe�cients depending on shear layer physics.

• For some test cases, the estimation of the correct convection speed is essential for velocity scaling.
An approximation for the convection parameter c has been suggested. However, the approximation
may need to be improved and tested by more experimental results.

• Based on the previously achieved result, a combined velocity scaling approach for I ∝ ∆Um · Ucn
delivers good scaling for the exponent pairs [m = 6, n = 2] as well as [m = 5, n = 3] for strong and
transitional NVPs, and [m = 4, n = 4] for weak NVPs.

• The existing velocity pro�le types NVP, Near Unity and IVP can now be further devided into
di�erent velocity regions. The velocity scaling and approximate scaling for jet-like velocity pro�les
is presented in this paper. Any investigations for wake-like velocity pro�les could not be tested
and are candidates for future work.
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