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ABSTRACT

How far a user can rely on his navigation system is
a central question for safety of life applications like air
navigation especially in approach phases. For Oceanic,
En route or Non Precision Approach phases, the integrity
requirements as defined by the ICAO (International Civil
Aviation Organization) should be fulfilled by the future
Galileo Safety of Life Service.
This paper presents the performances of RAIM algorithms
using a covariance matrix of a single frequency absolute
positioning receiver noise calculated using one year
measurement data.
In the configuration of combined GPS/GALILEO con-
stellation, the user will have the possibility to track at
least 10 satellites at the same time. This high availability
of satellites will provide a high availability of RAIM
algorithms.
The original approach used in this paper is to use the IPRE

(Instantaneous Pseudo Range Error) developed in [1] as
the input parameter of the RAIM algorithms. This concept
provides a generalized covariance matrix of pseudo range
noise taking into account correlations of pseudo range
errors with close elevation and azimuth angles. Thanks
to a Cholesky decomposition, it is always possible to use
the classicalχ2 distribution to obtain the fault detection
threshold. The advantage of generalizing the RAIM
methods is not only in the simplicity of the algorithm, but
it is also in its efficiency thanks to lower protection levels
obtained.

INTRODUCTION

The IPRE (Instantaneous Pseudo Range Error) provides
not only a level of instantaneous error but also a ”look
up table” from which a covariance matrix of satellites
on visibility can be extracted the method will be detailed
later. This means that at each time step, the user is able to
calculate the real covariance matrix of the visible satellites
based on one year measurements from an IGS station. The
predefined look up table is defined regionally. This means
that the satellite configuration (which repeats itself almost
every day for GPS) is supposed not to change within a
radius of 50 km around the covariance measurement site.
We will see in the next section why it is so important to
be inside this area. A first part of this paper will consist
of modeling the covariance matrix of pseudo range noise
for a given location. A second part will be dedicated to the
description of the RAIM algorithms used in this paper with
a special emphasize on the integration of a generalized
noise model. In a third part, we will present the simulation
test cases that have been chosen. In a last part, we will
present the results and we will draw some conclusions
of the impact of a GPS/Galileo constellation on RAIM
availability and performances.



COVARIANCE MATRIX OF PSEUDO RANGE
NOISE

The model of covariance matrix usually taken as input
for the majority of RAIM algorithms is a simple but
usually said representative model of pseudo range error.
As given in the introduction, one of the aims of this work
is to make this covariance matrix as much representative
as we can of the real pseudo range noise faced by a single
frequency receiver. We do not only take into account
the variations according to the elevation angle but also
the cross correlations of the pseudo range errors derived
from two satellites with different azimuth and elevation
angles. In this section, we will first introduce the error
measurements using the concept of IPRE (Instantaneous
Pseudo Range Error) developed in [1] and then the practi-
cal method used to develop the regional covariance matrix
of pseudo range noise. We will end this section by giving
an Example of covariance matrix calculated at a given
epoch at Oberpfaffenhofen near Munich (Germany).

The concept of IPRE

Given the general observation equation of a single fre-
quency absolute positioning receiver, it is possible to derive
the fundamental error equation by making a Taylor expan-
sion to the first order, considering the error relatively small
with respect to the pseudo ranges. The second step is to
consider the deviations of the measurements from a refer-
ence. This instantaneous error measurement is the base of
our statistical analysis. [2]:

∆ρ = c·(−∆B + ∆I + ∆T + ν)+ǫ·
(
R̂ − P̂

)
+D·∆R

(1)
where∆ρ ≡ IPRE is the vector of instantaneous pseudo-
range errors corresponding to the observable satellites,
c · ∆B ≡ Clk is the vector of satellite clock errors,
ǫ ·

(
R̂ − P̂

)
+ A · ∆R ≡ Eph is the vector of ephemeris

errors,
ǫ is a matrix containing the errors in unit vectors of user to
satellites,
R̂ is the vector of estimated position of satellites,
P̂ is the vector of estimated position of the user,
D is a matrix containing the unit vectors of user to
satellites,
∆R is the vector of the satellite position error,
c · ∆I ≡ Iono is the vector of ionospheric errors,
c · ∆T ≡ Trop is the vector of tropospheric errors,
c · ν ≡ MN is the vector of multipath and receiver noise
errors,

For more details see [1].
For our needs, let’s defineODTS ≡ Clk − Eph ODTS
stand for Orbit Determination and Time Synchronization

error

In this section, the convention used to define the error is
as follow:∆X = X − X̂=reference - estimate.

The statistical analysis

The results from one year measurements of the IPRE vs.
time of all visible satellites for each time step is the basisto
generate the covariance matrix of error. We have a statisti-
cal process were 3 variables are considered: the IPRE of a
given satellite, its elevation angle (El) and its azimuth (Az).
An approach per class is adopted here. This means that we
consider classes of elevation angle, classes of azimuth an-
gle and classes of IPRE. In a first step we distribute all the
measurement samples into classes.

Variable Lower bound Upper bound Class width

IPRE -15m 15m 0.25m
Elevation 5o 90o 5o

Azimuth 0o 360o 10o

Table 1 Field of variables

We want to generate the covariance matrix of the vari-
able IPRE / El,Az: The IPRE given the elevation angle and
the azimuth. The covariance study will be done with re-
spect to (El,Az).
nijk is the number of points belonging to the class i of ele-
vation angle, the class j of azimuth and the class k of IPRE.

Lets take two satellites on visibility A and B whose el-
evation and azimuth classes are (i,j) and (i’,j’), the covari-
ance between these satellite errors is calculated as follow:

Cov (A,B) =
1

Niji′j′

∑

k

√
nijkni′j′k

(
IPREk−

IPREij

)(
IPREk − IPREi′j′

)
(2)

with
Niji′j′ =

∑

k

√
nijkni′j′k

IPREij =
1

Nij−

∑

k

nijkIPREk

Nij− =
∑

k

nijk

This approach differs from the classical covariance of
time series variables. The reason for that is that consid-
ering time series rather than the approach per IPRE class
would have induced a huge period of measurement to have
a representative statistics. This expression provides a 4D
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Fig. 1 Example of surface of covariance

look up table that will be used to constitute the covariance
matrix of observations for each epoch.

The figure 1 represents in z axis the value of the
covariance term of a considered (Elevation, Azimuth)
satellite with respect to the red arrow. This look up
table is available for a region around the considered IGS
station for which the constellation of satellites at every
epoch is considered the same. This ”regional” covariance
matrix of noise observables depends also on the correction
algorithms considered in the model of single frequency
receiver. In our case we considered the Klobuchar model
for ionosphere delay correction and the MOPS model for
the troposphere delay correction.

DESCRIPTION OF RAIM ALGORITHMS USED

The RAIM algorithms used to monitor the performances
of combined GPS/Galileo receiver are the one described
in [3]. We present here a brief description of the weighted
RAIM.

Position determination

We start our analysis with the well known linearized nav-
igation equation

Y = HX + ε

whereX is the four (or five, when using Galileo) dimen-
sional position vector expressed in WGS84 ECEF1 coor-
dinates,Y is a N dimensional vector that contains the
pseudorange measurements for theN satellites in view,H
is the direct cosine matrix (also often called the observa-
tion matrix), andε is the measurement noise vector. Let us
denoteW the noise covariance matrix,

W = E[εεT ]

1ECEF stands for Earth-Centered Earth Fixed referential

The least squares estimation of the user positionX̂ is
given by

X̂ = (HT W−1H)−1HW−1Y = GY

Position accuracy and dilution of precision

The position error made when using the least squares al-
gorithm is given by

eWGS84 = X̂ − X

BecauseX andX̂ are given in the WGS84 ECEF referen-
tial, the error is defined in this referential too.

eWGS84 = GY − X

eWGS84 = G(HX + ε) − X

eWGS84 = Gε

Since it is more convenient to work in the user local geo-
detic coordinate system ENU (East North Up), we use the
transformation matrixTENU

WGS84
2 in order to obtain

eENU = TENU
WGS84eWGS84

Thus
eENU = TENU

WGS84Gε

eENU = Mε (3)

With M = TENU
WGS84G. This expression allows us to de-

fine botheh
ENU the horizontal error vector andev

ENU the
vertical error vector such that

eh
ENU =

(
eENU (1)
eENU (2)

)

And
ev
ENU = eENU (3)

Moreover it comes,

Cov(eENU) = TENU
WGS84GWGT TENUT

WGS84

And we note

Cov(eENU) =





σ2
eE

σeEeN
σeEeU

σeEedt

σeN eE
σ2

eN
σeN eU

σeN edt

σeU eE
σeU eN

σ2
eU

σeU edt

σedteE
σedteN

σedteU
σ2

edt





Since the measurement noise covariance matrix is consider
to be general, we can no longer separate the expected po-
sitionning errors into dilution of precision parameters and
UERE. We choose to express new confidence parameters,

2The matrix T
ENU

WGS84
is fully defined by knowing the true posi-

tion coordinates. Of course in real operational situation this cannot be
achieved. The transition matrix used for the computation is approximated
by the one at the estimated position.



• the expected global accuracy is:

√
σ2

eE
+ σ2

eN
+ σ2

eU
+ σ2

edt

• the expected position accuracy is:

√
σ2

eE
+ σ2

eN
+ σ2

eU

• the expected horizontal accuracy is:

√
σ2

eE
+ σ2

eN

• the expected vertical accuracy is:

σeU

• the expected time accuracy is:

σedt

Errors detection [4]

To monitor errors occurrence we have to choose one
observable statistic that depends strongly on pseudorange
measurement noise. We will use, like in the RAIM method
developed in [5], the least square (LS) residuals that can be
expressed by:

w = Y − Ŷ

Where we callŶ the LS estimation of the measurement
vector, defined bŷY = HX̂. It can be shown quite easily
that it exists one matrixQ such that

w = Qε

It has been demonstrated that ifW = σ2I the square norm
of the residuals follows aχ2 law with N − 4 degrees of
freedom. The problem in our case is that the diagonal el-
ements of the covariance matrix of noise are different for
each satellite and that the error sources are correlated. Thus
the assumption that‖w‖2 is following aχ2 law is no longer
true. But, since the covariance matrixW is by definition
defined positive, we can do a Cholesky decomposition of it.
So it exists one unique non-singular square matrixA such
that:

W = AAT

According to this property, we can define a new vector of
measurement noise,ε′, following a normalN (0, IN ) law
such thatε follows the same law asAε′. Moreover it
comes:

Y = HX + ε

Y = HX + Aε′

A−1Y = A−1HX + ε′

Y ′ = H′X + ε′

α

β

East

North ”eigen” North

”eigen” East
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ēE

ēN
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True user position

Fig. 2 Failure impact on the horizontal user position

From this new measurement model, whereCov(ε′) = I

we can form new LS residuals,

w′ = Y ′ − Ŷ ′

w′ = A−1w

Thanks to the definition ofε′, the square norm of the
random variablew′ is following a χ2 law with N − 4
degree of freedom. We are now able to select the error
detection thresholdTd by inverting the cumulative density
function (cdf ) of ‖w′‖2.

Protection levels

The protection levels are used in order to guarantee that
the solution error will not be larger than a given value. To
compute these protection levels we have to see first how an
error affects the LS residuals vectorw′,

w′ = A−1Qε

‖w′‖ = εT QT A−1T A−1Qε

‖w′‖ = εT Qw′ε

We noteE[ε] = θ the expectation value of the random
pseudorange noise vector. If there is a failure on one3 of

3We only consider one satellite failure in our analysis, thishypothe-
sis is of course a bit restrictive because in real operational conditions the
environment may induce several biases on measurements.



the satellites it comes

θ =





0
...
b
...
0





Thus
‖w′‖ = Qw′(i, i)b2

Horizontal Protection Level

If we consider the horizontal solution erroreh
ENU , it can

be shown that (equation 3)

‖eh
ENU‖2 = (M(1, i)2 + M(2, i)2)b2

Thus

‖eh
ENU‖2 =

M(1, i)2 + M(2, i)2

Qw′(i, i)
‖w′‖2

whereM = TENU
WGS84G The quantity

√
M(1,i)2+M(2,i)2

Q
w′ (i,i)

is

called the horizontal Slope (HSlope) and thei index tells us
that it is dependent on the satellite we have supposed to fail.
So, with the no noise assumption (ε = θ) the horizontal
value that we can protect is

HPL = max
i=1...N

HSlope(i) × Td

But in reality the noise will spread the horizontal solution
around the previous value. This spreading effect is repre-
sented on the figure 2 by the ellipse. The definition of the
HPL induces that there is a missed alert when the horizon-
tal solution error is lower than theHPL value because of a
too noisy environment. LetPmd denote this probability of
missed detection.

Pmd = 1 − p

Where p is the probability to beinside the ellipse. Thus
the value of HPL should be set to the distance between the
user true position and the furthest point from the origin in-
side the ellipse. This means that the HPL should theoreti-
cally be the radius of the circle centered at the true position
which is tangent to the ellipse. Analytically, this value is
complicated to obtain and we use the estimation proposed
in [6] in order to approximate it.

The idea is to be a little bit more conservative than by
considering the tangent to the ellipse and take, instead of
the furthest point inside the ellipse, the furthest point of
the smallest rectangle that contains the noise ellipse. This
rectangle is defined on the figure 3. The value of HPL is

α

β

East

North

ARP

Furthest corner

kσ1eN

kσ1eeHPL

True user position

Fig. 3 Horizontal Protection Level practical value [6]

found by a vectorial decomposition of theOM1 distance
(OM1 = ‖−−−→OM1‖).

−−−→
OM1 =

−−→
OC +

−→
CA +

−−−→
AM1 (4)

Thus,

‖OM1‖2 = ‖−−→OC‖ + ‖−→CA‖ + . . .

. . . +‖−−−→AM1‖ + 2
−−→
OC.

−→
CA + . . .

. . . +2
−−→
OC

−−−→
AM1 + 2

−→
CA

−−−→
AM1

With(see figure 3):

• OC = ARP

• CA = kσ1eN

• AM1 = kσ1ee

• −−→
OC · −→CA = OC · CA sin(β − α)

• −−→
OC · −−−→AM1 = OC · AM1 cos(β − α)

• −→
CA · −−−→AM1 = 0

So,

HPL =

√√√√√
ARP 2 + k2σ2

1ee
+ k2σ2

1eN
+ . . .

. . . + 2kARP [σ1eN
| sin(β − α)| + . . .

· · · + σ1ee
| cos(β − α)|]

With,
k =

√
−2 ln(1 − p)



Vertical Protection Level

In similar way we can define aV Slope linking the test
statistic to the norm of the vertical solution error,

‖ev
ENU‖ = V Slope(i)‖wn‖

WhereV Slope(i) =
√

(M(3,i)2)(N−4)
Q

w′ (i,i)
. The upper-bound

value for‖ev
ENU‖ is,

‖ev
ENU‖ ≤ max

i=1...N
V Slope(i)

The VPL value in a no noise environment can be obtained
thanks to,

V PL = V Slopemax × Td

In considering the noise, the VPL value is much easier to
evaluate than the HPL because the vertical error is one-
dimensionnal Gaussian variable.

ev
ENU ∼ N (ev

ENU , σ2
eU

)

In our case we fix

ev
ENU = V Slopemax × Td (5)

Thus the expression of VPL can be defined by

V PL = V Slopemax × Td + α(Pmd) × σeU
(6)

whereα(p) represents the threshold for which we have all
realization of aN (0, 1) law below this threshold with a
probabilityp. Thus we have,

p = Pr(X ≤ α) =

∫ α

∞
pdf(x)dx (7)

where pdf(x) is the probability density function for a
N (0, 1) law:

pdf(x) =
1√
2π

e−
1

2
x2

(8)

Thus,

p =

∫ α

∞

1√
2π

e−
1

2
x2

dx (9)

The probability of missed detection is the probability to
have the VPL value below the vertical error. This means
that,

p = 1 − Pmd

We have,

Pmd = 1 −
∫ α

∞

1√
2π

e−
1

2
x2

dx (10)

Pmd =
1

2
−

∫ α

0

1√
2π

e−
1

2
x2

dx (11)

1 − 2Pmd = 2

∫ α

0

1√
2π

e−
1

2
x2

dx (12)

1 − 2Pmd = erf(
α√
2
) (13)

Satellite
Satellite

Gps
Galileo

tGPS − 2h tGPS

Fig. 4 Virtual Galileo Constellation [7]

whereerf(u) = 2√
π

∫ u

0
e−t2dt. Hence we found the ex-

pression ofα(Pmd):

α(Pmd) =
√

2erf−1(1 − 2Pmd) (14)

And finally,

V PL = V Slopemax × Td + . . .

. . . +
√

2erf−1(1 − 2Pmd) × σeU

SIMULATION SCENARIOS

The error model has been generated for a single fre-
quency absolute positioning receiver using the MOPS tro-
pospheric correction model at Oberpfaffenhofen (near mu-
nich) during the year 2003, no filtering of pseudo range has
been made. We define 3 test cases used as input of RAIM
algorithm:

• TC1=Generalized covariance matrix with measured
variances and covariances

• TC2=Diagonal covariance matrix with measured vari-
ances for all satellites in view

• TC3=Diagonal covariance matrix with constant vari-
ance (maximal value of all satellites in view)

We use 2 constellation scenarios:

• C1=GPS alone

• C2=GPS+ Virtual Galileo Constellation

The Virtual Galileo Constellation (VGC) is adopted in
our study. It consists of the GPS constellation observed
at two different time epochs (offset of 2 hours) [7]. The
advantage of this scenario for Galileo is the possibility to
use the same look up box to generate the covariance matrix
of observables (see figure 4).



RESULTS OF THE SIMULATIONS

In this section, we are going to comment the HPL and
VPL obtained for different test cases and different constel-
lations configurations as defined above. We considered one
day of measurements with a sampling period of 1 minute.
A RAIM simulator (RaimSim) developed by DLR under a
C/C++ environment has been used to process the data. The
graphics are obtained using MATLAB.
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Fig. 6 VPL for all test cases and using GPS only

The figures 5 and 6 shows clearly an improvement of the
protection levels. The Vertical component is of particular
interest since this parameter is generally the most critical
one because the air navigation requirements from APV1
to CAT. III are always considering very stringent vertical
alarm limit.

The figure 7 shows for a combined GPS+Galileo con-
stellation that the improvement from TC2 to TC1 is not so
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Fig. 7 HPL for all test cases and using GPS + VGC

obvious. The high level of fluctuations for TC1 is showing
a limit of our model. A test using a different time offset (be-
tween GPS and VGC) should be done to state whether the
covariance matrix or the geometry matrix are badly condi-
tioned.
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Fig. 8 VPL for all test cases and using GPS + VGC

The figure 8 shows the same type of behavior as previ-
ously. Nevertheless the use of a diagonal matrix with an
elevation dependency is giving good results in comparison
with TC3 which is obviously a too conservative case.

In figures 9 and 10 we can observe the impact of aug-
menting the number of visible satellites in the protection
levels. As expected C2 gives better results for both HPL
and VPL. The C2 curve is shifted with comparison to the
C1 curve, this was done to take into account the 2 hours
offset between GPS and VGC.
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CONCLUSIONS

The results obtained are encouraging in the sens that a
better knowledge of the error behavior of pseudo range
observables implies a better estimation of the protection
levels. This better knowledge of the error is a result of a
measurement campaign of the covariance matrix during
one year. In the actual form of our 4D look up table,
The availability of this matrix can’t exceed a certain area.
That’s why we choose to denominate it as a ”regional”
covariance matrix. By taking a dual constellation GPS
and Galileo, and considering that Galileo observables are
facing the same level of pseudo range noise, the protection
levels are decreasing just by considering more satellites
on visibility. The hypotheses considering only one faulty
satellite could be discussed when 2 constellations are taken
into account. In fact the probability of a multi failure is
higher and thus should be considered in a more precise
study. It would be interesting to consider a lower level

of noise for Galileo as specified in [8]. In that case, a
combined covariance matrix of noise has to be set. In any
case the generalized RAIM algorithms using a Cholesky
decomposition of the covariance matrix is a promising
technique and is ready to take the advantages of using the
Galileo constellation.
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