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A vortex detection and characterization strategy in LiDAR measurements (Light Detection
and Ranging), consisting of two different parts, is presented in this study. First, a two-stage
detection pipeline is implemented combining the computer vision deep neural network YOLO
(You Only Look Once) and a regression convolutional neural network to detect vortices
individually. An accuracy on the order of the instrument accuracy is achieved. Second, a
new characterization method the so-called Projection Method is presented which has has the
following important features. First, it is very accurate. Second, it yields valuable quantification
of the accuracy of the results. Third, it is very fast and outperforms conventional methods
by two to three orders of magnitude, hence it enables to process a high amount of data in
a short time. Fourth, it provides much flexibility in choosing different models and compare
the performance of the respective models. Fifth, it comes with a natural visualization of the
underlying calculus. Sixth, it can be generalized to situations, where measurements provide a
reduced and skewed image of the reality and certain structures or features have to be identified
and characterized employing models.

I. Introduction
Pulsed coherent Doppler LiDARs (PCDLs) are currently considered to be one of the best technical facilities for the

experimental investigation of mesoscale airflows. They are widely used in different situations from meteorological flows,
like the turbulent boundary layer [1], to technogenic flows like the wake behind wind turbines [2] or aircraft wakes
[3]. Due to the nature of that instrument measurements with a LiDAR have two major shortcomings. First, they only
reveal the projection of the three-dimensional wind velocity vector to the laser beam direction. Second, they provide a
smoothed or filtered version of the actual wind field. It is therefore a challenge to identify, interpret and characterize
flow pattern of interest. Particularly, coherent structures like vortices that occur behind flying aircraft, wind turbines,
buildings other objects are difficult to identify and characterize. In this study we present an effective and very fast
method to first identify and locate vortices and second characterize them in terms of circulation and core radius in the
framework of aircraft wake vortices. The methods presented here are easy to adapt for other applications. Vortices in a
flow field can be characterized by their position, their strength in terms of circulation, by their core radius, and by their
tangential velocity profile. The position of multiple vortices 𝑥𝑖 in a slice when the full 3-d flow field is given, can be
determined by

𝑋𝑖 =
1
Γ

∬
𝑥𝑖𝜔𝑥𝑑𝑦𝑑𝑧, (1)
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where 𝜔𝑥 denotes the vorticity perpendicular to the slice. The circulation of each of the vortices, again assuming full
3-d information, can be calculated by the well known formula

Γ =

∮
𝜕𝐴

®𝑢 · 𝑑®𝑠 =
∫
𝐴

𝜔𝑑𝐴. (2)

The core radius is defined as the maximum point of the tangential velocity profile. Higher order moments can be
captured by matching certain velocity profiles to the tangential velocity profile. We will present a method on how to
retrieve all these characteristics from LiDAR measurements, without making any additional assumptions.

As a special case, where range height indicator (RHI) scans are performed by a LiDAR device, we will pick out
aircraft wake vortex measurements during landing. Of course, the presented methods easily transfer to other scan
patterns and other technical or scientific applications.

Flying aircraft experience lift and therefore create trailing vortices that may dissipate very slowly and hence pose a
risk for other aircraft if they encounter that coherent structure. At airports, where wake vortices descend is limited by
the ground surface, aircraft separation rules are enforced to mitigate wake vortex encounter risk. LiDAR measurements
became widely used when it comes to direct physical investigation of the phenomenon, sometimes complemented by
numerical simulations. These measurements enable to study general wake vortex physics, but they can be also used to
build situation awareness, if full necessary information is retrieved in real-time. An online monitoring system may help
air traffic controllers to take right decisions in critical situations. Finally, if it comes to establish new separation rules,
LiDAR measurements can help to prove a safety case.

II. A vortex detection pipeline with Artificial Neural Networks
The underlying data set was acquired during the Vienna measurement campaign with LiDAR measurements at

Vienna International Airport from May 2019 until November 2019 by DLR [4]. The data contains the radial velocity
RHI LiDAR scans. The scans in the LiDAR data set from Vienna include atmospheric effects, secondary vortices, noise,
and measurement errors. The data set also contains corresponding labels generated with the method of radial velocities
(RV-method) [3] with the vortex center locations in polar coordinates 𝑅𝑡 , 𝜑𝑡 ∈ R≥0 and vortex circulation Γ𝑡 ∈ R≥0.
Hence labels for supervised training and evaluation are given.

We set up a prediction pipeline to obtain the individual vortices from the YOLOv4 prediction and input those into a
regression CNN (Convolutional Neural Network). The regression net employs cut-out vortices from the LiDAR scans in
Cartesian coordinates to further refine the results. Throughout this study, we use the terms prediction and estimation
equivalently. In essence, prediction does not represent a prediction in time.

A. Data set
Since the Vienna measurement campaign was conducted to evaluate the effectiveness of plate lines in wake vortex

mitigation, the data set contains measurements with and without plate line usage. Hence in some scans, plate line effects
are present, which means, that the vortices are disturbed from their natural shape. In the following, a summary of the
measurement campaign is given based on [5].

Figure 1 depicts the setup of the measurement instruments at the runway of the Vienna International Airport. During
the campaign, two plate lines were installed consisting of respectively eight and nine plates of dimension 4.5 m× 9 m
displayed by red dashes. For the radial velocity measurement, at most three Leosphere Windcube 200S (1.543 `m)
micro-PCDLs were used at once, positioned at three out of five possible positions (L1-L5). At positions A-C, additional
meteorological instruments were placed. The runway is at the bottom of Fig. 1, and the aircraft approaches from the top.
The average flight altitudes above ground at LiDAR planes are 40.8 m at L1, 45.8 m at L2, 54.3 m at L3, 64.8 m at
L4, and 74.5 m at L5 with a standard deviation of 4.9 m [25]. The LiDAR measured the radial velocities at discrete
points along each line of sight (LOS) perpendicular to the runway. Each LOS has 151 measuring points, called range
gates, starting at a range of 𝑅𝑚𝑖𝑛 = 80 m to a range of 𝑅𝑚𝑎𝑥 = 530 m with a step size of Δ𝑅 = 3 m. The minimum and
maximum elevation angles used depend on the LiDAR position adjusted to the average flight altitudes at the different
LiDAR positions. The elevation angle step size was Δ𝜑 = 0.2𝑜 for all positions. The corresponding minimum and
maximum elevation angles used can be found in Table 2. A list of three-tuples can therefore describe a raw LiDAR scan

(𝑅 𝑗 , 𝜑 𝑗 , 𝑉𝑟 (𝑅 𝑗 , 𝜑 𝑗 )) ∈ R3, (3)

with 𝑉𝑟 (𝑅 𝑗 , 𝜑 𝑗 ) measured at (𝑅 𝑗 , 𝜑 𝑗 ). The polar coordinates (𝑅𝑖 , 𝜑 𝑗 ) represent at which the corresponding radial
velocity 𝑉𝑟 (𝜑𝑖 , 𝑅 𝑗 ) was measured, with 𝑖 ∈ {0, 1, . . . , 𝐻lid} and 𝑗 ∈ {0, 1, . . . , 150}.
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Fig. 1 Vienna measurement campaign setup of instrumentation with L1-L5 being the LiDAR positions, A-C
being additional meteorological instruments, and the red dashes being the plates, from [4]

(a) (b)

Fig. 2 (a) Example of a raw LiDAR scan. (b) Example of a raw LiDAR scan transformed to Cartesian
coordinates.
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Table 1 The elevation angles covered correspond to each LiDAR position and the number of LOSs needed.

LiDAR position 𝜑 range 𝐻lid number of LOS beams
L1 0◦ − 25◦ 125
L2 0◦ − 20◦ 100
L3 0◦ − 18◦ 90
L4 1◦ − 28◦ 135
L5 0◦ − 29◦ 145

An example of a raw LiDAR scan can be seen in Fig. 2 (a) with the corresponding scan transformed to Cartesian
coordinates in Fig. 2 (b). The grid in polar coordinates is equidistant. Hence, transforming to Cartesian coordinates, one
loses this property.

YOLOv4 needs bounding box labels, thus we focus on scans in Cartesian coordinates. The input format required for
YOLOv4 is that of images. Thus we have to transform the polar coordinates to an equidistant Cartesian grid, which
requires data interpolation. This may lead to inaccuracies in the YOLOv4 detection result, especially for high range gate
values, as the distance between two grid points at the same range gate but with different elevation angles increases with
the range gate. Another source of inaccuracies is the time a single measurement takes. Changing the LOSs takes 50 ms.
Hence a LiDAR scan cannot be instantaneous. This time difference results in radial velocities measured with a maximal
time difference of 7.25 s. The LiDAR scans were initiated at either end of the elevation angle interval. Consequently,
the resulting data set contains roughly an equal amount of data with a time distortion from top to bottom and vice versa.
Thus this effect can be considered negligible.

B. Object Detection
The task of object detection is not only to classify objects in an image but also to localize those objects. ANNs

(Artificial Neural Networks) performing object detection aim to mark existing objects in any image with a rectangular
bounding box [6]. We define a bounding box as follows.

Definition II.1 (Bounding Box). Let (𝑥𝑐, 𝑦𝑐, 𝑤, ℎ) ∈ R4, with (𝑥𝑐, 𝑦𝑐) being the center point and (𝑤, ℎ) being the
dimension defining the rectangular bounding box B as

B B
{
(𝑥, 𝑦) ∈ R2 : 𝑥𝑐 −

𝑤

2
≤ 𝑥 ≤ 𝑥𝑐 +

𝑤

2
, 𝑦𝑐 −

ℎ

2
≤ 𝑦 ≤ 𝑦𝑐 +

ℎ

2

}
. (4)

There are two main machine learning approaches to object detection. The first approach starts with a network that
proposes regions for interest, the region-proposal network (RPN). A second network - of detection type - then classifies
objects in those regions of interest [7]. Networks following this approach are called two-stage detectors. The second
approach is the one-stage detectors. One-stage detectors accomplish regression and classification in a single shot. The
most prominent one-stage detector is YOLO. We use the YOLOv4 version [8]1.

Because the one-stage detectors do not need an RPN, they are faster than the two-stage detectors enabling fast-time
detection. In case of wake vortex measurements and wake vortex tracking fast-time detection is crucial. YOLOv4
outperformed other state-of-the-art object detection networks in terms of accuracy and speed [8].

Despite the difference of having two stages or only one to do object detection, modern object detection networks
consist of three main parts, the backbone, the neck, and the head illustrated in Figure 3 [8]. The backbone network, in
most cases, is pretrained for the ImageNet classification task [9]. The task of the backbone is to extract higher-level
features of an image. The role of the neck is to collect feature maps from different stages of the backbone and is generally
composed of several top-down-paths and bottom-up-paths. The idea is to let lower-level features and higher-level
features interact. The head predicts the bounding boxes and classification.

C. Labels - Radial Velocity Method
The labels for the data set originate from the assessment of the measurement campaign, which used the RV method,

described in [3]. The idea behind the RV method is first to estimate the center of the vortices and afterward estimate the
1Meanwhile YOLOv7 was published, which is even superior to YOLOv4.
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circulations via minimizing a functional. The RV method is described as an example for two vortices. To estimate the
range gate of the vortex center 𝑅𝐶𝑖

, the maxima of

𝐷 (𝑅𝑘) B
𝐵lid∑︁
𝑗=0

𝑉𝑟 (𝑅𝑘 , 𝜑 𝑗 )2 (5)

are sought [3]. The corresponding angles can be found by calculating the mean of the angle 𝜑min (𝑅𝐶𝑖
) of minimal

radial velocity and 𝜑max (𝑅𝐶𝑖) at the estimated range gate center [3]. A functional

𝜌(Γ𝑖) =
𝐵𝑙𝑖𝑑∑︁
𝑗=0

(𝑉𝑟 (𝑅𝐶𝑖
, 𝜑 𝑗 ) −𝑉𝑟 (𝑅𝐶𝑖

, 𝜑 𝑗 ; Γ1, Γ2))2 (6)

is minimized to fit the best circulation. This functional (6) describes the difference between the radial velocities at the
axis of the center range gate of the true LiDAR scan 𝑉𝑟 (𝑅𝐶𝑖

, 𝜑 𝑗 ) and a modeled scan 𝑉𝑟 (𝑅𝐶𝑖
, 𝜑 𝑗 ; Γ1, Γ2) calculated

theoretically with arbitrary circulations Γ1 and Γ2.
During the measurement campaign, 9 473 approaches were measured with approximately 20 scans per overflight [4].

Since the targets for the data set were constructed by the RV method, which is time-consuming, only a fraction of the
data can be used for training, ending up with a data set of 16 349 samples in the complete data set used in three different
variants. The total numbers of the samples per data set can be found in Table 2 with the corresponding splitting of the
data set into training and validation data sets.

Table 2 The number of data samples contained in each data set used for training and validation of YOLOv4

Plate Line status Train Validation Total number
up 5 994 958 6 963

down 8 428 969 9 386
both 14 422 1 927 16 349

D. YOLO
First, object detection is employed to detect wake vortices in the overall LiDAR scans, in order to tackle the problem

of detecting different numbers of wake vortices in different LiDAR scans. The name YOLO is an abbreviation for “You
Only Look Ones", which reflects the nature of a one-stage detector. We use the original YOLOv42 written in C/C++ [8].

1. Network architecture
Like all object detectors, YOLOv4 consists of three parts: the backbone, the neck, and the head (see Fig. 3 and

Section II.B). As backbone YOLOv4 uses CSPDarknet-53 [10]. In the neck, spatial pyramid pooling (SPP) [11] and
2https://github.com/AlexeyAB/darknet

Fig. 3 Sketch of general object detectors (taken from [8]).
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Fig. 4 The basic building blocks of the YOLOv4 Network. (a) Residual Block with CBM blocks. (b) CSP block
with N residual blocks. (c) SPP block.

path-aggregation network (PAN) [12] are used. For the detection head, YOLOv3 [13] is used. The basic building blocks
of YOLOv4 are illustrated in Figure 4.

CSPDarknet-53 is an update to Darknet-53 [13] incorporating so-called cross-stage partial (CSP) connections. A
CSP block contains convolutional layers with batch normalization and Mish as an activation function, thus abbreviated
with CBM (Convolutional layer with Batch normalization and Mish activating function). The first CBM layer in a CSP
block uses a stride of two to downsample the input. After that, the output is copied and fed through another CBM layer,
𝑁 residual blocks, illustrated in Figure 4 (a), and another CBM layer before being concatenated with the second copy
which was only fed through a CBM layer. The concatenation is then again fed through a CBM layer. An illustration of
that process can be found in Figure 4.

The PAN block combines features extracted at lower layers with features at higher layers. It uses bottom-up paths to
make low-layer information easier to propagate [12]. In Figure 5, PAN is marked by the red connections. The difference
between the PAN YOLOv4 uses to the originally proposed PAN is the usage of the concatenation of feature maps instead
of addition [8].

The SPP block added after the CSPDarknet-53 backbone is used to significantly increase the network’s receptive
field and separate out the most significant context features [8]. This is accomplished using three different max pooling
layers, each with a different pooling size, namely 5 × 5, 9 × 9, and 13 × 13. The SPP block is illustrated in Figure 4 (c).

Instead of the Mish activation function, YOLOv4 uses LReLU (leaky rectified linear unit) in the neck and the head
of the network. After the convolution, batch normalization is also performed in the neck and head. Those blocks are
abbreviated by CBL.

The detection head used is based on the anchor box idea from YOLOv3 [8, 13]. The functionality of the detection
mechanism will be explained in more detail in the next section. The entire network of YOLOv4 can be seen in Figure 5.

Input
256× 448

CBM
CSP 1
CSP 2
CSP 8

CSP 8

CSP 4 CBL×3 SPP CBL×3

Upsample

CBL

CBL CBL×5

Upsample

CBL

CBL CBL×5 CBL CONV
Output 1
56× 32× 21

CBL
stride = 2

CBL×5 CBL CONV
Output 2
28× 16× 21

CBL
stride = 2

CBL×5 CBL CONV
Output 3
14× 8× 21

Backbone

Neck with SPP and PAN (red connections) YOLOv3 Head

Fig. 5 An illustration of the architecture of the YOLOv4 network. When the paths split up, the output is copied.
When two paths join, the dot represents the concatenation of the inputs.
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Fig. 6 Three different grids used in the detection head of YOLOv3. (a) Fine grid: 56 × 32. (b) Medium grid:
28 × 16. (c) Coarse grid: 14 × 8.

YOLOv3 Head
As detection head YOLOv4 uses the YOLOv3 detection head [8]. The prediction in the YOLOv3 detection head is

made at three different scales, such that we have three outputs [13]. Each detection head’s prediction is based on a grid
of different sizes such that objects of different sizes can be detected. The grid dimensions can be found in Table 3 and a
LiDAR scan with the corresponding grids in Figure 6.

To predict the position and dimension of a bounding box, YOLOv3 uses anchor box priors [13] with width 𝑝𝑤 ∈ N
and height 𝑝ℎ ∈ N. At each scale, YOLOv3 uses three anchor box priors, such that a total of nine anchor box priors are
used. Different object shapes can be represented by using different anchor box priors. For each anchor box and grid cell,
an offset, as well as a class and objectness, is predicted. In our case, there are two classes: port and starboard. The
objectness predicts the intersection over union (IoU) (7) of the ground-truth and the proposed box [14]. A metric to
measure how much a predicted box and a ground-truth box match IoU is defined as follows.

Definition II.2 (Intersection over Union [15]). Let B be a bounding box defined by (𝑥, 𝑦, 𝑤, ℎ) and Bgt be another
bounding box defined by (𝑥gt, 𝑦gt, 𝑤gt, ℎgt), corresponding to Definition II.1. The intersection over union (IoU) of B
and Bgt is then defined by

IoU(B,Bgt) B
|B ∩ Bgt |
|B ∪ Bgt |

. (7)

The operation |B| corresponds to the cardinality of the finite set B, which is understood as the number of elements a
set contains. With IoU and the probability of an object existing in the predicted bounding box B objectness is defined
by[16]

𝐶 (B) B 𝑃(object)IoU(B,Bgt). (8)

The offset prediction of YOLOv3 is made by predicting coordinates 𝑡𝑥 , 𝑡𝑦 , 𝑡𝑤 , 𝑡ℎ representing the center, width, and
height offset, respectively. Furthermore, the objectness 𝑡𝑜 and a probability for each class 𝑡c𝑖 is activated by the logistic
function 𝜎 to represent a probability. The bounding box is then calculated with respect to the center of a grid cell,
defined by the offset of 𝑐𝑥 , 𝑐𝑦 from the origin at the top left corner, by

𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥

𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦

𝑏𝑤 = 𝑝𝑤𝑒
𝑡𝑤

𝑏ℎ = 𝑝ℎ𝑒
𝑡ℎ

𝐶 (𝐵) = 𝜎(𝑡𝑜)
𝑃(class𝑖) = 𝜎(𝑡class𝑖 ) 𝑖 ∈ {1, 2}.

(9)

At the testing time, the objectness is multiplied by a conditional class probability 𝑃(class𝑖 |object) to give a
class-specific confidence score. In that way, the probability of class 𝑖 appearing in the bounding box and the quality of
bounding box fitting is encoded [16]. Figure 7 is a sketch of the positioning and scaling of an anchor box to a predicted
bounding box.
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Fig. 7 The process of transforming bounding box predictions from an anchor box prior to a predicted bounding
box. (Inspired by [14])

With that knowledge, we can calculate the output dimension of each detection head. Let the detection head divide
the image into a 𝑆1 × 𝑆2 grid and let each grid cell predict 𝐵num bounding boxes. Let furthermore be 𝐶num be the number
of classes to predict. The dimension of the detection head output can then be calculated by

𝑆1 × 𝑆2 × [𝐵num ( 4︸︷︷︸
bounding box coordinates

+ 1︸︷︷︸
confidence score

+ 𝐶num)] . (10)

In our case, the detection heads are after the 139th layer, the 150th layer, and the 161st layer. Each detection head uses
three anchor boxes, i.e., 𝐵num = 3. Recalling that we aim to distinguish between the port and starboard vortices, two
classes are used, i.e., 𝐶num = 2. In Table 3, the output dimensions for each detection head are calculated according to
equation (10).

Table 3 The dimension of the output tensors from the three different detection heads and the corresponding
anchor boxes.

Detection Head Layer Output Tensor Dimensions Anchor Box Dimensions
139 56 × 32 × 21 12 × 16, 19 × 36, 40 × 28
150 28 × 16 × 21 36 × 75, 76 × 55, 72 × 146
161 14 × 8 × 21 142 × 110, 192 × 243, 459 × 401

Since each grid cell predicts three bounding boxes, some large objects or objects near the border of multiple cells
can be well localized by multiple cells [16]. The tool to mitigate that problem is non-maximum suppression (NMS).
YOLOv4 uses greedy NMS [8]. The idea behind greedy NMS is to select a bounding box with the highest objectness
and suppress all other bounding boxes that have an IoU above a given threshold 𝑇nms ∈ [0, 1][17]. To assign a predicted
bounding box to the correct ground-truth box, an IoU threshold of 0.231 is used [8].

2. YOLOv4 Loss Function and Accuracy Measurement
The loss function for all versions of YOLO can be split into three parts. The first part evaluates the bounding box

prediction, the second part evaluates the objectness prediction, and the last part evaluates the class predictions. The loss
function used by YOLOv4 is an updated version of the loss function from YOLOv3. For the bounding box regression,
instead of the MSE (Mean Square Error) loss, complete IoU (CIoU) [15] loss is used [8]. The CIoU loss not only
considers the MSE between the bounding box predictions but considers the overlapping area, the distance between
center points, and the aspect ratio [15].

Definition II.3 (CIoU Loss [15]). Let Bp = 𝐵(b, 𝑤p, ℎp) be a predicted bounding box and Bgt = 𝐵(bgt, 𝑤gt, ℎgt)
the ground-truth bounding box. Furthermore, let the center of the bounding boxes be b and bgt, respectively. The
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consistency of the aspect ratio is measured by

𝑣 B
4
𝜋2

(
arctan

𝑤gt

ℎhgt
− arctan

𝑤p

ℎhp

)2
. (11)

The CIoU loss is then defined, with a trade-off parameter 𝛼 ∈ R≥0 and the diagonal 𝑐 ∈ R≥0 of the smallest enclosing
box covering Bp and Bgt, by

LCIoU (B,Bgt) B 1 − IoU(B,Bgt) +
∥b − bgt∥2

𝑐2 + 𝛼𝑣. (12)

The objectness is evaluated with binary-cross entropy loss [18] split up into the cases of an object being present in a
grid cell for each bounding box and the case of no object being present. This is done to force the objectness to be zero if
no object is present. Finally, the classification task is also measured with binary-cross entropy loss [18].

The training of YOLOv4 was performed on the TUHH (Technical University of Hamburg) cluster using an NVIDIA
A100-80 GPU. The training of YOLOv4 took aproximately 5 h for the proxy data set and 7 h for the LiDAR data set.

To evaluate object detectors, we count the true positive (TP), false positive (FP), and false negative (FN) predictions.
In classification problems recall and precision are used as a measure of success. Recall measures the ratio of TP
predictions out of all positive samples, i.e., a low recall hints at many FN predictions [19, p. 87]. Precision measures
the ratio of TP predictions out of all samples predicted as positive, i.e., a low precision hints at many FP predictions [19,
p. 87]. The formulas to calculate precision and recall are [19, p. 86]

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
Recall =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (13)

To assign a class to a bounding box, YOLO uses a class probability, i.e., for each class, a probability of that class being
present in a bounding box is predicted. To finally label that bounding box with a class, a threshold 𝑇 ∈ [0, 1] is used at
which probability a class prediction is used. To find the best threshold and the best compromise between high recall
and high precision, a precision-recall curve is used . The precision-recall curve plots the precision against the recall
for all thresholds 𝑇 ∈ [0, 1] [19]. The average precision (AP) for a given class now is defined as the area under the
precision-recall curve [20]. For each class we want to detect, the AP is calculated. The mean average precision (mAP)
is the mean of the AP per class and the metric used to evaluate YOLOv4. The mAP can be calculated for different IoU
thresholds at which a prediction is considered positive also to reflect the quality of the bounding box.

3. Data Preprocessing
Before we can use the LiDAR data sets for the training of YOLOv4, the labels and scans have to be converted to

match the architecture of YOLOv4 and the required input data type.
As a label, YOLOv4 needs the center position of a vortex, a width 𝑤B ∈ R≥0, and height ℎB ∈ R≥0 which we both

set to be the initial vortex spacing 𝑏0 = 𝜋/4𝐵, with the aircraft’s wing span 𝐵. We employ 𝑏0 as the width and height of
the bounding box as label. That choice ensures only one vortex center being present in each bounding box, even shortly
after aircraft passage, contributing to our goal of individual vortex characterization. The underlying raw LiDAR data is
in the form of polar coordinates, see Fig. 2 (a). LiDAR scans of polar coordinates displayed in a grid visually distort the
vortices. Hence scans in polar coordinates are not suited for the usage of 𝑏0 as bounding box dimensions. We therefore
only focus on LiDAR scans in the form of Cartesian coordinates, see Fig. 2 (a).

E. YOLOv4 Training
Since using a pre-trained version of Faster R-CNN (Region Based Convolutional Neural Networks) on the Microsoft

Common Objects in Context data set (COCO) [21] gave promising results [22], we use a version of YOLOv4 pre-trained
on the COCO data set as well. COCO data set consists of 328 000 images containing 2 500 000 labeled instances of
common objects from 91 classes [21].

The data set can be categorized into three different data set groups. One data set group with only scans having
the plate lines used, one data set group without using plate lines and the combined data set group. To evaluate which
training works best for YOLOv4, we train it with those three data set groups separately. The three resulting YOLOv4
models generated by training with each training data set group, are validated with each validation data set group. We
employ the mAP@50 as accuracy metric, as it is the standard choice for YOLOv4.
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Fig. 8 (a) A graph of the precision and recall, as well as a graph of the average IoU and the mAP with respect to
the IoU threshold used. (b) Precision-Recall curve with the optimal precision-recall pair marked.

The mAP for all different scenarios can be found in Table 4. The YOLOv4 model trained with the combined data set
group - containing both plate line scenarios - has the best mAP for all validation data sets. We thus continue improving
that model. In the further course of this work, we only consider the data set group containing both plate line scenarios
for training and validation. For further training, we use YOLOv4 pre-trained on COCO as it was also utilized by [23].

Table 4 The mAP of YOLOv4 for the three different validation data sets after training with the respective
training data sets. The highest mAP for each validation data set is marked in green.

Pre-trained on COCO

Training Data Set
Validation Data Set

Both Down Up

Both 87.96% 86.79% 89.15%
Down 84.61% 85.55% 83.96%

Up 83.47% 84.22% 82.92%

1. Detection Parameter Setting
Since we use the YOLOv4 bounding box predictions as input for the regression network, we have to investigate

the parameters used for detection. In particular, the confidence threshold used for detection has to be considered. We
use the regression CNN to enhance the vortex center prediction. Hence a lower IoU can be considered for validation.
So far, we have always used the mAP for an IoU threshold of 0.5 to evaluate our model. In Figure 8 (a), precision,
recall, mAP, and average IoU for different values of IoU thresholds can be seen. Since the precision and recall are the
highest at an IoU threshold of 0.25, we evaluate this case further for different confidence thresholds. In Figure 8 (b), the
Precision-Recall curve is plotted for an IoU threshold of 0.25. The best point is marked at a precision of 0.92 and a
recall of 0.94, with the confidence threshold being 𝑇𝑐 = 0.25.

If we favor recall over precision, a confidence threshold of 0.2 would be the choice. Given that a lower recall explains
increasing numbers of TP predictions and decreasing numbers of FN predictions, more vortices are captured. In the
case of wake vortex prediction, the conservative choice, of capturing more vortices, is preferred. Therefore we apply a
confidence threshold of 0.2 to create the bounding box predictions that are fed into the regression net.

Considering the RV method creating the ground-truth labels also has inaccuracies, we assume the confidence
threshold of 0.2 to be the better choice and continue to use it for detection. Figure 9 shows an example of wrong
YOLOv4 prediction according to the RV label. The first scan is predicted correctly according to the RV label. In the two
consecutive scans, the RV method no longer detected the starboard vortex, but YOLOv4 has. As previously discussed,
the vortex trajectory is a hyperbola without crosswind, but with a crosswind, the upwind vortex can be expected to stall
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Fig. 9 Three consecutive LiDAR scans from the same overflight with YOLOv4 bounding box predictions. (a)
Correctly predicted bounding box according to RV method. (b)-(c) False detection of starboard vortex according
to RV method.

over the runway [24]. This is the case seen in Figure 9. Hence we assume the YOLOv4 prediction to be correct and that
the RV method could not detect the starboard vortex. Therefore, leads to the assumption that the actual mAP, precision,
and recall are higher than evaluated as we validate using labels generated by the RV method.

2. Accuracy
To evaluate the accuracy of the YOLOv4 network with a confidence threshold of 0.2 even further, we assume that

the center of the bounding box matches the center of the predicted vortex. The rationale is that the vortex center is
used for the bounding box center label. We use the validation data set for all those tests containing both plate line
scenarios. After evaluating the validation data set, we find the mean confidence to be 84.54% and the median confidence
to be 91.63%. With that result, we can confirm that the bounding box predictions are of good quality even with a low
confidence threshold. To evaluate the accuracy of the center prediction from YOLOv4, we use the Euclidean distance of
the bounding box center to the vortex center label, i.e., MADE (mean absolute distance error) Eq. (15). Furthermore, we
separately evaluate the MAE (mean absolute error) Eq. (14) in the y- and z-directions to understand which coordinate
prediction is more accurate. The results can be found in Table 5. We can see that the accuracy of the z-coordinate
predictions is significantly higher. This can be explained by the larger velocity gradient present in the z-direction, caused
by the perpendicular measuring of radial velocities only measuring the velocities in the direction of the LiDAR’s LOS.
Based on these values, we can evaluate the enhancement of vortex center predictions by the following regression CNN.

Table 5 MADE as well as MAE for y- and z-coordinates evaluated separately for each plate line scenario.

Plate Line Scenario MADE MAE (y) MAE (z)
Both 6.26 m 5.86 m 1.41 m
Up 6.54 m 6.18 m 1.43 m

Down 5.96 m 5.52 m 1.39 m

The difference between the MADE with plate lines and without is 0.58 m, the MAE difference in y-coordinates is
0.66 m, and for z-coordinates, it is 0.04 m. Those differences are negligible, normalized by the minimal initial vortex
separation 𝑏0 = 26.8 m for aircraft A320 and A20N giving a percentage error. We end up with a rounded percentage
error of 0.02 for the MADE and the MAE in y-coordinates and an even lower percentage error for the z-coordinates.

To further evaluate the quality of the vortex center prediction, we compare each prediction’s absolute distance
error(ADE) with the circulation strength target Γt of the respective vortex in Figure 10. We can see that YOLOv4 is
more accurate at predicting the vortex center of stronger vortices. Those vortices, in most cases, belong to aircraft of the
heavy category.

F. Regression Network
The regression network is employed after the YOLOv4 bounding box prediction on the predicted LiDAR scan

sections, where vortices can be found. The task is to enhance the localization for each vortex.
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Fig. 10 Relationship between the ADE of the YOLOv4 prediction and circulation Γt of the respective vortex.
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Fig. 11 The CNN used for the regression tasks with the output dimensions of each block. The final output
dimension depends on whether the vortex center or vortex circulation strength is predicted.

1. Network Architecture
As base architecture, we use the CNN from [25], given that it achieved promising results on complete LiDAR scans

and is assumed to perform even better on single vortices. The CNN consists of blocks of convolutional layers followed
by max pooling layers, so-called ConvPool blocks. Four of such blocks are used, with the convolutional layers having a
filter size of 3 × 3 and the pooling layers having a filter size of 2 × 2 and a stride of 2. The first layer uses 32 filters
which number is subsequently doubled [25]. A graph of the CNN is depicted in Figure 11.

2. Training and Accuracy Measurement
We use ADAM [26] as an optimizer and MSE as a loss function to train the CNN. To avoid overfitting we include an

early stopping mechanism to stop training if no improvement of the validation loss is seen for 30 epochs.
The machine-learning package we employ for implementing CNN regression is Keras [27]. Keras is a high-level

API (Application Programming Interface) based on Tensorflow [28]. We use Keras version 2.9.0 and Tensorflow version
2.9.1., which were the latest versions available at the time of starting the work on this manuscript. The training of the
regression networks was performed on the HOREKA cluster using an NVIDIA A100-40 GPU and took, on average, 30
min for each network.

The first metric we use is the mean absolute error (MAE) defined for a set D of 𝑁 prediction-label pairs (ŷ𝑖 , y𝑖) with
𝑖 ∈ {1, 2, . . . , 𝑁} by

MAE(D) = 1
𝑁

𝑁∑︁
𝑖=1

|ŷ𝑖 − y𝑖 |. (14)

The MAE can be calculated for vectors using the 1-norm or for scalars with the absolute value. In the case of vortex
center prediction, the MAE can be considered for the two coordinates separately to get a feeling for which coordinate
prediction is more precise. If we replace the absolute error in the sum of (14) with the 2-Norm, we obtain the mean
absolute distance error (MADE) which can be used to evaluate the overall distance error. The MADE is defined by

MADE(D) = 1
𝑁

𝑁∑︁
𝑖=1

∥ŷ𝑖 − y𝑖 ∥. (15)
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3. Data Preprocessing
As the predicted bounding boxes can vary in size, but the regression CNN needs a constant input dimension, we

have to choose a sufficient dimension as input. The bounding box size depends mainly on the initial vortex separation
𝑏0, given that we labeled the data based on that. The largest initial vortex separation of the data set is 𝑏0 = 62.7 m
(A380). Therefore, a maximal width and height of 64 m, including a safety factor, is assumed to be sufficient.

4. Localization
Since we do not use data assimilation (DA), the vortex center of a perfectly cropped vortex is always in the center of

the input data. Hence the CNN only trains to predict that the vortex center coincides with the center of the input data for
perfectly cropped vortices. We, therefore, can not get benchmark values on how a network would behave on perfect
bounding box predictions.

The results of the CNN for localization can be found in Table 6. To evaluate the improvement in comparison to the
YOLOv4 center prediction, we use Table 5. The CNN improved the overall MADE with the CNN by 3.18 m, which is
approximately half the error in comparison to solely using YOLOv4. If we take a closer look at which improvement
accounts for the decrease in the localization error, we see that the MAE for the y-coordinate was more than halved
from 5.86 m to 2.29 m. The MAE of the z-coordinate increased in the CNN prediction by 0.16 m. Hence the MADE
improvement is due to a better y-coordinate prediction. The slightly higher MAE in z-coordinates of 0.16 m for both
cases is negligible as normalized by the minimal initial vortex separation 𝑏0 = 26.8 m is only, rounded to three decimals,
0.006.

Table 6 MADE as well as MAE for y- and z-coordinates separately for each plate line scenario by the CNN
regression.

Plate Line Scenario MADE MAE (y) MAE (z)
Both 3.08 m 2.29 m 1.57 m
Up 3.10 m 2.30 m 1.58 m

Down 3.06 m 2.27 m 1.56 m

Again we can see that the prediction in the case of no plate line usage is insignificantly better. While for YOLOv4
center prediction, we had a MADE difference between the up and down cases of 0.58 m, we now have a difference of
0.04 m. Hence we can assume that the plate line scenario has no significant impact on the quality of the vortex center
prediction. The relationship of the ADE and the circulation strength target Γt looks similar to the one of YOLOv4 (see
Figure 10) and can be seen in Figure 12. The main difference is that we now have a lower mean, and we see less outliers.
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Fig. 12 Relationship between the ADE of the localization CNN and circulation Γt of the respective vortex.

G. Complete Prediction Pipeline
After training, the prediction time of the complete pipeline can be evaluated. An example of one LiDAR scan being

processed can be found in Figure 13. Although the bounding box prediction is made on an image converted from a
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LiDAR scan, we use the radial velocities and not the pixel intensities for illustration purposes. The original input LiDAR
scan has previously been presented in Figure 2 and converted to Cartesian coordinates in Figure 13.

The pipeline includes the preprocessing and transforming of a LiDAR scan to an image. After that, the bounding
box prediction by YOLOv4 is made, illustrated in Figure 13 (a). Based on the bounding boxes, the vortices get cropped
from the original scan, Fig. 13 (b), 13 (c) and preprocessed according to previously explained feature engineering.
Those vortices are fed into the circulation prediction CNN and the localization prediction CNN. The predictions of the
CNNs can be found in Fig. 13 (d) and Fig. 13 (e), for the starboard and port vortex, respectively. The combination of the
YOLOv4 prediction and the CNN prediction is depicted in Fig. 13 (f).

The average time this pipeline takes is 0.13 seconds on the HoreKa supercomputer with an NVIDIA A100-40
GPU and an Intel Xeon Platinum 8368 CPU. The CNN-only approach took 0.16 seconds for evaluation but was also
performed without the usage of a GPU [25].

H. Comparison with the state-of-the-art
Since the labels for our data set were created with the RV method, we can only give a qualitative comparison. We

must expect the accuracy of our approach to be, at most, the one used for labeling the data set. Given that the labels
created with the RV method, might contain inaccuracies, and the data used also contains inaccuracies due to the nature
of LiDAR measurements, a natural accuracy limit is given.

The traditional wake vortex characterization methods, the RV and VE methods, predict the vortex center in polar
coordinates. Only the VE method provides an error in terms of absolute distance that we can compare our approach with.
Those errors are only theoretical estimations [3, 29]. The median ADE for the VE method is 7.91 m [25]. YOLOv4 has
a median ADE of 5.78 m, and the YOLOv4+CNN approach can reduce this to a median ADE of 2.24 m. As the RV
method has an accuracy similar to the VE method for the vortex center estimation, we can compare both methods to our
approach. The median ADE is of the same magnitude, so that we can say the prediction is of similar quality as the RV
and VE method.

A comparison of the prediction of the herein presented approach - first using YOLOv4 and then using a CNN - with
the results of the CNN from [25] can be seen in Table 7. The prediction accuracies were increased in all categories
independent of both, the plate line scenario and the vortex class.

Table 7 Comparison of YOLOv4+CNN with the CNN approach from [25] for both plate line scenarios and
vortex classes separately.

Plate Lines Up Plate Lines Down
ANN Port MADE [m] Starboard MADE [m] Port MADE [m] Starboard MADE [m]

YOLOv4 7.59 5.30 6.64 4.94
YOLOv4+CNN 3.26 2.91 3.23 2.82
CNN-only [25] 46.90 46.70 21.89 22.70

The hazard detection can also be compared by using the precision value. The precision of the CNN-only approach
was 88.6% [25]. With the new approach, we could increase the precision by 7.51% to gain a precision of 96.11%.

III. Vortex characterization with the Projection Method
After having identified the vortex position on LiDAR scans, the second task is to identify vortex characteristics, the

vortex circulation and the vortex core radius. We will present a new direct method in this paper, which will be compared
to the state-of-the-art RV method [3]. The method is called Projection Method (PM) since it operates with projections
in an appropriate 𝐿2 space. The PM method is a direct method, which - in contrast to the RV method - provides a best
estimate for the core radius. It does not require training data and it is very fast. Further, the PM naturally comes with an
accuracy measure for the estimated wake vortex parameters. First we will introduce the method in a general abstract 𝐿2
framework, which easily is transferable to other problems, especially for identifying structures in LiDAR scans or other
measurements where only parts of the full information are revealed. Later we will present applications to the presented
data set.
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(b) Cropped Starboard Vortex
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(c) Cropped Port Vortex
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(d) CNN on Starboard Vortex
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(e) CNN on Port Vortex

100 200 300 400 500

50

100

150

200

250

z 
[m

]

port 
 (95.87%)

starboard 
 (99.85%)

CNN Output Starboard: 
= 581.34m2/s

CNN Output Port: 
= 527.57m2/s

4

2

0

2

4

V r
[m

/s
]

(f) CNN Prediction included in YOLOv4 Prediction

Fig. 13 An illustration of the complete prediction pipeline excluding the initial preprocessing step.
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A. Mathematical framework
We start with a lidar scan represented in Cartesian coordinates, see Fig. 13 (a). As we have seen in the previous

chapter, the prediction pipeline gives us a fairly precise estimation of the positions of wake vortices occurring in the
scan together with a bounding box. Let us assume to have the cut-out vortex, see Fig. 13 (a). Let 𝑛 × 𝑛 = 𝑁 be the size
of the bounding box in terms of the pixels used in the interpolated scan. Then the cut out vortex can be represented by a
point in R𝑁 . Let 𝑉𝑟 be the image of a cut-out vortex, then 𝑉𝑟 ∈ R𝑁 .

The vortex image measured by a LiDAR originates from a flow field, consisting of three velocity components in
reality u = (u, v,w)T. Hence, we can assume that the real underlying data is a point in the reality space R = R3N. The
LiDAR measurement can be described as a mapping 𝐿 from R to its subspace U = RN.

𝐿 : R −→ U (16)

𝐿 is linear and it can be expressed as the composition of a projection 𝑃 to the LiDAR beam unit vector b and a
convolution 𝐶, which can be interpreted as a filter, with a range-gate weighting function (RWF) 𝜌 :

𝐿 = 𝐶 ◦ 𝑃, (17)

with

�̃�𝑟 = 𝑃u = b · u = u sin 𝛾 cos 𝜑 + v cos 𝛾 cos 𝜑 + w sin 𝜑 (18)

and

𝑉𝑟 = 𝐶�̃�𝑟 (𝑟0) =
∫ ∞

−∞
𝜌(𝑠)�̃�𝑟 (𝑟0 + 𝑠)𝑑𝑠, (19)

where we interpret the mappings 𝑃 and 𝐶 on every coordinate in R.
The task is to characterize vortices in terms of circulation 2 and core radius in the reality space 𝑏 𝑓 𝑅. Since the

scans only provide a projection of the velocity field (followed by a filter), it is impossible to derive the circulation 2
directly, without any additional assumptions. Further, the core radius is defined for rotationally symmetric vortices,
while we can expect tilted and disturbed ones due to interactions with other fluid structures.

Therefore an assumption on the vortex structure has to be made. We make the following
Definition III.1 (Vortex model). Let 𝑏(Γ, 𝑟𝑐) : R+ → R+ be be a continuous Function, depending on two Parameters Γ
and 𝑟𝑐, with the following properties

(𝑖) 𝑏(Γ, 𝑟𝑐) (𝑟) ∼ 𝑂 (𝑟) for 𝑟 → 0 (20)
(𝑖𝑖) 𝑏(Γ, 𝑟𝑐) (𝑟) ∼ 𝑂 (1/𝑟) for 𝑟 → ∞ (21)
(𝑖𝑖𝑖) 𝑏(Γ, 𝑟𝑐) (𝑟) = Γ · 𝑏(1, 𝑟𝑐) (𝑟) b is linear in Γ (22)
(𝑖𝑣) max 𝑏(Γ, 𝑟𝑐) (𝑟) = 𝑏(Γ, 𝑟𝑐) (𝑟𝑐) (23)

We call 𝑏 a vortex model.
Then 𝑏(Γ, 𝑟𝑐) defines a vortex 𝐵(Γ, 𝑟𝑐) (𝑣𝑟 , 𝑣 \ , 𝑣𝑧) in space in cylindrical coordinates (𝑟, \, 𝑧) with the velocity

components (𝑣𝑟 , 𝑣 \ , 𝑣𝑧) by

𝑣𝑟 = 0, 𝑣 \ = 𝑏(Γ, 𝑟𝑐), 𝑣𝑧 = 0 (24)

We define the vortex in the measurement space U to be

B(Γ, 𝑟𝑐) = 𝐿𝐵(Γ, 𝑟𝑐) (25)

Examples for vortex models are the Lamb-Oseen vortex model 𝑏𝐿𝑂, the Burnham-Hallock vortex model 𝑏𝐵𝐻 and
the Rankine vortex model 𝑏𝑅𝐴 with:

𝑏𝐿𝑂 (Γ, 𝑟𝑐) =
Γ

2𝜋𝑟

(
1 − 𝑒

−1.2526
(

𝑟
𝑟𝑐

)2 )
(26)

𝑏𝐵𝐻 (Γ, 𝑟𝑐) =
Γ

2𝜋𝑟
𝑟2

𝑟2 + 𝑟2
𝑐

(27)

𝑏𝑅𝐴(Γ, 𝑟𝑐) =
Γ

2𝜋

{
𝑟/𝑟2

𝑐 𝑟 ≤ 𝑟𝑐,

1/𝑟 𝑟 > 𝑟𝑐
. (28)
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Fig. 14 Circulation distribution Γ(𝑟) and radial velocity distribution 𝑉\ (𝑟) for Γ = 100 and 𝑟𝑐 = 1 m, for three
different vortex models.

The circulation in a disc with radius 𝑟 of a vortex associated with a vortex model can be easily computed with

Γ(𝑟) =
∮
𝜕𝐴

®𝑢 · 𝑑®𝑠 = 2𝜋𝑟𝑉\ (𝑟). (29)

This yields

Γ𝐿𝑂 (𝑟) = Γ

(
1 − 𝑒

−1.2526
(

𝑟
𝑟𝑐

)2 )
(30)

Γ𝐵𝐻 (𝑟) = Γ
𝑟2

𝑟2 + 𝑟2
𝑐

(31)

Γ𝑅𝐴(𝑟) = Γ

{
𝑟2/𝑟2

𝑐 𝑟 ≤ 𝑟𝑐,

1 𝑟 > 𝑟𝑐
. (32)

Figure 14 depicts the circulation and radial velocity of the different vortex models.

Definition III.2 (Model manifold). We define the model manifold M𝑏 ⊂ U, associated with a vortex model 𝑏 to be the
set of points

M𝑏 = {B(Γ, 𝑟𝑐), Γ, 𝑟𝑐 ∈ R+} (33)

Since M𝑏 is a two dimensional differentiable manifold, as it can be locally parameterized by Γ and 𝑟𝑐, we also call it
the model surface.

B. Method of Projections
With the Method of Projections we present an efficient way to calculate the circulation and the core radius of a

vortex in a Lidar measurement assuming a certain vortex model, that represents the real vortex. This method also
provides a measure of how good the assumed vortex model represents the measured wind field.

Let us assume, that the identified vortex in the measurement 𝑣𝑟 has the shape of a vortex associated with a vortex
model with the fixed radius 𝑟𝑐. It therefore can be written in the form

𝑉𝑟 = B(Γ, 𝑟𝑐) (34)
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Now, if we project 𝑉𝑟 to B(1, 𝑟𝑐) we get with Eq. 22:

(𝑉𝑟 ,B(1, 𝑟𝑐)) = (B(Γ, 𝑟𝑐),B(1, 𝑟𝑐)) = Γ (B(1, 𝑟𝑐),B(1, 𝑟𝑐)) . (35)

Hence,

Γ = (𝑉𝑟 ,B(1, 𝑟𝑐)) /| |B(1, 𝑟𝑐) | |2. (36)

Equation 36 provides the Circulation of a vortex, assuming a certain core radius.
To calculate the core radius 𝑟𝑐, we maximize the projection of 𝑉𝑟 to the normalized vectors B(1, 𝑟)/| |B(1, 𝑟) | |.

Hence we get the following

Algorithm III.1 (Projection Method). To calculate the core radius and circulation of a vector field 𝑉𝑟 assuming a
certain vortex model we perform the following two steps:

Step 1: max
𝑟

(𝑉𝑟 ,B(1, 𝑟)/| |B(1, 𝑟) | |) =⇒ 𝑟𝑐 (37)

Step 2: Γ = (𝑉𝑟 ,B(1, 𝑟𝑐)) /| |B(1, 𝑟𝑐) | |2 (38)

The presented algorithm is essentially a projection of a point 𝑉𝑟 , which has to be evaluated to the model surface M𝑏

for a certain vortex model 𝑏. It is clear from the definition, that given a certain vortex model, the projection B(Γ0, 𝑟𝑐)
will be the best approximation of 𝑉𝑟 . A a measure for the accuracy of the vortex model will be the distance of 𝑉𝑟 to the
model surface M𝑏. We make the following

Definition III.3 (Model accuracy). The normalized distance 𝑑 of a point 𝑉𝑟 ∈ U to the model surface M𝑏, which is
given by the distance of 𝑉𝑟 to the projection to M𝑏

𝑑 = | |B(Γ0, 𝑟𝑐) −𝑉𝑟 | |/𝑁 (39)

is called model accuracy.

Since it may happen, that different sizes of the bounding boxes are involved we normalize the distance by the number
of points of the cut out vortex image.

C. Application of the Projection Method
In the following sections we would like to present results of the Projection Method with increasing complexity in

each section.

1. Employed Vortex models
We apply the Projection Method to the processed data set with different vortex models. The different vortex models

are listed in the first row of Table 8.

Simplified Models
For the first three we assume that the convolution 𝐶 contributing to the LiDAR operator 𝐿 is the identity, 𝐶 = 𝑖𝑑 hence
𝐿 = 𝑃 is a pure projection. This assumption is mostly used in methods for vortex circulation evaluation. Here we
analyse three different vortex models 𝑏𝐵𝐻 , 𝑏𝐿𝑂 and 𝑏𝑅𝐴, which we call B.-H. simple, L.-O. simple and Rankine simple.
The projection stencils for the B.-H. simple model can seen in Fig. 15 (a) - (c). For a small core radius the high radial
velocities are concentrated in the center of the image. With increasing core radius the areas of high velocities get larger.

Models including LiDAR convolution
Further we investigate the vortex model including the full LiDAR convolution Eq. (19) in both steps of the algorithm
Eq. (37) and (38). We call this model B.-H. full. The projection stencils for the B.-H. full model can seen in Fig. 15 (d) -
(f). Since the convolution acts like a filter in the direction of the LiDAR beam, the vortex peaks are flattened in radial
direction. Compared to the vortex radial velocity field 𝑉𝑟 , see Fig. 13 (b) and (c), this seems to be potentially a better fit,
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(a) (b) (c)

(d) (e) (f)

Fig. 15 Three Burnham-Hallock vortex unit templates for a simplified LiDAR (a) - (c) and a full LiDAR
(d) - (f) for different core radii, B(1, 1.5) (a), (d), B(1, 5) (b), (e), B(1, 10) (c), (f) at a generic position of
(𝑥, 𝑦) = (300 m, 50 m).

than the simplified LiDAR model. The calculation of the convolution Eq. (19) is quite time consuming, which increases
the computation time by a factor of 50.

Due to the time consumption of the B.-H. full model, we also add a B.-H. partial model, where only in step 2 of the
PM algorithm, (38), the LiDAR convolution Eq. (19) is applied.

2. Performance Comparison
The results of the PM applied to the entire data set can be seen in Fig. 16. Here we plot the estimation of either the

circulation of the core radius with one model against the other. Fig. 16 (a) - (c) compares the estimated circulation with
the different vortex models.

First let us observe, that the results for circulation differ considerably, Fig. 16 (a). In almost all cases the circulation
estimation with the L.-O. simple model is smaller than the estimation with the B.-H. simple model, on average, the
circulation achieved using the Lamb-Oseen is about 71% of the circulation in the B.-H. simple. In case of the Rankine
vortex model, the difference is even more pronounced. On average, the Rankine simple model yields circulation values
of about 57% of the circulation found by the B.-H. simple. On the contrary, the effect of the LiDAR simulation is found
to be small, see Fig. 16 (c). The dots scatter around the identity line. On average the B.-H. full yields circulation values
of about 96% of the circulation values found by the B.-H. simple model.

Due to these large deviations, depending on the assumed vortex model, we have to investigate the accuracy of the
fits. For that we introduced the 𝑙2-distance 𝑑 in Def. 39. The distribution of 𝑑 is plotted in Fig. 17 (a) and (b) compared
to the distance, the RV method would yield. While we observe that the PM method yield much better approximations of
the flow field compared to the RV method in terms of distribution peak and spread, we see that the actual model is not
important in the overall statistics. Even in the closeup Fig. 17 (b) the different models lead to minor differences.

From this we conclude that although the circulation estimations are crucially different, the approximation distance
does not score one vortex above the other, at least if the entire data set is included. That means that in the case if models
are used, the estimated circulation is highly dependant of the involved model. Thus it is inevitable to always refer to a
certain vortex model when presenting a circulation estimation in LiDAR scans. It is further necessary to ensure that the
same corresponding vortex model is used in subsequent investigations, like encounter simulations or flight simulators,
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(a) (b) (c)

(d) (e) (f)

Fig. 16 Circulation (a) - (c) an core radius (d) - (f) estimation for different vortex models with linear fit.

as the reported circulation values may be invalid for other vortex models!
Evaluating the vortex core radius in Fig. 16 (d) - (f), we observe that the difference in the models is not linear.

Therefore, the liner fit is somewhat misleading. Comparing B.-H. simple with L.-O. simple and Rankine simple for small
core radii below 10 m the B.-H. simple is underestimating, while overestimating for core radii above 20 m. The B.-H.
full model does not deviate too much yielding on average core radii of about 93%. This outcome was expected since the
LiDAR convolution seems to enlarge the model vortex, cf. Fig. 15.

3. Application to data subsets
In this section we will analyse why the different models seem to perform equally well, and whether this depends

on the data set. Figure 17 (a) and (b) indicates that large deviations from the vortex model like disturbances due to
turbulence or high CNR mainly lead to the approximation error, such that the influence of the vortex model is negligible.
To investigate this hypothesis we set up two filters of the analysed data.

Filter 1: Scans with plate lines erected are excluded. Since the plate lines lead to a accelerated wake vortex decay,
we may assume, that the vortex is less coherent in that case.

Filter 2: Scans with plate lines erected and scans with a mean CNR value above the median are excluded. Due to
different weather situations and a different amount of aerosols the LiDAR signal has changeable quality. With that filter
we try to focus on the best quality scans.

Figure 17 (c) and (d) shows that an exclusion of the plate lines (filter 1) increases approximation accuracy, even to a
point where the different vortex models split up. Note, that the performance of the Rankine vortex model is the worst,
B.-H. simple and L.-O. simple perform similarly well and the LiDAR including models even better.

The effect of filter 2 can be seen in Fig. 17 (e) and (f). The accuracy is further increasing in terms of distribution
peak as well as the spread of the vortex models. This proves that the LiDAR simulated vortex model performs better,
which is masked by scans in turbulent environments or scans with a high CNR.

Table 8 lists the mean, median and standard deviation of the error distribution in case that filter 2 is applied. We
observe a clear superiority of the B.-H. full model in terms of mean and median, while the standard deviation is
comparable.

Figure 18 shows how the approximation accuracy distribution changes, when filter 1 and filter two are applied.
Table 9 list the quantitative performance in terms of mean, median and standard deviation. Clearly the removal of
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(a) (b)

(c) (d)

(e) (f)

Fig. 17 Approximation accuracy for different models compared with the RV method. No filter on the data (a),
plate lines excluded (c) and plate lines and high CNR values excluded (e). Close-up image on the right.
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Fig. 18 Approximation accuracy for the Burnham-Hallock simple model with different filters applied.

turbulent and noisy scans lead to a reduction of the approximation distance and lower spread.
Another source of the approximation distance might be the influence of the other vortices in the scan as well as the

influence of the image vortices at the ground, which will be investigated in the near future.

Table 8 Mean, median and standard deviation of the error distributions of the different vortex models as well
as the reference case calculated with the RV method. Filter 2 applied.

mean median std. deviation
B.-H. simple 0.0244 0.0225 0.0117
L.-O. simple 0.0244 0.0224 0.0116

Rankine simple 0.0246 0.0226 0.0116
B.-H. partial lidar 0.0244 0.0224 0.0117

B.-H. full 0.0240 0.0220 0.0117
RV-method 0.0531 0.0496 0.0274

IV. Conclusion
This work presented a new comprehensive strategy to track and to characterize vortices in LiDAR scans. We divided

the task into two parts, first the determination of the vortex position with a two-stage neural network approach. Second,
the characterization of the vortices in terms of circulation, core radius, and (partly) tangential velocity profile empoying
the Projection Method.

We employed the Computer Vision tool YOLOv4 as the first stage for vortex detection and provided specific metrics
to measure the accuracy. For the vortex position, a mean average precision of about 88% was achieved. As a second
stage, a CNN regression network was applied, leading to a position detection accuracy of about 3 m which is actually
the instrument resolution distance.

In the second part, we introduced a new calculus, how to apply models to retrieve properties and moments of the
coherent structures of the underlying flow field. This framework naturally yields an algorithm that provides the moments
of interest by projections of the field to model stencils. Therefore it outperforms other methods by orders of magnitude
in computation speed. The calculus provides a metric for the approximation quality. We could show that the Projection
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Table 9 Mean, median and standard deviation of the error distributions of B.-H. simple vortex model for
different filters.

mean median std. deviation
unfiltered 0.0275 0.0248 0.0156

filter 1 0.0262 0.0239 0.0130
filter 2 0.0240 0.0220 0.0117

Method increases the approximation quality more than 50%.
Further, we analysed the effects of different vortex models and concluded that while providing comparatively good

approximation accuracy, the circulation estimates differ significantly. This is often masked by turbulence and noise in
the scans, as we have shown applying different filters.

Finally, with coherent data we see a difference in the model performance. To make it even clearer the influence of
the other vortices in the RHi scan as well as the influence of the image vortices at the ground will be investigated in the
near future.
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