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Abstract 

The number of people forced to flee their homes has more than doubled in the last decade, with over 

103 million displaced people by mid-2022. Many seek shelter in refugee camps and informal 

settlements, which were originally built as temporary facilities. Remote sensing and Deep Learning 

serve as independent tools for monitoring camps in addition to localised in-situ data. However, 

research shows an underrepresentation of refugee camps in satellite-based settlement products. 

This work assessed the applicability of six Deep Learning (DL) models for mapping refugee 

settlement extents worldwide using semantic segmentation of Sentinel-2 satellite imagery. Two DL 

architectures, U-Net and FPN, were trained with the encoders EfficientNet-B0, MobileNet-V2, and 

ResNet-18, and their results were assessed in a comparative analysis. Furthermore, the model 

accuracies across space and among different morphological structures were evaluated. The results 

showed that all models faced significant challenges in accurately mapping the settlement extents, 

although to different degrees. However, some models were successful in localising the camps but 

overestimated the extents. The analysis revealed that the accuracies varied among camps, and 

regional clusters of similar accuracies were observed. It is discussed that refugee camps are 

heterogeneous and complex settlement types which are difficult to delineate in space based on their 

spatial appearance alone and inconsistent morphological structures. The work highlights the 

complexity of mapping refugee settlements in a large-scale approach and emphasizes the 

consideration of morphological differences among camps in image analysis tasks. The findings of 

this work serve as a foundation for future research on mapping refugee settlement extents with 

remote sensing for humanitarian aid. 

 

Zusammenfassung 

 

Bis Mitte 2022 waren über 103 Millionen Menschen weltweit auf der Flucht, diese Zahl hat sich in 

den letzten zehn Jahren mehr als verdoppelt. Viele der Geflüchtete suchen Schutz in 

Flüchtlingslagern und informellen Siedlungen, welche ursprünglich als temporäre Einrichtungen 

gebaut wurden. Fernerkundung und Deep Learning (DL) können, zusätzlich zu in situ Daten, als 

unabhängige Instrumente für das Monitoring von Lagern eingesetzt werden. Die Forschung zeigt 

jedoch, dass Flüchtlingslager in satellitengestützten Siedlungsprodukten deutlich unterrepräsentiert 

sind. Daher wurde in dieser Arbeit die Anwendbarkeit von sechs DL-Modellen zur Kartierung der 

Ausdehnung von Flüchtlingslagern weltweit bewertet, unter der Verwendung von semantischer 

Segmentierung und Sentinel-2 Satellitenbildern. Zwei DL-Architekturen, U-Net und FPN, wurden mit 

den Encodern EfficientNet-B0, MobileNet-V2 und ResNet-18 trainiert, und ihre Ergebnisse in einer 

vergleichenden Analyse bewertet. Darüber hinaus wurden die Modellgenauigkeiten zwischen Camp 

Standorten und zwischen verschiedenen morphologischen Strukturen verglichen und analysiert. Die 

Ergebnisse zeigten, dass alle Modelle erhebliche Schwierigkeiten hatten die 

Siedlungsausdehnungen genau zu Kartieren, wenn auch in unterschiedlichem Maße. Einige Modelle 

waren erfolgreich bei der Lokalisierung der Lager, überschätzten jedoch deren Ausdehnung. Die 

Analyse ergab, dass die Genauigkeit zwischen den Lagern variiert, und es wurden regionale Cluster 

mit ähnlicher Genauigkeit beobachtet. Es wurde erörtert, dass es sich bei Flüchtlingslagern um 

heterogene und komplexe Siedlungstypen handelt, die allein aufgrund ihres räumlichen 

Erscheinungsbildes und ihrer uneinheitlichen morphologischen Strukturen schwer räumlich 

abzugrenzen sind. Die Arbeit verdeutlicht die Komplexität der Kartierung von Flüchtlingssiedlungen 

in einem großräumigen Ansatz, weswegen bei Bildanalyseaufgaben die morphologischen 

Unterschiede zwischen den Lagern berücksichtig werden sollten. Die Ergebnisse dieser Arbeit 

dienen als Grundlage für künftige Forschungsarbeiten zur Kartierung von Flüchtlingssiedlungen 

mithilfe von Fernerkundung für die humanitäre Hilfe.  
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1 Introduction 

1.1 Background 

The United Nations High Commissioner for Refugees (UNHCR) estimates that by mid-2022, 

103 million people worldwide had been forced to flee their homes because of “conflicts, 

violence, fear of persecution and human rights violations” (UNHCR 2022b). This is more 

than double the number of people displaced a decade ago, and the most people displaced 

since World War II (UNHCR 2022a). Figure 1 shows that the trend strongly intensified in 

the past decade, with 26.7 million new refugees in 2022 in contrast to 10.5 million in 2012 

(UNHCR 2022a). Beyond that did the number of internally displaced people (IDPs) triple in 

the same time span to 62.5 million at the end of 2022 (iDMC 2023). With newly erupting 

conflicts and unresolved, ongoing emergencies, such as the current war in the Ukraine, 

more and more displacements are happening (iDMC 2023). The numbers by UNHCR and 

the Internal Displacement Monitoring Centre (iDMC) underestimate the total amount of 

displaced people worldwide, since displacements caused by natural disasters and 

unreported cases are not included in these figures. Notably, this trend is predicted to further 

increase with mounting impacts of climate change (iDMC 2022).  

 

Figure 1: People forced to flee 2012 - 2022.  Source: UNHCR (2022a) 

The majority of the world refugee population lives in urban areas, whereas over 20 % seek 

shelter in camps and informal settlements. In 2021, around 4.5 million refugees resided in 

planned and managed camps, and approximately 2 million were sheltered in self-settled 

camps (USA for UNHCR 2021).  
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1.2 Contextualization of Refugee Camps 

Camp settlements offer shelter for displaced people and embody a manifestation of their 

displacement (Weigand et al. 2023). Numerous camps are managed by the UNHCR or 

other humanitarian aid agencies, who offer formally built camps with containers and stable 

constructions. However, large migration waves often cause the emergence of inappropriate 

shelters with self-constructed dwellings and missing infrastructures, either in the proximity 

of existing camps or at new locations (Kraff et al. 2022).  

Refugee camps are intentionally built as temporary facilities to provide immediate 

assistance and protection (Ramadan 2013). Despite their temporary character, people may 

end up living there for several years or even decades, if the underlying emergency in a 

refugee’s home country or region remains unresolved (Turner 2016). Therefore, numerous 

refugee settlements evolved into fully established cities with adequate infrastructure, 

thriving economies, established structures of civic institutions and governance (USA for 

UNHCR 2023a). 

Refugee camps are semi-formal and semi-legal spaces while legally and physically 

separated from their hosting country. Their liminal status confers semi-formality, while the 

sovereignty of humanitarian agencies and the resulting absence of state authority 

introduces uncertain legality (Ramadan 2013; Turner 2016). Physically, camps often 

possess fences and walls in order to prevent relationships between the displaced and the 

local community. However, in practice, those borders are crossed by people, goods and 

ideas (Turner 2016).  

Globally, a noticeable trend of larger and more complex settlements can be observed, as 

more people are seeking life in urban areas (Taubenböck et al. 2019). This trend is evident 

in formal as well as in informal and refugee settlements. Given the growing number of 

displaced people, refugee settlements are becoming increasingly important as places of 

residence. Therein, one ongoing challenge in refugee settlements is to establish appropriate 

resource allocation and health care services for refugees (Benz et al. 2019; USA for UNHCR 

2021). The United Nations (UN) also identified these challenges and anchored strategies 

to systematically improve the conditions within their Sustainable Development Goals 2, 3, 

6 and 7 (Gao et al. 2022a).   

To distribute living resources equally, reliable data on refugee settlements is demanded. 

Knowledge of the area can serve as a proxy for determining the number of affected people, 

necessary infrastructure, financial investments, necessary delivery of goods, or other 

humanitarian aid services (Lang et al. 2020). Furthermore, the land usage and the area are 
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important to estimate the impact of e.g., a new or growing refugee camp on the local 

community and the potentially resulting local political problems due to land consumption.  

1.3 State-of-the-Art 

The UNHCR distinguishes between refugee and IDP camps. Following the 1951 refugee 

convention, refugees are people who have been displaced over country borders, whereas 

IDP were displaced within their home country (UNHCR 2010). Based on the definition by 

the Oxfords Learners Dictionary, a refugee is a displaced person who forcingly had to leave 

their country or home due to violence, persecution or human rights violation (Hornby 2023). 

This work will refer to both groups, refugees and IDPs as refugees, and to their shelters as 

refugee camps or refugee settlements. 

For humanitarian organizations like UNHCR, which are hosting several hundreds of refugee 

camps, information on camp population, structure, size, and expansion is essential in order 

to achieve informed and sustainable planning. Remote sensing serves as an independent 

data source, which offers area-wide and up-to-date information. Refugee migration is 

primarily triggered by conflicts and disasters. Therefore, remote sensing can be deployed 

as an independent and reliable tool for acquiring data that cannot be collected on the 

ground, such as precise land use or numbers of dwellings (Avtar et al. 2021). The regular 

acquisition allows for monitoring over time and historic analysis (Lang et al. 2020). 

Applications of remote sensing became more diverse with the open and free availability of 

Landsat imagery. Since the launch of the European Sentinel program, high-resolution 

imagery became openly available and has since then be used in myriad of applications (e.g. 

Wendt et al. 2017; Hassan et al. 2018; Braun et al. 2019; Weigand et al. 2020). 

Satellite-based human settlement products like the World Settlement Footprint (Marconcini 

et al. 2020), the Global Urban Footprint (Esch et al. 2017) or the Global Human Settlement 

Layer (Pesaresi et al. 2013) globally describe human settlement in different spatial 

resolutions and for different time validity periods. One would expect them to also include 

information on refugee and IDP camps, as they are spaces of human settlement, despite 

their semi- to informality. Nevertheless, van den Hoek and Friedrich (2021) identified a 

strong underrepresentation of refugee camps in these products, regardless of the camps 

age or size. This underrepresentation highlights the need for approaches describing and 

analysing refugee camps, as well as other informal settlements.  

Therefore, satellite imagery has been employed in diverse applications concerning refugee 

and IDP camps. In various studies, it is used to derive detailed spatial information on camps 

through the detection of single dwellings (e.g. Aravena Pelizari et al. 2018; Gella et al. 
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2022). These footprints can be used as a proxy for population estimations and resource 

management. The extent of refugee settlements can also be derived from satellite imagery 

(Hassan et al. 2018; Braun et al. 2019; Benz et al. 2019). As refugee camps can be highly 

dynamic settlements, their rapid establishment can be observed when using satellite 

imagery in combination with time-series approaches (Friedrich et al. 2020). Moreover, the 

impact of establishing and growing camps on the surrounding environment can be 

assessed, like Braun et al. (2019), as well as Hossain and Moniruzzaman (2021) analysed 

for Kutupalong camp in Bangladesh.  

Refugee camps exhibit heterogeneity in their appearance, leading to variations across 

different geographical locations. Weigand et al. (2023) conducted an analysis among 285 

refugee and IDP camps and identified different morphological structure types. They 

employed manual visual image interpretation (MVII) of very high-resolution (VHR) satellite 

imagery. The study revealed some regional clusters of camps with similar structural 

morphologies. Furthermore, the findings align with Quinn et al. (2018), emphasizing the 

complex structures of refugee camps. Therefore, it is important to consider morphological 

variations across camps for image analysis. 

This complexity poses a challenge for Machine Learning-based image processing methods. 

Deep Learning (DL) methods have proven to be particularly effective for contextual object 

recognition in high-dimensional space (Höser and Künzer 2020). DL is also increasingly 

used in remote sensing applications, as, for instance, Convolutional Neural Networks 

(CNNs) can extract highly complex features from satellite imagery (Zhu et al. 2017; Ma et 

al. 2019). In the context of remote sensing, DL methods have found application for various 

tasks, including object detection (e.g., Wickert et al. 2021), scene classification (e.g., Chi et 

al. 2017), instance segmentation (e.g., Gella et al. 2022) and semantic segmentation (e.g., 

Wurm et al. 2019). The employment of DL demands computational power and large 

datasets for training. However, the approaches often outperform previous methods like 

object-based image analysis (OBIA) or common classifiers like Random Forest (Quinn et 

al. 2018).  

Most DL applications for analysing refugee camps approach the issue of dwelling detection 

within camps. With the knowledge on number and size of structures, the refugee population 

within a camp can be estimated. This can be substantial for humanitarian planning and 

managing. DL approaches for dwelling detection achieved promising results accuracy 

values, by applying semantic segmentation with e.g., the U-Net architecture (Quinn et al. 

2018; Gella et al. 2021; Chan et al. 2022; Gao et al. 2022a; 2022b; Ghorbanzadeh et al. 

2022), LinkNet and Feature Pyramid Networks (Gao et al. 2022c), MaskR-CNN (Gella et al. 

2022) or object detection with a Faster-Recurrent CNN (Wickert et al. 2021). VHR data is 
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necessary here to also detect small dwellings like tents and huts. However, large-scale 

applications are challenged by the limited availability of VHR data and their spatial coverage 

(Quinn et al. 2018).  

Expanding the detection of camps beyond one region to another region or country, several 

studies tested a so-called “transfer learning”. Therein, a pretrained model is transferred onto 

another application, dataset, or region, by only short retraining in the new domain. This 

approach was tested by several studies. Some compared the model performance of models 

pretrained with satellite imagery with non-pretrained models for dwelling detection in 

refugee camps (Gella et al. 2021; 2022; 2023; Quinn et al. 2018). Others also investigated 

the influence of non-remote sensing weights, i.e. COCO and ImageNet on the models 

performance to detect camp dwellings (Wurm et al. 2019; Gella et al. 2022). The analyses 

revealed an increased performance with pretrained weights and therefore show the 

potential of DL models for applications in refugee related contexts.  

Despite the large number of studies on refugee dwelling detection, studies on the expansion 

of camps are scarce. Remote sensing can help marking out the informal settlement extents. 

Braun et al. (2019) monitored the extent of Kutupalong camp in Bangladesh over two 

timestamps, using the synthetic aperture radar (SAR) data of ALOS-2 and Sentinel-1. Other 

comparable methodologies can be found in the domain of mapping slums or informal 

settlements (Mboga et al. 2017; Persello and Stein 2017; Liu et al. 2019; Stark et al. 2019; 

2020; Wurm et al. 2019). Slums as well as refugee camps can be described as informal 

settlements, and both structurally differ from the formally built-up settlement.  

Fransen and Haas (2022) argue that in relative terms, the number of refugees as share of 

the world population has not increased over the last decade. However, it is crucial to 

highlight the magnitude of the absolute number of refugees and the upward trend observed 

during the past decade. Research addressing the consequences of the growing number of 

displacements holds great relevance.  

1.4 Identifying the Research Gaps 

The previous paragraphs showed that several studies have examined refugee and informal 

settlements using various approaches. However, these studies have mostly focused on 

analysing individual or a small number of camps. Aside from the Structure Catalogue (SC) 

of Weigand et al. (2023), no research is available on approaching a global image analysis 

of refugee settlements. According to van den Hoek and Friedrich (2021), existing global 

human settlement products fail to depict refugee and informal settlements partly or in some 

cases entirely. Furthermore, OpenStreetMap (OSM) as one of the largest source for 
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geographic data worldwide, does not cover refugee settlements to a satisfactory level 

(Friedrich and van den Hoek 2020). Moreover, those settlement products offer only a static 

snapshot of human settlement expansion at a certain point in time, whereas refugee camps 

can be highly dynamic settlements. Despite recent advances, such as the work of 

Cornebise et al. (2022) presents, data on refugee settlements remains scare. This scarcity 

highlights a significant gap of topical reference data for refugee camps worldwide. Weigand 

et al. (2023) and Quinn et al. (2018) emphasized in their works, that refugee camps are very 

heterogeneous in their structure itself and when comparing the structure of camps across 

the world. Therefore, analysing camp settlements is highly complex and needs a large 

amount of data to accurately identify the distinguishing features that set camps apart from 

formal settlements. 

1.5 Objectives of this Work 

This study aims to fill the presented research gaps by testing the applicability of DL models 

for mapping refugee settlement extents in a global approach, using Sentinel-2 imagery and 

the methodology of semantic segmentation.  

 The work will focus on the following research questions:  

1) Is it possible to map refugee settlement extents with Sentinel-2 data and Deep 

Learning? Will the classifier be able to distinguish between refugee camp and formal 

urban settlement? 

2) Which DL model architecture performs better for refugee settlement extent 

mapping? Which model encoder is best suited for this task? 

3) Are there patterns in the model’s performance among regions or the structure types 

identified by Weigand et al. (2023)? Does the methodology work better for some 

structure types than others?  

 

The following chapter of this thesis will introduce an overview on the studied areas and the 

theoretical background on DL, neural networks, and specific model architectures. The 

required data for the applied methodology, and the implemented DL model training with the 

preceding training data generation are presented in chapter 3. Also included is the 

presentation of the subsequent analysis of the models’ results by applying an accuracy 

assessment. Chapter 4 presents the findings of this study, which are critically discussed in 

chapter 5 and concluded in chapter 6.  
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2 Theoretical Background 

2.1 Study Areas 

 

Figure 2: Locations and examples of refugee camps. The top shows examples of three refugee 
camps, and their appearance in VHR satellite imagery (middle row). The map shows all refugee 
camp locations included in this study. Satellite data: © Google Earth, 2023 CNES / Airbus. Images: 
(top-left) ©Oxfam East Africa, CC 2.0; (top-mid) ©UN-Habitat/Julius Mwelu; (top-right) ©Tanvir 
Murad Topu / World Bank, CC BY-NC-ND 2.0. 

 

This study examined 275 refugee and IDP camps across 40 countries (see Figure 2). The 

selection of camps was based on the Structural Catalogue dataset developed by Weigand 

et al. (2023), which analysed 285 camp locations worldwide. For a camp location to be 

included in my analysis, one of two criteria had to be met. Either, a meaningful OSM 

geometry had to exist, describing the extent of the camp. Alternatively, the boundary of the 

refugee camp had to be visibly identifiable from VHR satellite data, and camps should be 

clearly distinguishable from formal settlement.  
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The selected camps are distributed across three continents - Africa, Asia, and Europe. The 

majority of the camps (70 %) are located in Africa, 28 % in Asia, and only three camps are 

located in Europe, specifically in Greece. The largest number of camps analysed in this 

study are located in Nigeria, followed by Chad. For further details, refer to Appendix 1.  

This study included several of the largest refugee camps worldwide. As of 2023, the biggest 

refugee camp in the world is Kutupalong, situated in the Cox’s Bazar district of Southern 

Bangladesh. This camp complex houses over 800 thousand individuals, primarily Rohingya 

people (Benz et al. 2019). The Muslim minority was displaced from Myanmar, where they 

are facing widespread persecution. This camp has expanded significantly since the violence 

in Myanmar reached its peak in 2017, forcing 742,000 of people to leave Myanmar (USA 

for UNHCR 2023b). A list of the world’s largest camps included in this study can be found 

in Appendix 2.  

The studied refugee camps are very diverse in their age, settlement structures, dwelling 

types, or settlement size. No overarching pattern was used for selecting the camps. The 

selection of camps is further explained chapter 3.1.1.  

2.2 Neural Networks, Deep Learning and Semantic Segmentation  

The following chapter aims to introduce the methodology applied in this study and therefore 

gives an overview on the basic concepts of DL, neural networks, and semantic 

segmentation.  

DL is a method of Machine Learning (ML) and describes “a learning algorithm based on 

neural networks” (Ma et al. 2019, p. 167). The term ‘deep’ in Deep Learning refers to the 

stacking of multiple layers in a network architecture. The depth of the network increases 

with a growing number of layers. In contrast to common ML techniques, neural networks 

enable end-to-end learning, where they learn and extract rich and complex features from 

the training data, without the need of manual feature engineering (Zhu et al. 2017; Höser 

and Künzer 2020). 

DL has been tested effective for Computer Vision (CV) tasks, which describe the field of 

study on image processing (Goodfellow et al. 2016, p. 447). One common task in CV is 

semantic segmentation, and it is often applied with DL. Therein, the goal is to categorize 

each pixel of an image, by learning contextual information from the input. The result is a 

segmentation map of the same size and resolution as the input image, where each pixel is 

assigned to a specific class. It differs from image classification, which describes the 

assignment of a label for a whole image. CNNs are most commonly used for semantic 

segmentation tasks (Chai et al. 2021) and were therefore applied in this study.  
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For a proper understanding of the methods, this section introduces the basic concept of 

NNs and CNNs, and finally the utilized model architectures U-Net and FPN with the 

encoders MobileNet-V2, ResNet-18 and EfficientNet-B0. 

2.2.1 Introduction to Neural Networks 

A neural network (NN) is a linear network consisting of connected nodes, called neurons 

(Skansi 2018, 79f.). Different kinds of neural networks exist, like the classical Artificial 

Neural Networks (ANN), Recurrent Neural Networks (RNN) for processing sequential data, 

Generative Adversarial Networks (GAN) which are mainly used to generate data, and 

Convolutional Neural Networks (CNN) (Höser and Künzer 2020). The functionality of NNs 

is visualized in Figure 3 and described in the following.  

 

Figure 3: Schematic representation of a fully connected neural network. Adapted from Höser and 

Künzer (2020). 

 

A NN consists of a sequence of fully connected layers. One layer holds neurons which are 

connected to each neuron of the next layer by weights or parameters. The values of the 

neurons get multiplied by the weights and the resulting values are passed onto the next 

layer via the connections. All incoming values are summed up by each neuron and a  

(non-) linear function, the activation, is executed (Skansi 2018, 80f.).  

Neural networks are trained by using iterative, gradient-based optimization algorithms which 

aim to minimize the cost function, i.e., the loss. During forward-propagation, the input 𝑥 

provides initial information and propagates through the network and finally produces an 

output 𝑦̂. A scalar cost, the loss, is produced. With backpropagation, the information of the 

loss flows backwards through the network to compute the gradient. On basis of the gradient, 

the network can be optimized with the stochastic gradient descent. Here, the learning rate 
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is a hyperparameter which controls the degree to which the weights get adjusted with 

respect to the loss gradient (Goodfellow et al. 2016, p. 424). The overarching goal in neural 

network training can be defined as the reduction of the loss function to increase the model 

performance.  

2.2.2 Convolutional Neural Networks 

CNNs are a specific kind of neural network, designed to process structured arrays of data 

such as images (LeCun et al. 2015). CNNs are widely used among different applications, 

ranging from natural language processing to image segmentation and object detection 

(Höser and Künzer 2020).  

The core strength of a CNN lies in the convolutional layer. Here, a convolutional kernel 

slides over the 2D input array like a moving window and thus is able to detect patterns. The 

local sensitivity of the kernel function enables analysing images not only on pixel-level, but 

also taking local connectivity and neighbouring relations of the pixels into. By sequentially 

stacking convolutional layers, the CNN can learn hierarchical features, such as textures, in 

the same way as natural signals are composed. Hence, representational features of image 

data can be learned to an increasingly abstract degree, while also being aware of their 

values and local arrangement (Höser and Künzer 2020).  

 

Figure 4: Convolutional Neural Network. Reprinted from Skansi (2018), p.126. 

 

Convolutional Neural Networks consist of the three parts: Input, convolutional backbone 

and classifier head (see Figure 4). The input, a 2D array, is passed through a sequence of 

hidden layers. Those layers include convolutions, activations, and pooling operations, 

aiming to extract high level features. The pooling operation reduces the resolution of the 

input by factor 2 (if applied with a stride of 2) and introduces translation invariance. The 

subsequent classifier consists of fully connected layers and is located at the end of the 
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backbone. The features extracted in the convolutional backbone are then used to classify 

them into output classes (Ma et al. 2019; Höser and Künzer 2020).  

There are multiple advantages of applying CNNs. CNNs have less parameters than fully 

connected networks, which were used for image analysis prior to CNNs, because network 

parameters and weights are shared during convolutions (Goodfellow et al. 2016, p. 251). 

Having less weights allows CNNs to converge faster to a minimum loss, while reducing the 

probability of overfitting, using less memory and taking less training time (Skansi 2018, 

p. 126). Another advantage is, that CNNs allow for effective transfer learning. With transfer 

learning, the weights learned in one network are utilized in another network to improve 

generalization there. This can reduce training time significantly. As CNNs are observed to 

learn simple and generic features in the early layers, they are widely applied for transfer 

learning (Goodfellow et al. 2016, 543f.). 

In the classical CNN architecture, the feature maps are resized to a lower spatial resolution 

due to the pooling layers. At the end of the network stands a fully connected layer, which 

has one output neuron, resulting in 1D outputs (Skansi 2018, p. 124). For image analysis 

targeting precise localisation of features in an output map, several challenges arise.  

Firstly, in semantic segmentation, where accurate predictions are made at pixel level, it is 

necessary to localise the learned features in a 2D output map, in contrast to the 1D outputs 

of the network. However, accurate information on the feature location in the image gets lost 

due to the resizing of feature maps in the convolutional and pooling layers. Additionally, for 

pixelwise classification, understanding the contextual relationships between pixels with their 

neighbouring pixels and segments is crucial (Höser and Künzer 2020). However, as the 

feature depth increases, the image resolution decreases, posing a trade-off for remote 

sensing research.  

To overcome these challenges, encoder-decoder networks constitute a suitable 

architecture (Zhu et al. 2017). They combine the advantages of CNNs while still considering 

the spatial location and contextual relationships of the features. As the goal of this study is 

to map refugee camps with semantic segmentation from Sentinel-2 images, the encoder-

decoder architecture was identified as ideal solution. In the following part, two encoder-

decoder architectures are presented: The U-Net and the Feature Pyramid Network (FPN).  
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2.2.3 U-Net 

The U-Net architecture was created by Ronneberger et al. (2015), originally implemented 

and applied for biomedical image segmentation. It is now widely used in all kinds of 

segmentation tasks (Höser and Künzer 2020). The name U-Net originates from its U-form, 

which is created by the encoder and decoder paths (see Figure 5). 

 

Figure 5: U-Net architecture, reprinted from Ronneberger et al. (2015). 

The encoder part serves as a convolutional backbone, responsible for extracting features 

from input data, by applying a sequence of convolutions, activations, and pooling layers. 

The Rectified Linear Unit (ReLU) is the here applied activation function and also in other 

applications widely used. With its’ function 𝑓(𝑥) = max⁡(0, 𝑥), with 𝑥 as input value, positive 

input values will be directly output, whereas negative values will be passed as zero. Models 

which used ReLU appear to be easier to train and often show better performance 

(Goodfellow et al. 2016, p. 189).  

It is common practice to utilize existing CNN architectures as convolutional backbones in 

the U-Net architecture. The subsequent decoder path enables precise feature localisation. 

The semantically rich feature maps, resulting from the feature extraction, first get 

upsampled or deconvoluted to a larger spatial size. Additionally, features get localised by 

combining the semantically rich feature maps with spatially higher resolution maps from 

earlier stages in the encoder part via shortcuts or skip connections. Once the input 

resolution is restored, pixelwise predictions are made to create the final segmentation map 

(Ronneberger et al. 2015).  
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2.2.4 FPNs 

The Feature Pyramid Network was developed by Facebook AI Research, Cornell University 

and Cornell Tech as a “pyramidal hierarchy of deep convolutional networks” for object 

detection (Lin et al. 2016). The FPN architecture consists of a feature extracting 

convolutional backbone and a top-down hierarchical path, creating feature maps at every 

level. The network possesses semantically rich features at all levels, by applying lateral 

connections (see Figure 6). 

   

 

Figure 6: Classical FPN and the Panoptic FPN. FPN reprinted from Lin et al. (2016) (left); on the right 

the extension for the Panoptic FPN for semantic segmentation by (Kirillov et al. 2019). The left part 

of the Panoptic FPN corresponds to the feature maps in the classical FPN (right part).  

 

The bottom-up path of the network computes a feature hierarchy with feature maps at 

different scales. Thus, layers producing output maps of the same size belong to the same 

network stage, one pyramid level exists for each stage. The output of the last layer is used 

as reference set for the feature maps within one stage, since the deepest layer of the stage 

possesses the richest and most complex features. As the feedforward computation of the 

backbone CNN is independent of the top-down process, common convolutional 

architectures can be chosen for the bottom-up path.  

In the top-down path, higher pyramid levels get upsampled to spatially coarse but 

semantically rich feature maps. The upsampling method applied is nearest neighbour 

interpolation (Höser and Künzer 2020). By using lateral connections, feature maps of the 

same size are merged from the bottom-up and top-down path. The high resolution but lower-

level semantic feature map of the bottom-up path helps localise the semantically strong 

features derived from the top-down feature maps.  

For object detection applications, a classification map is created at every stage in the 

pyramid by a final 3x3 convolution, resulting in proportionally sized maps at multiple levels 

(see Figure 6, left). For semantic segmentation, the methodology was adapted by Kirillov et 
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al. (2019) with their Panoptic FPN (see Figure 6, right). Therein, each top-down feature map 

gets upsampled by convolutions and bilinear upsampling to ¼ of the original image size. 

The outputs are merged into one stack and transformed into a final output layer (Kirillov et 

al. 2019). 

2.2.5 Encoder architectures 

In this study three commonly used CNN architectures were compared. The architectures 

serve as convolutional backbones in the U-Net and FPN models. They differ in their model 

architectures and therefore are differently suited for the task of mapping refugee settlement 

extents.  

ResNet 

The Residual Network (ResNet) architecture and residual blocks were developed by He et 

al. (2015) to solve a common problem with CNNs. When increasing the depth of the model, 

the accuracy will start decreasing at a certain point. Therefore, a ResNet learns residual 

functions with reference to the layers input, instead of learning the underlying mapping. 

These residual blocks enable the ResNets to become deeper without leading to a 

degradation model (Höser and Künzer 2020). 

Figure 7(a) shows the core of the ResNets, a residual learning blockFigure 7. Two or more 

stacked convolutional layers are bypassed by the skip connection, which adds from the 

input layer to the output (Zhu et al. 2021). Thus, the function describing the convolutional 

operations of the main trunk 𝐹(𝑥,𝑊𝑖) = 𝐻(𝑥,𝑊𝑖)⁡is reformulated to a residual function 

𝐻(𝑥,𝑊𝑖) = 𝐹(𝑥,𝑊𝑖) + 𝑥, where 𝑥 is the input from the residual connection. Since 𝑥 is already 

known due to the residual connection, approximating the weights for 𝐹(𝑥,𝑊𝑖) is considered 

easier (Höser and Künzer 2020). Thus, there is empirical evidence that these models are 

easier to optimize and are gaining accuracy from increasing depth (He et al. 2015). ResNets 

are constructed by stacking the residual blocks sequentially. In this study, ResNet-18 was 

used, where the name already indicates that the network consists of 18 layers. 
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Figure 7: The basic building blocks of ResNet and MobileNet.  (a) shows a residual block, (b) an 
inverted residual block, as used in the MobileNet -V2. Adapted from (a) He et al. (2015) and (b) 
Sandler et al. (2019). 

 

MobileNet 

The MobileNet networks were designed by Sandler et al. (2019) to work on small, portable 

devices like mobile phones or robots. Thus, they aimed for a small number of parameters 

and the first version MobileNet-224 had only 4.2 million parameters. The second version 

constitutes an improvement to the first MobileNet, by using inverted residual blocks (Figure 

7b). This means, the first 1x1 convolution in the block is expanding the depth of the feature 

map for the adjacent 3x3 convolution, in contrast to the first convolution in a residual block 

(see Figure 7a). This results in thinner outputs of the blocks. By connecting the bottleneck 

layers, the surrounding residual connection adds input to the output (Höser and Künzer 

2020).  

EfficientNet 

The EfficientNets are a network family introduced by Tan and Le (2019). Similar to He et al. 

(2015), they aimed to create a network architecture which can be upscaled efficiently. The 

goal was to upscale depth, width, and image resolution all at once. They found the 

compound scaling method, which uniformly upscales all three objectives with a set of fixed 

scaling coefficients. Already existing networks can be upscaled very efficiently with this 

method, but they also built their own architecture, the EfficientNet. The base model 

EfficientNet-B0 was constructed by multi-objective neural architecture search that optimizes 

both accuracy and computer performance. On basis of the B0, the versions B1-B7 could be 

upscaled very efficiently by applying the compound scaling method. The EfficientNets 

achieve much better accuracies and outperformed state of the art CNNs for image 

recognition tasks (Tan and Le 2019).  

(a) residual block (b) inverted residual block 
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2.2.6 Accuracy Assessment for Imbalanced Datasets 

Class imbalance is a widespread challenge that must be taken into account in DL 

applications (Johnson and Khoshgoftaar 2019). An imbalance in the dataset occurs, when 

the distribution of samples among the classes is not equal. When class imbalance arises in 

training data, the majority class is typically overclassified because of its major occurrence. 

Consequently, the minority class, often the class of interest, is misclassified and 

underrepresent (He and Garcia 2009). In DL, class imbalance can be attempted to be 

reduced through, for example, data-level methods, where data sampling techniques are 

applied. Balancing the datasets helps to increase the accuracies (Stark et al. 2019). 

Furthermore, when evaluating performance and classification accuracies of deep neural 

networks, this phenomenon needs to be taken into account (Johnson and Khoshgoftaar 

2019).  

A confusion matrix is a common and widely used error matrix presenting the number of 

correct and incorrect predictions made by a classifier. The matrix size complies to n*n, 

where n is the number of classes in the dataset. Several commonly used accuracy metrics 

can be derived from this matrix (He and Garcia 2009). 

The Overall Accuracy (OA) (a) analyses the number of correctly predicted pixels (True 

Positives, TP) against all pixels included. Thus, this metric does not consider class 

imbalance as it is biased towards the major classes, which undermines the importance of 

the minor classes (He and Garcia 2009). 

(a) OA = ⁡
TP+TN

TP+TN+FP+FN
=

𝑐𝑜𝑟𝑟𝑒𝑐𝑡⁡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑎𝑙𝑙⁡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

with TP = true positives; TN = true negatives; FP = false positives and FN = false negatives 

Different, class-based accuracy metrics assess the accuracy for each class involved in the 

analysis. By that, class imbalance induced biases in the accuracy values can be prevented 

(He and Garcia 2009). The following paragraphs will introduce some commonly used class-

based accuracy metrics that allow for deeper understanding of how individual classes 

perform. This is especially relevant in imbalanced datasets, especially if it is to assume the 

class(es) of interest are in minority.  

The Intersection over Union (IoU) (b) is calculating the area of intersection between a 

prediction and the label divided by the area of union between the prediction and label. The 

metric values range between 0 and 1, where 1 means perfect overlap (Taha and Hanbury 

2015).  

(b) 𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎⁡𝑜𝑓⁡𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎⁡𝑜𝑓⁡𝑈𝑛𝑖𝑜𝑛⁡
 



2 Theoretical Background 

17 

 

Precision (c) is a metric for exactness, that indicates the proportion of the positively 

predicted samples that are true positives (He and Garcia 2009). The precision can be seen 

as an indicator for overclassification, as a low precision indicates a high number of false 

positive predictions. Hence, a high precision value describes a model with a lot of true 

positives and low overclassification. 

(c) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ⁡
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Recall (d), also called True Positive Rate or Sensitivity, describes the number of predicted 

positives among all pixels that are true positives. It is a measure of completeness (He and 

Garcia 2009). Low values of recall points to underclassification, where many actual 

positives are not assigned as positive. A trade-off between precision and recall exists, which 

needs to be evaluated individually by application (Johnson and Khoshgoftaar 2019).  

(d) 𝑅𝑒𝑐𝑎𝑙𝑙 = ⁡
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

The F1 Score (e), also known as the Dice score, can be understood as the harmonic mean 

between precision and recall. It describes twice the area of intersection between prediction 

and label divided by the total number of pixels in both prediction and label (Johnson and 

Khoshgoftaar 2019). There is some ambiguity in case of a medium F1 score, as information 

gets lost if either precision or recall possess high values. Hence, recall and precision need 

to be considered additionally to correctly interpret the F1 score.  

(e) 𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 

The False Positive Rate (FPR) (f) describes the amount of incorrectly labelled samples 

among the total number of negative samples. The metric shows the number of true 

negatives mislabelled by the classifier and can therefore suggest overclassification and 

highlight the model’s confusion among classes. Higher values are indicating worse 

classification accuracy (Taha and Hanbury 2015).  

(f) 𝐹𝑎𝑙𝑠𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁡𝑅𝑎𝑡𝑒 = ⁡
𝐹𝑃

𝐹𝑃+𝑇𝑁
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3 Data and Methods 

3.1 Data 

For mapping the extents of refugee settlement with DL, it is essential to generate training 

data. It is used by the DL models to learn meaningful features and to validate the 

performance of the models. In semantic segmentation tasks, images with two-dimensional 

reference labels are required.  

The camp locations addressed in this thesis were derived from the work by Weigand et al. 

(2023). In this study, reference data for refugee camps outlines were collected from various 

sources, including OSM1, and visual image interpretation from Sentinel-2 and Google Earth2 

VHR imagery. Leveraging the full stack of historical data, the temporal dynamics of camp 

extents were captured, too. The goal was to provide an extensive reference dataset 

composed of all possible Sentinel-2 scenes for all camps as well as label images referring 

the land use classes. The following subchapters present the data products included in this 

work and describe the creation of the dataset holding the camp settlement boundaries. 

3.1.1 Structure Catalogue and People of Concern database  

The SC was developed by Weigand et al. (2023) and describes the morphological 

settlement structure of 285 refugee and IDP camps worldwide. The camp locations were 

derived from the UNHCR spatial database on locations for People of Concern (PoC), which 

held over 13,000 sites worldwide as of October 2020 (Weigand et al. 2023; UNHCR and 

UNHCR GIS DATA 2023). Weigand et al. (2023) subset this dataset by several criteria:  

- All entries which were annotated with the category ‘camp’ were chosen.  

- The coordinates of a camp location had to be located within or in proximity to a 

camp-like structure. 

- The morphological structure exhibits a coherent, but temporary pattern of 

settlement.  

- For locations close to a city, camp structures and formal urban settlement are 

clearly distinguishable.  

- The camp location was referenced in any other data (UNHCR documents, OSM, 

Google Maps, …). 

 
1 openstreetmap.org 
2 earth.google.com/web/ 
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The resulting 285 refugee and IDP camp locations were analysed by visual image 

interpretation of historical and recent VHR satellite imagery. The authors assessed several 

morphological features on building, block and camp level and validated them against 

reference data. These features were aggregated and simplified into the two major 

categories compactness and geometric arrangement. Both variables can take on the values 

of low, medium or high (Figure 17).  

The measurement of compactness (g) takes into account the parameters shelter area 

(𝐴𝑅𝐸𝐴), building distance (𝐷𝐼𝑆𝑇), shelter density (𝐷𝐸𝑁𝑆) and homogeneity of densities in 

the blocks (𝐻𝑂𝑀). It describes the compactness and density within a camp.  

(g) ⁡𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 = ⁡
1

3
(𝐴𝑅𝐸𝐴+(|𝐷𝐼𝑆𝑇−4|)+𝐷𝐸𝑁𝑆+𝐻𝑂𝑀)

4
 

(h) 𝐴𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡 = ⁡
1

3
(𝑂𝑅𝐼+𝑆𝑇𝑅+𝑃𝐴𝑇𝐻)

3
 

The geometric arrangement (h) gets derived by combining the morphological features of 

building orientation (𝑂𝑅𝐼), camp structure (𝑆𝑇𝑅) and path structure (𝑃𝐴𝑇𝐻). The variable 

describes the geometric orientation along those features.  

In this work, the SC served as basis for identifying potential camp locations suitable for CV 

analysis. Furthermore, the different structure categories were used to quantify the extent to 

which structural variations across camps worldwide would influence the applicability of CV 

methods for mapping camps. The expectation was that certain types of camps were better 

detectable in Sentinel-2 imagery than others.  

Weigand et al. (2023) describe the structural types as the combination of the metrics 

compactness and geometric arrangement. For simplicity, the resulting 9 categories were 

numbered, to be able to refer to them (see Figure 17).  

3.1.2 OpenStreetMap and Refugee Settlement Boundaries 

Refugee settlement extents for 275 refugee and IDP camps were collected and created in 

this study. Potential camp locations were derived from the SC, and OpenStreetMap (OSM) 

data as well as manual visual image interpretation (MVII) were used to find the extents.  

OSM is a database for free and open geographic data, with global coverage, thematic 

richness and temporal depth (van den Hoek et al. 2021). The data is collected via open 

collaboration by a community of voluntary contributors. The database is broadly used for 

humanitarian applications (see Herfort et al. 2021). Each feature provided by OSM 

possesses a tag, describing a geographic attribute, next to its basic data structure. For this 
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study, polygon geometries representing refugee camp settlement extents were searched. 

Thus, the tag ‘amenity = refugee_site’ was identified as the suitable tag. 

The first step was to query the OSM database for polygon geometries with the tag ‘amenity 

= refugee_site’, via the Overpass API3. The resulting polygon collection was filtered to only 

include those geometries within a 1 km proximity to the camp location. Additionally, a visual 

assessment was performed by comparing the geometries to VHR Google Earth imagery. 

Criteria for inclusion here were (a) the geometry spatially covers the camp and (b) the size 

of the geometry matches the visually apparent camp. While also digitizing camp extents 

from the OSM basemap, 180 useful geometries could be found. 

 

Figure 8: Examples showing MVII for camp settlement extents. (a) shows that the camp is clearly 

demarcated by a wall or something similar, but the area of built-up is visibly smaller than the extent; 

(b) shows different dwelling densities and the challenge of delimiting the camp; (c) shows the visible 

difference between camp and formal settlement. VHR imagery from Google Earth; (a) ©2023 Airbus, 

(b) ©2023 CNES/Airbus, (c) ©2023 Maxar Technologies.  

 

In the next step, missing extent geometries were digitized manually. For reproducibility, it is 

important to define a guide on how to identify or rather define camp settlements and their 

extents in satellite imagery. As mentioned before, refugee camps around the world do not 

follow any coherent pattern or structure. Therefore, they do not exhibit the same dwelling 

types or any consistent type of boundary. Thus, in this work, a refugee camp is defined (in 

satellite imagery) as spatially coherent settlement, which can differ spectrally and 

 
3overpass-turbo.eu 



3 Data and Methods 

21 

 

geometrically from formal settlement, as shown in Figure 8c. Camps are spatially not only 

defined by the dwellings, large fields of bare ground or infrastructural houses like schools 

can be a part of the camp, as shown in Figure 8a. Extent boundaries can be found through 

apparent demarcations like fences and walls, streets, and rivers, but also apparent land 

cover changes. For camp locations with unclear boundaries, the extent of built-up area can 

be helpful (Figure 8b).  

With this guide, new geometries were created and existing geometries were adapted 

according to their change over time. Due to camp growth, deconstruction or change of 

dwelling type e.g., from tents to containers, camp settlement extents can change over time. 

In these cases, multiple boundary polygons were collected to account for this multitemporal 

dynamic. By comparing the extents with VHR Google Earth and HR Sentinel-2 imagery, 

validity periods could be identified for each boundary. The temporal validity period was 

noted per month in the attribute table of the geometries.  

In total, the resulting dataset holds 369 polygon geometries describing camp settlement 

extents for 275 camps around the world. For 10 camps included by Weigand et al. (2023), 

accurate boundaries could not be created. The observation period is from January 2016 

until September 2022.  

3.1.3 Satellite imagery 

Optical, multispectral satellite imagery was used extensively for the training data generation 

in this study. Google Earth offers high to very-high resolution satellite imagery and combines 

VHR commercial satellite images such as Worldview, with freely available data from the 

Landsat and Copernicus missions. A function of Google Earth is the possibility to display 

historical data, however, the data availability over time strongly differs among regions. 

Google Earth is freely accessible for visual image interpretation or via the software program 

Google Earth Pro4.  

Besides Google Earth imagery, Sentinel-2 data was used in this work. The satellite imagery 

collected by the European Sentinel-2 satellites of the Copernicus mission offers freely 

available data on the Earth’s surface. With up to 10 m spatial resolution, 13 bands and a 

swath width of 290 km, the high resolution imagery is desirable for large scale applications 

(Weigand et al. 2020). The constellation of two satellites allows a high revisit time of 5 days 

at the equator. Optical data is available since mid to end of 2015, depending on the region. 

This study included Sentinel-2 imagery acquired from both satellites between January 2016 

 
4 google.com/earth/versions/#earth-pro 
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until September 2022. To reduce the influence of atmospheric interference, Level-2A (L2A) 

data was employed (ESA 2015).  

In this work, satellite data was downloaded in an automatized way, by browsing the 

Sentinel-2 catalogue in the SpatioTemporal Assets Catalogue (STAC)5. There, the users 

can access data items or only subsets, as well as their metadata in form of Cloud Optimized 

GeoTiffs (COGS), without the need of downloading the whole scene. This benefits this study 

as the camps were located all around the globe, which required to access many unique 

Sentinel-2 scenes. Not having to download each image in its entirety reduced the necessary 

data volume immensely.  

For each camp location, STAC items were scanned for imagery with less than 10 % cloud 

cover. These images were subset by a bounding box of spatial size of 10x10km around the 

camp location. As cloud effects could still decrease the quality and usability of the subsets, 

the Scene Classification Layer (SCL) of the Sentinel-2 L2A product was used to assess the 

impact. High quality subsets were then downloaded, with a maximum restriction of 100 

images per location due to memory limitations. This resulted in a final number of 15.112 

RGB Sentinel-2 scenes of 10x10 km2 size for 275 camp locations, for the period of January 

2016 to September 2022. For the remainder of this thesis, the 10x10 km2 satellite imagery 

subsets will be referred to as scenes.  

3.1.4 World Settlement Footprint 2015 

The World Settlement Footprint (WSF) is a global binary mask depicting the extent of human 

settlement in 10 m spatial resolution, developed by Marconcini et al. (2020). The extents 

were derived from approximately 300,000 scenes of multitemporal Landsat-8 optical and 

Sentinel-1 radar imagery, referring to the years 2014 and 2015. The authors argue that the 

WSF2015 outperforms similar datasets like the Global Urban Footprint (Esch et al. 2017) 

and is very robust and accurate. In 2021, DLR published the WSF 2019, together with ESA 

and Google Earth Engine. The updated settlement mask was derived globally from temporal 

means of Sentinel-1 and Sentinel-2 data (Marconcini et al. 2021).  

The WSF product was chosen for this analysis, as both versions (WSF2015 and WSF2019) 

are the newest and most accurate state-of-the-art settlement products (Marconcini et al. 

2021). As the training data was created with a focus on temporal validity, the first version 

was chosen over the WSF2019 for this analysis, to limit bias introduced by the WSF. 

Settlement which existed in 2019 but not, for example in 2016, would bring bias to the 

 
5 stacspec.org/en/ 
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training data. By supporting the thesis of majorly growing human settlements in the years 

2016 to 2022 (Taubenböck et al. 2019), the WSF2015 would underestimate settlement 

extents. However, this is more acceptable than an overestimation of urban settlement and 

thus possible misclassification. 

The WSF depicts settlement on a building to block level, describing settlement as extents 

of built-up. However, the camp geometries, in this study, describe the settlement extents as 

contextual information derived from not only built-up areas but also infrastructure and other 

land cover types. Under the assumption of simplifying the feature learning process of the 

DL models, the WSF was processed to generate an extensive layer of settlement, by 

applying morphological closing operations (Figure 9). This transformation aimed to create 

a more contextual representation of the formal settlement.  

 

Figure 9: WSF2015 (left) and morphologically closed WSF2015 (right). WSF2015 by Marconcini et 

al. (2020).  

 

3.2 Methods 

The objective of this work is to apply DL models for mapping the extents of refugee 

settlement using Sentinel-2 data. Figure 10 gives an overview on the methodological 

application. The approach follows a standard process for training DL models. First, it is 

crucial to obtain accurate training data. In this study, a combination of open source and 

manually collected data was employed. The collected data then needs to be formatted in a 

way that allows the DL model to effectively learn from it. Finally, six different models are 

trained, validated, and analysed. The subsequent chapter will provide a detailed explanation 

of the underlying steps involved in this process. 

     settlement 

      no settlement 
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Figure 10: Workflow. 
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3.2.1 Training Data Preparation 

Deriving the refugee camp settlement boundaries has already been explained in chapter 

3.1.2, and the automated download for hundreds of Sentinel-2 scenes was described in 

section 3.1.3. The following section will explain the creation of a reference label 

corresponding to each Sentinel-2 scene by leveraging the camp boundaries and the 

modified WSF2015.  

Image-Label Pairs  

For creating the corresponding labels to the Sentinel-2 scenes, an automatized approach 

was used. First, four relevant semantic classes were determined: ‘camp’ (3), spatially 

covering the extents of refugee and IDP camp settlements; ‘formal settlement’ (2) describing 

all residual settlement structures; ‘other’ (1) land cover classes (e.g., water, vegetation) 

combined to one, and ‘noData’ (0) depicting all pixels with no value. See Table 1 for further 

information on the classes.  

 

Table 1: Description of the classes. 

Class Nr. Class Name Description 

0 NoData No information included in Sentinel-2 scene; edge pixel, padded image edges 

1 Other All land cover types that are not associated with settlement in any kind. Vegetation or 

bare ground within settlements not included. 

2 Formal 

settlement 

Formal settlements which are not camp-like structures. 

3 Refugee camp Refugee and IDP camps, all housing types, delimited by natural borders (e.g., rivers) 

and anthropogenic borders (e.g., streets, fences) or visible delimitation in satellite 

imagery. 

 

During label creation, one 2D label image was built for each downloaded Sentinel-2 scene. 

For this process, empty rasters were created, which were filled with pixel values step by 

step. First, the camp boundary geometries were utilized to label the refugee settlements, 

described by the class ‘camp’. Corresponding to the time stamp of the Sentinel-2 scene, 

the temporal valid camp extent was rasterized. All other settlement structures occurring in 

the Sentinel-2 scene, which were not camp-like, were labelled by the modified WSF2015. 

The remaining pixels were labelled as class ‘other’ landcover classes, and the edge pixels 

to class ‘noData’.  

Some camps lie in spatial proximity to each other, resulting in more than one camp per 

image-label pair. In these cases, the temporal validity of all included camp geometries 

needed to be considered during the label creation.  
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Training data split 

For model learning and the subsequent validation and testing, the created training data was 

distributed among three datasets. In this study, a 70/15/15 split was approached, where the 

training dataset holds 70 %, and validation and test datasets each 15 % of the data. The 

image-label pairs were assigned to the dataset according to their geographic location. 

Image-label pairs belonging to the same camp were all assigned to one dataset. Because 

of the spatial proximity of some camps, a careful split with spatially exclusive datasets 

needed to be established. This is to ensure the training, validation and test samples were 

completely independent. By ensuring the model’s evaluation was based on unseen camps 

rather than reiterating those already encountered, but in different scenes, the evaluation 

process was able to quantify the DL model’s ability to generalize and abstract information. 

The therefore required approach grouped camp locations by their proximity by surrounding 

them with a 5 km buffer and tested for intersection between the buffers. For those 

intersecting, the whole group was assigned to the same dataset. The non-intersecting 

camps were distributed among the three datasets aiming to achieve the 70/15/15 split. 

Finally, the training dataset held 9,015 scenes, the one for validation consisted of 1,689 and 

the testing dataset of 2,019 image-label pairs.  

Tiling 

At last, the image-label pairs were brought into a size format which can be handled by the 

network. It is common practice to train DL models on images with sizes ranging from 64x64 

up to 512x512 pixels (Wurm et al. 2019; Wickert et al. 2021). Often, a simple resizing is 

applied, with a resulting loss in spatial resolution. In approaches of DL with remote sensing 

it is important to keep the spatial resolution to not lose information, as the pixels refer to an 

actual spatial extent on the ground. Thus, the data was split into smaller tiles, in order to 

maintain the high spatial resolution. As the Sentinel-2 scenes came with slight differences 

in their sizes, the image-label pairs first were padded to a size of 1024x1024 pixels. The 

padded pixels were assigned to class ‘noData’. The padded scenes where then cropped 

into 256x256 pixels sized tiles, by applying a moving window approach with an overlap of 

128 pixels. This resulted in 49 tiles per original scene, as no tiles overshooting the original 

boundaries of the scenes were included.  
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3.2.2 Deep Learning Implementation 

The objective of this work is to assess the applicability of DL methods for mapping refugee 

settlement extents with Sentinel-2 data. Therefore, the two model architectures U-Net and 

FPN are trained with three different encoders and tested for their performance.  

The DL framework made use of the popular ML libraries Pytorch (Paszke et al. 2019) and 

Pytorch Lightning6. Pytorch and Tensorflow are, “today’s most popular and widely used [DL 

libraries] in research and practice” (Höser and Künzer 2020). The model and encoder 

architectures were accessed and used via the library Semantic Segmentation Models 

Pytroch (SMP)7, which implements several state-of-the-art model and encoder 

architectures.  

Six models were trained, three U-Nets and three FPNs, each with the encoders MobileNet 

Version 2, ResNet-18 and EfficientNet-B0. The performances of different model-encoder 

architectures were explored, assuming that the ability of mapping refugee settlement 

extents would differ across the models. Due to different architectures, the models and the 

encoders possessed different amounts of parameters for the feature learning (see Table 2), 

which potentially affected their respective abilities in mapping refugee settlement extents. 

 

Table 2: Number of parameters by network configuration. 

Encoder Model architecture Parameters 

U-Net 

EfficientNet-B0 6.3 Mio 

MobileNet-V2 6.6 Mio 

ResNet-18 14.3 Mio 

FPN 

EfficientNet-B0 5.8 Mio 

MobileNet-V2 4.2 Mio 

ResNet-18 13 Mio 

 

Each encoder was initialized with ImageNet weights, since the model performance can 

benefit from the transfer learning (Gella et al. 2022). The models were trained with an 

NVIDIA RTX A5000 GPU with 24 GB VRAM and a CPU with 32 cores and 200 GB memory.  

For model training, several pivotal hyperparameters on the model’s performance were 

identified. It was outside of the scope of this study to find perfect values for all 

hyperparameters. Rather, the most impactful parameters were manually tested, in particular 

the batch size, the learning rate and the loss function. In addition, pretrained encoder 

 
6 pytorchlightning.ai 
7 github.com/qubvel/segmentation_models.pytorch ©2019, Pavel Iakubovskii 
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weights and regularizing parameters like dropout, weight decay and early stopping were 

implemented, next to regularizing learning rate schedulers such as a ‘learning rate warm-

up’ and ‘reduce learning rate on plateau’. The warm-up begins the training process with a 

smaller LR, which then increases after a set waiting time, here after 5 epochs. This can 

result in a plateau of the loss curves at the beginning. The ‘reducer on plateau’ decreases 

the learning rate when the validation loss starts to stagnate, to give the model the chance 

to learn even more. Both regularizing parameters help to automatically tune the learning 

rate. The models were trained with the Adam optimizer (Kingma and Ba 2014). The applied 

hyperparameters are listed in Table 3. Dropout could only be applied for the FPNs, as it 

was not reasonably implemented in the SMP library for the U-Net model.  

  

Table 3: Hyperparameters used for model trainings. 

Hyperparameter U-Net FPN 

Batch_size 98 128 

Dropout not implemented 0.3 

Early Stopping Min-Delta 0.01 0.01 

Early Stopping Patience 25 10 

Learning Rate 1e-6 1e-6 

Loss function 1 𝐶𝐸𝑊 𝐶𝐸𝑊 

Loss function 2 𝐶𝐸⁡ 𝐶𝐸 

Pretrained weights ImageNet ImageNet 

Weight Decay 0.1 0.5 

 

The six models were trained with the large datasets consisting of 441,735 tiles for training 

and 82,761 tiles for validation. The prepared data, with a tile size of 256x256 pixels, were 

normalized by the Z-score normalization before feeding them to the models for training. Due 

to the already large dataset, which created an overhead and several bottlenecks, data 

augmentation was not applied. A strong class imbalance could be found in the datasets 

(see Figure 11), where class ‘noData’ and ‘other’ are overrepresented, whereas urban and 

refugee camp classes are of major interest for this study. Therefore, a data sampler was 

implemented while feeding the data to the model. It sampled tiles with the appearance of 

the classes camp and/or urban and dropped tiles which only held class 0 and 1. Additionally, 

the weighted cross entropy 𝐶𝐸𝑊 was chosen as loss function, which considers the class 

imbalance. Furthermore, the unweighted cross entropy loss 𝐶𝐸 was logged as a 

comparison to the very harsh metric of 𝐶𝐸𝑊. 
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Figure 11: Distribution of pixels per class among whole training dataset. A strong class imbalance 

towards the class ‘other’ is apparent. 

3.2.3 Model Evaluation and Accuracy Analysis 

After all training processes finished, the model performance of the six models were 

assessed in a comparative analysis. First, the learning performance of all six models was 

analysed by examining the learning curves of the models. The course of the training curve 

shows how well a model learned the provided training data. Furthermore, the validation 

curve shows the models ability to generalize the learned features. The resulting graphs 

therefore showed training and validation loss, as well as the average IoU accuracy derived 

from predicting the validation dataset at the end of each epoch.  

In the second step, for each trained model, the state of the model with the lowest loss got 

identified and used for the predictions. Then, the testing dataset, containing 98,931 image-

label pairs, was predicted with the trained models. The predicted images were compared to 

the existing reference labels and served as basis for the accuracy assessment. The test 

dataset is independent from the training and validation datasets, therefore meaningful 

evaluations on the model’s performance were made. From this, the confusion matrix as well 

as the accuracy metrics were calculated. The OA was derived as average for all classes, to 

give an overview on the model performances. The class-based metrics IoU, recall, precision 

and F1-sorce were calculated to provide an insight into the model performances across the 

classes. This is especially important in imbalanced datasets, as the majority classes can 

cover up the accuracies of smaller classes. The FPR was only calculated among the classes 

‘formal’ and ‘refugee settlement’, to observe the models’ ability of distinguishing between 

those two classes. Moreover, the resulting prediction maps were visually assessed by 

comparing the maps of the six models with each other and with the label. Based on the 
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visual and numeric assessment, the best performing model among the different 

architectures and encoders was identified and utilized for further analysis.  

In the analysis part, the best model’s ability to predict refugee settlement extents was 

evaluated for each camp location and by morphological structure (derived from Weigand et 

al. 2023). The predicted output maps were grouped by camp location and by structure type, 

for which all accuracy metrics were calculated separately. This allowed for detailed analysis 

of the segmentation performance in relation to the underlying structure types. The analysis 

by morphological structure required some preprocessing. The SC holds information at an 

observed point in time, therefore the temporal validity of the structure type had to be 

matched with the timestamp of the predicted Sentinel-2 scene. By assuming that the 

observed structural category was valid until a change was noticed, start and end 

timestamps for the structural types were created. The start time was the observed 

timestamp, and for the end date one day before the next observation was chosen. When 

the successive observation was missing, the 30th of September 2022 was picked since it is 

the last day of this work’s study period. By comparing the prediction’s timestamp with the 

structure type time periods, each prediction tile was assigned with their valid structure type.  
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4 Results 

This chapter presents the results of the six DL models, which were trained in the scope of 

this work. The two model architectures FPN and U-Net were trained each with the three 

CNN encoders EfficientNet-B0, MobileNet-V2 and ResNet-18. Their performances during 

model training, as well as their accuracy results for predicting on the test dataset are 

displayed in the following chapter. Lastly, the results of the analysis by camp location and 

by morphological structure are presented.  

4.1 Model Training 

As explained in chapter 2.2.1, the primary goal of DL models is to minimize their loss 

function during training. The training and validation loss are monitored while training over 

time. When plotted as learning curves, the model performance can be evaluated and 

problems with learning can be diagnosed. In the following paragraphs, the results of the 

model trainings are presented.  

4.1.1 U-Nets 

The plots in Figure 12 show the learning of the models over the training epochs. Because 

of applied parameters like early stopping and learning rate regulators, the models stopped 

learning after different numbers of epochs. The early stopping set in when no more 

improvement above the set threshold of 0.01 was detected.  

The MobileNet stopped earliest after 32 epochs, and the EfficientNet learned the longest 

for 79 epochs. Still, the ResNet model, which learned for over 47 epochs, achieved the 

lowest 𝐶𝐸𝑊 with the validation dataset and the highest IoU accuracy of 0.43 (f).  
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Figure 12: Learning Curves of U-Nets with 𝐶𝐸𝑊and validation IoU accuracy. 

 

It is striking that the validation loss curves of all three models reached a point of stagnation, 

while the training loss continued to decrease. With this behaviour, the graphs do not 

conform with a good fitting curve (Goodfellow et al. 2016, 423f.). The initial plateaus can be 

associated with the regularizing parameter of learning rate warm-up.  

The improvement of the EfficientNet training curve (a) gradually slowed down until, after 41 

epochs, it reached a point where the slope of the curve increased once again. The validation 

loss meanwhile continued to sink until the gradient suddenly decreased significantly. It is 

interesting to note, that the IoU (d) stabilized after approximately 40 epochs. During the 

stabilization of the ResNet validation loss (c), a slight fluctuation can be observed, albeit 

within a small range. Like the other two models, the loss curves of MobileNet (b) decreased 

until the validation loss started to stabilize. The gradient of the training loss also decreased 

while the model gained experience, although the curve continued to sink. In contrast, the 

IoU graph of the MobileNet model (e) consistently rose with no sign of stabilization. This 

indicates that there still was potential in model learning, but the training was aborted too 

early. 
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4.1.2 FPNs 

Figure 13 shows the learning progress of the FPN models over time. The ResNet model 

trained the longest for 62 epochs, while the EfficientNet and MobileNet were trained for 

approximately the same duration, ending at 47 and 46 epochs, respectively. The ResNet 

model achieved the lowest validation loss (c) and the highest IoU accuracy of 0.51 (f), 

making it the most successful among the three models. 

 

Figure 13: Learning Curves of FPNs with 𝐶𝐸𝑊.and validation IoU accuracy. 

 

The behaviour of the EfficientNet graphs stands out. While the training and validation curves 

decreased (a), their decrease was not as significant as compared to the other models. The 

training and the validation curve reached plateaus twice, indicating loss stabilization after 

14 and 26 epochs. After the 14th epoch, the loss gradient started to increase again, and 

after the 26th epochs the graphs began to stabilize. Interestingly, the IoU curve exhibits 

moderate growth until the 20th epoch, where it experienced a substantial increase followed 

by an incipient stagnation (d). 

In contrast, the MobileNet and ResNet graphs show decreasing training and validation 

curves, with notable stabilization. The training loss of MobileNet (b) stabilized after 15 

epochs, while the training loss improvements of ResNet (c) gradually slowed down after 

more than 20 epochs. The behaviour of the ResNet validation loss curve is particularly 
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striking. After only 8 epochs, the validation loss peaked for one epoch before resuming to 

decline, and it stabilized after the 25th epoch. 

4.2 Validation/Testing 

Once the six models completed their learning, the test dataset was predicted to validate the 

models’ performances. To assess the models’ abilities to apply the learned features on 

previously unseen data, a confusion matrix and the in 2.2.6 introduced state-of-the-art 

accuracy metrics were computed. The accuracy metrics for all six models are  

listed in Table 4.  

4.2.1 U-Nets 

The overall accuracies scored by the U-Net models differed significantly. The highest 

accuracy of 61 % was reached by the model with the ResNet-18 encoder, while the 

MobileNet encoder scored 44 %. The lowest overall accuracy was achieved by the 

EfficientNet encoder with 32 % of correctly classified pixels.  

It is striking, that the accuracy values for the ‘refugee camp’ class were low for all three 

models, with the highest IoU value of just 0.12 and the highest F1-score of 0.221, both were 

achieved by the ResNet model. Comparing the confusion matrices of all three models (see 

Appendix 3, Appendix 4, Appendix 5), an overclassification of the ‘refugee settlement’ class 

among all models can be observed. The low precision values among all models indicate 

that more pixels were labelled as ‘camp’ in the prediction than are true positive. All three 

models misclassified many pixels labelled ‘other’ as ‘camp’. Nonetheless, the models 

succeeded to predict a majority of actual ‘camp’ pixels correctly, as evidenced by high recall 

values ranging between 0.69 for MobileNet, 0.72 for ResNet and 0.75 for EfficientNet.  

Similar patterns can be observed for the ‘formal settlement’ class. The predictions tended 

to overclassify the occurrence of formal settlements, although the degree of 

overclassification was less pronounced compared to the ‘camp’ class. Similar to the ‘camp’ 

class, there was confusion between the ‘other’ class and ‘formal settlement’. Among the 

three models, the MobileNet-model performed best for ‘formal settlement’, with an IoU of 

0.12 and a F1-score of 0.207.  

The higher FPR values for the ‘refugee camp’ class show that among the two settlement 

classes, the models performed better for formal settlements than for refugee camps. The 

ResNet performed best for ‘formal settlement’, while at the same time reached a very high 
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FPR of 0.9 for ‘refugee settlement’. For this class, the MobileNet encoder was performing 

best with the lowest value of 0.4.  

The class ‘other’ achieved remarkably high precision values of over 0.99 in all models. As 

previously mentioned, the true labels were highly misclassified, resulting in lower to 

moderately high recall values. The highest recall of 0.56 for an U-Net model was achieved 

by the ResNet model. Notably, the ResNet model misclassified the fewest ‘other’ pixels as 

refugee settlement with only 13 %. The model also attained the highest IoU and F1 values 

for this class, which were notably higher compared to the previously mentioned classes. 

The class ‘noData’ was predicted best by the EfficientNet model, achieving an IoU of 0.65 

and a F1 score of 0.75. It also experienced overclassification, mostly at the cost of class 

‘other’.  

Table 4: Accuracy assessment results for U-Nets and FPNs. *FPR only among classes 2 and 3.  

 U-Net FPN 

 EfficientNet MobileNet ResNet EfficientNet MobileNet ResNet 

OA 0.32 0.44 0.61 0.71 0.78 0.83 

IoU       

Class 0 0.649 0.364 0.393 0.743 0.867 0.895 

Class 1 0.212 0.354 0.560 0.693 0.755 0.823 

Class 2 0.061 0.115 0.070 0.055 0.124 0.158 

Class 3 0.040 0.057 0.124 7e-7 0.110 0.137 

Precision       

Class 0 0.656 0.365 0.394 0.744 0.871 0.900 

Class 1 0.997 0.995 0.995 0.993 0.995 0.994 

Class 2 0.064 0.126 0.082 0.056 0.149 0.184 

Class 3 0.040 0.058 0.131 0.014 0.114 0.146 

Recall       

Class 0 0.984 0.996 0.996 0.998 0.995 0.994 

Class 1 0.212 0.355 0.561 0.696 0.757 0.828 

Class 2 0.586 0.573 0.501 0.942 0.431 0.528 

Class 3 0.746 0.695 0.724 7e-7 0.760 0.681 

FPR*       

Class 2 0.247 0.271 0.188 0.999 0.191 0.256 

Class 3 0.405 0.398 0.904 (7e-7) 0.543 0.413 

F1       

Class 0 0.787 0.534 0.564 0.852 0.929 0.995 

Class 1 0.350 0.523 0.718 0.819 0.860 0.903 

Class 2 0.115 0.207 0.141 0.105 0.221 0.273 

Class 3 0.076 0.107 0.221 1e-7 0.198 0.241 

Color Coding: worst value best value in architecture overall best value  

Class 0: NoData Class1: Other Class 2: Formal settlement Class 3: refugee settlement   
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4.2.2 FPNs 

The FPN models reached high accuracy values, with the ResNet model achieving again the 

highest value of 83 %, MobileNet with 77.8 % and EfficientNet with 71.3 %. However, the 

accuracy values for the ‘camp’ class were relatively low, with maximum IoU of 0.14 and F1-

score of 0.24 achieved by the ResNet model. Overclassification can be observed among 

the ‘refugee camp’ class, primarily due to the confusion of ‘other’ pixels being classified as 

refugee settlements. The low precision and high recall values highlight the 

overclassification, while also indicating that a significant proportion of pixels labelled as 

‘refugee camp’ was classified correctly. A striking observation from the error matrices of the 

three FPN models is the apparent inability of the EfficientNet model to predict refugee 

settlements (see Appendix 6, Appendix 7 and Appendix 8). The IoU, recall, precision and 

F1-score values for the ‘camp’ class were notably low, as they were approaching zero. 

Furthermore, the proportion of pixels classified as ‘camp’ was almost zero.  

The ResNet model achieved the highest F1 and IoU accuracies for the ‘formal settlement’ 

class, indicating a better performance compared to the other models. However, it is 

noteworthy, that the values, similar to the ‘camp’ class, were still relatively low. These low 

values already indicate the presence of overclassification in all three models. The 

EfficientNet here notably misclassified over 24 % of the ‘formal settlement’ pixels. Low 

precision values among all models further highlight the overclassification, while the high 

recall values indicate a high amount of correctly classified pixels. The FPR among the two 

settlement classes showed lower values for ‘formal settlement’ than for ‘refugee camp’. A 

special case is the EfficientNet encoder, where the ‘formal’ class was strongly 

overclassifying ‘refugee camps’, which showed in an FPR of 0.99 for ‘formal settlement’ and 

almost 0 for ‘camp’. Besides that, the best values for ‘formal settlement’ were achieved by 

MobileNet and for ‘refugee settlement’ by ResNet.  

The class ‘other’ experienced underclassification, as it was prone to confusion with the other 

classes, particularly with the ‘refugee camp’ class. Despite this, all models achieved very 

high precision values of over 0.99, pointing out that almost no non-’other’ pixels were 

misclassified as class ‘other’. The recall values, although slightly lower, are ranging between 

0.7 for EfficientNet and 0.83 for ResNet. As a result, the ‘other’ class reached high accuracy 

values, with the highest F1-score of 0.9 and the highest IoU of 0.82 achieved by the ResNet 

model.  

The highest accuracy values for class ‘noData’ were reached by the ResNet model, with an 

IoU of 0.9. High precision and high recall values resulted in high F1-scores, the highest 

value of 0.95 scored by the ResNet model.  
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4.3 Comparison of all model performances 

The visual results of all six models for ten sites of different structural types are presented in 

Figure 14 and Figure 15. For each predicted model they show predicted tiles of the test 

dataset. Single looks of the approximate size 2.5x2.5 km2 were chosen. This chapter aims 

to combine the presented numerical results with their visual representation. To present them 

for different kinds of refugee camps, examples for each structural type were chosen.  

Comparing the performances of the trained U-Nets and FPNs, the FPN models achieved 

significantly higher overall accuracies: The highest OA of 83 % was reached by FPN ResNet 

compared to 61 % for the U-Net ResNet. The FPNs achieved higher numerical accuracy 

metrics, and the visual results showed more accurate predictions of refugee settlement 

extents.  

The U-Net models didn’t show expected learning behaviour: The visual predictions 

contained much noise, because of relatively small segments and high misclassification of 

the classes ‘noData’, ‘formal settlement’, and ‘refugee camp’. All three U-Net learning 

curves showed underfitting behaviour, which indicates that the model has not been able to 

learn the training data sufficiently.  

The FPN models, on the other hand, showed good fitting learning behaviours in their loss 

curves. Visually, they showed the best performance. In most cases, the presence of a camp 

got detected, as for lines 4, 5 and 8 (in Figure 14 and Figure 15). Small camps, which are 

small enough to be completely shown in one tile and are detached from any urban area, 

were detected by the MobileNets and ResNets in both architectures. Still, the area git 

overestimated for every camp (see lines 4, 5, 8). Line 7b shows a refugee camp enclosed 

in urban structure. All models failed to detect this, and rather mapped camps in other 

locations.   

The FPN with EfficientNet encoder did not perform as expected, in contrast, it failed to map 

refugee settlement. The model loss improvements for both training and validation were 

small, suggesting the models did not learn sufficiently. The accuracy metrics and images 

show that the model was not able to learn features related to refugee camps and confused 

them with ‘formal settlement’. Nevertheless, the visual assessment showed that built-up 

structures were detected well by the model. As in lines 0, 6 and 7b, the model captured the 

extents of built-up well, but failed to distinguish between formal and informal built-up.  

The visual assessment showed high overclassification of the ‘camp’ class of all models, 

except FPN EfficientNet, resulting in low accuracy and precision values. Thereby, the 

confusion between ‘camp’ and ‘formal settlement’ was maximum high for the U-Net 



4 Results 

38 

 

MobileNet model, with an FPR of 0.904 for the ‘camp’ class. Among the FPNs, the highest 

FPR was 0.543, indicating some incorrect classification but mostly successful distinction 

between ‘camp’ and ‘formal settlements’. Nonetheless, the correct localisation of refugee 

settlement can be observed, which is evidenced by high recall values over 0.68.  

Classification errors between the ‘other’ and the ‘noData’ class were observed frequently in 

the visual results. For example, water in lines 1 and 4 was misclassified as ‘noData’, 

resulting in accuracy errors.
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Figure 14: Visual results of the six trained DL models, part1. Showing comparative result examples for refugee camps with different structural morphologies.  
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Figure 15: Visual results of the six trained DL models, part2. Showing comparative result examples for refugee camps with different structural morphologies.  
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4.4 Analysis by camp location and structure type 

The FPN model with ResNet-18 encoder showed the highest accuracies and in total the best 

performance in comparison to the other models. Therefore, the model was chosen for the 

following analysis. Firstly, the models’ ability to map refugee settlement extents was assessed 

per refugee camp location existing in the test dataset. This is to unveil potential differences in 

detection capabilities across different geographical regions or depending on the physical-

geographic setting. Secondly, the model performance was analysed among the structure types 

identified by Weigand et al. (2023).  

4.4.1 Model performance per refugee camp location 

Figure 16 shows the spatial distribution of the camps contained in the test dataset. The colors 

present the accuracy metric values achieved by assessing the performance for all tiles 

associated with the camp.  

It is striking that only two camps hold the highest values in most categories: Mamrashan in Iraq 

and Smara in Algeria. Two predicted examples of these camps are included in Figure 16. 

Mamrashan achieved the highest accuracies in the categories mean IoU of 0.56, mean 

precision of 0.59 and mean F1-score of 0.64. Smara scored best for the ‘refugee camp’ class’ 

IoU of 0.27, precision of 0.27 and F1-score of 0.43.  

When examining the global maps, no striking large-scale regional pattern became apparent. 

Upon examination of areas with clusters of refugee camps, certain patterns emerged. Case 

area 1 shows camps located in Sudan, in proximity to the South Sudanese border. The camps 

in this region exhibited relatively low IoU and precision values, but high recall accuracies for 

the ‘refugee settlement’ class. The camp with the highest global recall value for ‘refugee 

settlement’ was Jourie camp and was located in this case region (see Figure 14, 1). 

The second case area enclosed three camps in Turkey, close to the Syrian border. The 

accuracy results for ‘refugee camps’ IoU and precison were notably heterogeneous. For the 

camp Saricam reatively high IoU of 0.18, precision 0.21 and recall 0.56 values were achieved. 

In contrast to that, the camp Islahiye was predicted with relatively low accuracies with IoU and 

precision of 0.04, but a recall of 0.87.   

The third case area shows four camps located in Bangladesh, close to the border to Myanmar. 

The accuracies per camp were relatively homogeneous, all achieving low values. However, 

the accuracies of the most southern camp, Camp 22, fall out of the pattern as higher IoU and 

recall values were reached (compare Figure 15, 7a). 
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Figure 16: Accuracy metrics by camp location, with examples. Showing the accuracy metrics IoU, precision and recall for the ‘refugee camp class’.  

Basemap: Google Earth 
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4.4.2 Model performance for structure types 

In the next analysis step, the predicted tiles were grouped by their morphological structure 

types, while considering their structural changes over time. For the analysis, the outputs of the 

prediction with FPN ResNet-18 were chosen. It exhibited the highest accuracies, as discussed 

in the previous chapter.  

 

Figure 17: Structure types by Weigand et al. (2023), with my numbering of classes. Reprinted and 

adapted from Weigand et al. (2023).  

 

Figure 18 shows the distribution of OA values achieved for each structure type. They varied 

from minimum 71 % for type 6 (high compactness, low arrangement, see Figure 17) to the 

highest of 91 % in type 5 (medium compactness, high arrangement). Even more variation 

between the type accuracies can be seen in the class-based accuracy metrics per structure 

types, which are illustrated for the ‘refugee settlement’ class (Figure 18). It is noteworthy, that 

the accuracy metric values were rather low among all types. Only the recall metric achieved 

high values, with the highest of 0.97 in type 5. Among the structure types, the highest values 

for IoU of 0.2 and F1-score of 0.33 were achieved for type 4. The category represents refugee 

camps characterized by medium compactness and medium geometric arrangement. Type 3, 

with medium compactness and low geometric arrangement, achieved the highest precision 

value of 0.2 and performed well, although it had a low recall value.  
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The lowest accuracy values were attained by type 1, which represents camps with low 

compactness and medium arrangement. Similarly, type 8, describing highly compact and 

geometrically arranged camps, did not achieve high accuracy values either. 

 

Figure 18: Accuracy metrics per structure type.  IoU, precision, recall and F1-score show the accuracy 

for the ‘refugee camp’ class.  
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5 Discussion 

This work introduced an approach for mapping refugee settlement extents from HR satellite 

data. The study employed six different DL models to analyse 275 camps worldwide. The 

findings revealed an overall success of localising refugee camps, but with a tendency to 

overestimate their extents. The six DL models performed very differently on the task, with the 

FPN models achieving higher accuracies in total. Among all models, the FPN with ResNet-18 

encoder was identified as the most suitable for mapping refugee settlement extents. Regional 

patterns in the model’s ability to map refugee settlement extents were found, however no large-

scale pattern became apparent. In the following chapter, the results of applying the six DL 

models are discussed in detail, while addressing the presented research questions. 

1) Is it possible to map refugee camps from satellite imagery across the globe? 

Despite medium to high OA results for all six models, the class-based accuracies for the 

‘refugee’ and ‘formal settlement’ classes were comparably low. This mismatch between OA 

and class-based accuracies for camps can be explained by the stark class imbalance of the 

task. The maximum IoU achieved for the ‘refugee camp’ class is 0.14, and for ‘formal 

settlement’ a similar value of 0.16. Striking is the strong overclassification of the two settlement 

classes evidenced by low precision values and overestimated visual results. There are several 

parameters which pose a challenge to the mapping of refugee camps from satellite imagery. 

On the one hand, refugee camps across the globe have very different and complex 

morphological appearances, which makes it difficult for the models to find a generalized way 

of mapping them. As Weigand et al. (2023) showed with their Structure Catalogue, the 

morphological structures of refugee camps vary in their density, building homogeneity, shelter 

areas and other variables. On the other hand, refugee camps can spectrally be very similar to 

their surroundings. The models trained in this work strongly confused ‘other’ land cover types 

with the settlement classes. While building materials in refugee camps like tarp, wood and 

thatch spectrally differ from formal building materials, they can be difficult to distinguish from 

the immediate surroundings (UNHCR 2016; Quinn et al. 2018; van den Hoek and Friedrich 

2021). Distinction becomes especially challenging in 10 m resolution satellite imagery, as small 

structures and dwellings are not detectable (Wendt et al. 2017). Since the FPRs among the 

settlement classes were medium to low, a promising distinction between formal and refugee 

settlement can be evidenced. Lastly, the existence of an official or visible demarcation of the 

camp does not necessarily describe the location of dwellings within the camp (van den Hoek 

and Friedrich 2021). Rather, in addition to shelters and buildings, the camp extents do enclose 

other land cover types like bare ground, vegetation, and streets, which also exist outside the 

camps. Hence, the models needed to learn contextual information by extracting “spatial 
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features capable of capturing long-range pixel dependency in the image” (Persello and Stein 

2017, p. 2325) in order to accurately map settlement extents. Usually, this makes CNNs 

especially suited for the task over pixel-based classification methods (e.g. Kuffer et al. 2016; 

Wurm et al. 2017), as CNNs are able to abstract contextual information without the need of 

explicit feature engineering (Höser and Künzer 2020). However, the models seemed to 

struggle localising the extents, suggesting that the models failed to learn contextual 

information.  

Lastly, it is crucial to discuss the importance of some numerical metrics in regard to the 

obtained results. The study revealed relatively low precision values for the settlement classes, 

indicating strong overclassification. However, the recall reached high accuracies for all models 

expect U-Net EfficientNet, showing that a substantial number of pixels labelled as settlement 

were correctly predicted. Quinn et al.’s (2018) emphasized the importance of high accuracies 

and precision, as false detection of dwellings can result in more work than missing detection. 

However, it is essential to recognize the informative value of high recall values since the 

evaluation and prioritisation of the recall and precision metric depends on the desired end 

product. In this work, the recall values, in conjunction with visual assessment, demonstrate 

that the models did not randomly classify arbitrary areas as refugee camps but accurately 

detected their location and correctly identified camp structures. Although the precision may not 

be high, the high recall indicates a success of detecting refugee camps to some degree.  

2) Which model performed best? 

The DL models trained in this study performed very differently in their training performance 

and in their accuracies. The FPN models achieved the highest values in 16 out of 19 accuracy 

categories. They also performed better in the visual results, stating that the FPN models 

perform superior for mapping refugee settlement extents than the U-Net models (see Table 4). 

The findings of Gao et al. (2022c) stand in contrast to that, as their study for dwelling detection 

with different model and encoder architectures did not find any significant differences in 

performance, albeit a different task. Furthermore, as all three U-Net models trained in this 

thesis show underfitting, the superior accuracies for FPNs can be explained with the model 

training performances. The learning curves of the U-Nets show that the models had difficulties 

learning the training data sufficiently (see Goodfellow et al. 2016, p. 423). The analysis was 

conducted under the assumption that employing more regularization would improve the 

learning process. Due to the time constrains of the study, only the U-Nets were trained with 

improved regularization parameters compared to the FPNs, like reducing the LR when hitting 

a loss plateau or increasing the patience of the early stopping function. In contrast, 

regularization can prevent the model from learning, as the regularizing parameters are mostly 

applied for preventing overfitting. For example, a weight decay value set too high can trap the 
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network in a bad local minimum (Goodfellow et al. 2016, p. 424). This suggests that the U-

Nets could possibly have achieved higher accuracies when trained with less regularizing 

parameters, but further testing would be necessary to verify this. 

Another approach to address underfitting is by increasing the complexity of the model, as 

deeper models have the capacity to learn more complex features (Goodfellow et al. 2016, 

p. 110). In the context of the study, the ResNet encoder, which features the highest number of 

parameters, achieved the best accuracy values among all six evaluated models (Table 2). This 

suggests that the increased complexity of the encoder could have contributed to the model’s 

abilities to abstract and generalize the learning task (Goodfellow et al. 2016, p. 21; Mboga et 

al. 2017). In support of this idea, Ghorbanzadeh et al. (2022) achieved significantly better 

accuracies for dwelling detection with a U-Net with residual connections over a standard U-

Net. The residual connections allow the model to increase in complexity while preventing 

scaling problems such as a vanishing gradient (Höser and Künzer 2020). Since the U-Net 

models evaluated in this work possessed even more parameters than the equivalent FPN 

architecture with the same encoder, three findings can be identified. First, one must see the 

possibility that the U-Net architecture is just not suitable for mapping refugee camp settlement 

extents from Sentinel-2 data with the applied set of hyperparameters. The visual results argue 

against this, as some signs of predicted extents can be seen in the visual data (e.g., Figure 

15, example 8). Second, the FPN architecture required less parameters to achieve even better 

accuracy results, suggesting the architecture can solve the task in a computationally more 

efficient way. And finally, the results show that the choice of encoder and architecture has a 

great influence on the segmentation accuracy and requires a special selection of a suitable 

architecture. 

Regarding the FPN models, the difference in performance between the models with ResNet 

and MobileNet encoder and the FPN EfficientNet is significant. The latter shows an even more 

extreme underfitting behaviour than the U-Nets, as it almost completely failed to learn any 

features of refugee camps. The explanations for the low U-Net performances listed above 

cannot be applied on this model, as the model was trained with less regularization and 

possesses medium numbers of parameters in terms of complexity. Besides architectural 

differences between the encoders, a less extensive manual hyperparameter search can be 

assumed as reason for the bad performance. Due to the time constrains of this work, the 

hyperparameters for the EfficientNet trainings could not be tested as extensively as for the 

other two encoders, possibly leading to the observed underfitting behaviour. 
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3) Are there any patterns among regions or structure types? 

In the analysis, the accuracy metrics distributed among camp locations and structure types 

were compared. Among the accuracy metrics by camp location, no global, large-scale pattern 

became apparent. However, some regional patterns could be observed, for example along the 

Bangladesh-Myanmar border, where the accuracy metrics performed relatively similar for all 

camps (see Figure 16, case area 3). As the SC shows, these camps exhibit the same trends 

in their structural morphologies, as they are highly compact settlements with low to medium 

arrangement. In comparison to VHR-imagery, it becomes apparent that similar building 

materials were used (see Figure 19). Roofing material in this region is often blue or red metal 

sheets, that provides a good contrast from the vegetation or ground, and compact building 

arrangement led to high homogeneity of the spectral signature. The same trend can be 

observed in Sudan, where six camps are aligned in proximity along the White Nile. The 

accuracy metrics for these camps are relatively similar, while their appearance in space also 

exhibits similarities in building structure and dwelling materials. However, the information in 

the SC is not supporting the findings in Sudan, as the camps were categorized into different 

classes, with medium to high compactness and all ranges of geometric arrangement. But as 

Weigand et al. (2023) stated, there is "no one-size-fits-all description of the complex and 

diverse morphological parameters", so even if the camps are categorized into different classes, 

they can still share similar morphologies.  

 

Figure 19: VHR imagery of four camps in Bangladesh. 1: Kutupalong Balukhali Camp; 2: Camp 15; 3: 

Camp 21; 4: Camp 22. Images: Google Earth ©2023 Airbus. 

 

Weigand et al. (2023) found a cluster of camps with similar morphologies close to the Turkish-

Syrian border. The camps show mostly highly compact and highly arranged structures. Despite 

their structural similarities, the model’s ability to map the extents differed. The Saricam camp 

with a planned, strictly aligned layout reached relatively high accuracies (see Figure 16), 

whereas the Islahiye camp with similar structure did not perform as well. The SC shows that 

the Islahiye camp lost compactness over time, which is evidenced by gradual deconstruction 

and removal of some dwellings, as observable in historic VHR-imagery from Google Earth. 
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This finding suggests that the DL model had difficulties mapping the camp extents during times 

of deconstruction.  

To conclude, the model’s ability to map various camp locations differed, and some 

relationships to their structural morphologies could be found. As similar camp structures can 

occur in some regions, regional patterns in model performance were found. Still, different types 

of structures can be found in all regions. Therefore, no overarching statements describing 

supra-regional trends can be deduced from the findings of this study. 

 

Figure 20: Histograms of tiles per structure types, shown in the training and testing dataset. 

 

When comparing the model’s performance among the different morphological structure types, 

the results were rather surprising. The categories with medium compactness and low to 

medium arrangement achieved the highest accuracy values, while the type with high 

compactness and high geometric arrangement performed rather bad. Furthermore, the type 0 

with low compactness and low arrangement performed, in average, better than the type 8 with 

high compactness and high arrangement. To analyse these results, the distribution of data 

among the types needs to be considered. Figure 20 shows a strong imbalance in appearance 

of the structure types among the training (a) and test dataset (b), since spatial exclusivity was 

considered for the dataset split instead. Categories 0, 4, 5 and 7 are highly represented in the 

datasets, and type 8 is the most represented, among both datasets. When comparing the 

accuracy results for these five types, st4 still performed best and st0 second best. No clear 

patterns of improved performance of more compactness or more geometric arrangement can 

be found. Additionally, it is rather surprising, that even though type 8 is the major category, it 

performed under average in most categories. In contrast to this, common behaviour of model 

learning with class imbalanced datasets show bias towards the majority class as it was learned 
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the best (Johnson and Khoshgoftaar 2019). An attempt at explaining the low performance by 

their similar appearance to formal settlements becomes dismissed by the low 

misclassifications among the two settlement classes.  

In summary, the results revealed that some morphological structure types of camps could be 

learned and predicted better than others. More detailed statements on the influence of 

structure on the results do not seem appropriate (at this point), however, as the training and 

test data showed there is a strong class imbalance.  

4) Challenges & Future Research 

It is common knowledge that the model performance depends on the quality of the training 

data, besides the model’s ability to generalize the training data (Goodfellow et al. 2016, p. 414). 

As this works training data relied on, for the most part, manually digitized camp extents of 275 

refugee camps worldwide, the manual visual image interpretation (MVII) did most certainly 

introduce bias. Like Kraff et al. (2020) showed in their study, MVII executed by only one 

interpreter can introduce uncertainties into the data. Furthermore, refugee camps are complex 

settlements and are difficult to map due to unclear boundaries or loose structure. Also, their 

appearance can be very similar to formal settlements nearby. Future research could analyse 

the effects of consulting various people to digitize borders to reduce the subjectivity and 

resulting uncertainties from the training data. Another approach could include the automatized 

creation of labels. Gao et al. (2022b) showed the potential of OBIA generated labels for refugee 

dwelling detection, as the models pretrained on the OBIA labels and finetuned with manual 

labels outperformed all other models.  

Another factor challenging the model performances and limiting the quality of this work’s 

training data is the selection of the WSF2015 as formal settlement layer. By preferring its sole 

usage above incorporating the version of 2019, it was accepted that the formal settlement was 

presented as static while the refugee settlement was dynamic. Furthermore, by creating a 

morphologically closed settlement layer, the formal settlement structure could have been 

overestimated for some regions. This could have affected the model’s ability to learn the class 

formal settlement. The exact influence of the morphologically closed WSF could not be 

analysed in the scope of this work. In future research, model performances with the original 

WSF could be compared with the modified settlement layer. Additionally, an analysis including 

the dynamics of formal settlement could be realised by incorporating the WSF Evolution, which 

presents settlement expansion from 1985 until 2015 (Marconcini et al. 2021).  

Another limiting factor is the class imbalance, introduced by the large satellite image scene. 

The size of 10x10 km2 exceeded the refugee camps area sizes in most cases, resulting in an 

underrepresentation of the camp class in the scenes. This introduced a strong class imbalance 
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towards the class ‘other’, as many camps are surrounded by other land cover types which are 

not settlement (see Figure 11, Johnson and Khoshgoftaar 2019, ). Further research could 

examine the effects of smaller Sentinel-2 scenes on the model’s performance. For this work, 

a data sampling method as well as a weighted loss function was applied to soften the class 

imbalance effects. While testing, no data sampling was applied on the testing dataset. 

Consequently, the class imbalance was reintroduced here. It can be assumed that the models 

strongly overclassified the expansion of refugee settlements as the models did not learn the 

low abundance of settlement pixels in 10x10 km2 scenes, due to the balancing methods. 

Another challenge introduced by the usage of Sentinel-2 scenes is their spatial resolution of 

10 m. With a spatial resolution of 10 m, mixed pixels and the mapping small entities are a 

common problem (e.g., Wurm et al. 2017). This becomes apparent in the model’s confusion 

of other land cover types with refugee camps, as the camps also exhibit similar land cover 

between buildings. Thus, the network needed to generalize on texture and contextual features, 

not only on spectral information. Higher resolution satellite imagery could help improving the 

segmentation results. Moreover, including near-infrared information into the training data could 

possibly improve performance, such as Gao et al. (2022a) showed.  

A challenge often encountered during this work was the occurrence of memory bottlenecks 

due to the large amount of training data. Even though I had access to computationally strong 

hardware, the process of tuning the data loading and model training was very time-intensive 

and accompanied by many memory errors and bottlenecks. However, the high amounts of 

data did possibly increase the model’s accuracies (Stark et al. 2020). 

Due to the scope of this thesis and the available computational power, it was challenging to 

find the optimal hyperparameters for each one of the six DL models. Therefore, the U-Nets as 

well as the FPN-EfficientNet showed underfitting behaviour. With further optimization of 

hyperparameters, e.g., by structural hyperparameter testing using grid search, these model 

trainings could be improved. Especially the FPN-EfficientNet shows promising behaviour. Even 

though it almost completely failed to learn features for distinguishing camps and formal 

settlement, the visual results showed promising capabilities of delineating the boundary and 

the shape of settlements (see Figure 14 and Figure 15, examples 0, 6, 7b). This shows that 

the FPN Efficient-Net has potential for further analysis.  

The findings examined in this thesis can act as a steppingstone for refugee camp research 

with remote sensing. They can function as a starting point for tackling the presented knowledge 

gaps in research, like the strong underrepresentation of refugee camps in satellite-based 

settlement products. Furthermore, to my knowledge, no study assessed the ability of mapping 

refugee camps in a large-scale approach yet. Therefore, the finding of this work can strongly 

contribute to the current research. The findings show that there does not exist a one-fits-all 



6 Conclusion and Outlook 

52 

 

model architecture or encoder tackling the complex problem of mapping refugee settlement 

extents. Future research can focus on finding fitting approaches for different structure types, 

in order to receive the best possible mapping results by morphological structure type. As this 

work identified the FPN architecture to be better suited for mapping refugee camps, this 

architecture could be examined further. Since the ResNet-18 performed best as encoder with 

the most parameters, future analysis should focus on applying deeper models to further 

investigate the influence here. Additionally, a combined approach of architectures can be 

proposed. While the FPN ResNet successfully localised refugee camps and distinguished 

them from formal settlement, the FPN EfficientNet was able to map settlement extents 

accurately. By combining those architectures or deploying them successively, it could lead to 

accurately mapped refugee settlement extents. Despite the constrains of Sentinel-2 data, we 

were able to map refugee settlement extents with only freely available data. This could be 

extended by additionally incorporating Volunteered Geographic Information (VGI), for example 

OSM building footprints.  

 

6 Conclusion and Outlook 

Refugee camp settlements are highly underrepresented in current satellite-based settlement 

products (van den Hoek and Friedrich 2021). Moreover, the research is lacking approaches 

for large-scale mapping of refugee settlement extents. Therefore, this work tested the 

applicability of six DL models for mapping refugee settlement extents for 275 camps worldwide 

with Sentinel-2 satellite imagery. The two DL encoder-decoder architectures U-Net and FPN 

were trained with three different encoders EfficientNet-B0, MobileNet-V2 and ResNet-18. The 

training data consisted of over 620,000 Sentinel-2 satellite images and their corresponding 

labels, with camp extents obtained from OSM and manual digitization, and the WSF2015 as 

the representative layer for formal settlement. 

The results showed that all six models had difficulties mapping the settlement extents, as they 

all output low IoU, Precision and F1 accuracies for refugee camps. However, the results still 

have distinguishable levels of usability: While the models vastly overestimated the camp 

extents, some were able to localise the refugee camps. Furthermore, they successfully 

distinguished between formal and refugee settlement. The comparative analysis identified the 

FPN architecture and the ResNet-18 encoder as the most suitable in comparison for mapping 

refugee settlement extents. This model was used for analysing the accuracies across space 

and among different structure types of refugee camps, which were defined by Weigand et al. 

(2023). Spatial patterns in model accuracy were found in some clusters of camps that exhibit 

similar accuracy values and also show similarities in their morphological structure. 
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Nevertheless, the accuracies among regions were still heterogeneous. Furthermore, no large-

scale pattern in the model’s performance across space could be observed. The analysis of 

accuracies among different structure types identified variations among the model’s 

performance to map refugee settlements.  

The results highlight the complexity of mapping refugee settlement extents worldwide from HR 

multispectral imagery alone, as there is no perfect approach that fits all structures. Refugee 

camps are complex settlements, with building materials spectrally similar to their surroundings, 

unclear boundaries and structures varying across the globe. This work can serve as first 

advancements for further research on mapping the extents of refugee camps in an automatized 

way. Future analysis can optimize the approach presented here by e.g., further tuning 

hyperparameters and applying deeper and more complex models. In this regard, it is of 

importance to consider the structural differences between the refugee camps, as there is no 

one-fits-all solution for mapping refugee camp extents. The knowledge on refugee settlement 

extents can be valuable to NGOs, humanitarian aid organizations or governmental institutions 

for localising camps, estimating needs of inhabitants and infrastructural requirements, and 

thereby helping the most vulnerable population groups. 
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Appendix 

Appendix 1: Distribution of refugee camps across the training data. 

Index Country Number of camps in this study 

1 Nigeria 49 

2 Chad 23 

3 Sudan 21 

4 Ethiopia 20 

5 Turkey 19 

6 Iraq 17 

7 Thailand 11 

8 Guinea 9 

9 Myanmar 8 

10 Dem. Rep. Congo 8 

11 South Sudan 8 

12 Rwanda 6 

13 Kenya 6 

14 Bangladesh 6 

15 Algeria 5 

16 Burundi 4 

17 Ghana 4 

18 China 3 

19 Greece 3 

20 Syria 3 

21 Djibouti 3 

22 Jordan 3 

23 Cameroon 3 

24 Niger 3 

25 Tanzania 2 

26 Burkina Faso 2 

27 Congo 2 

28 Liberia 2 

29 Timor-Leste 2 

30 Nepal 2 

31 Botswana 1 

32 Indonesia 1 

33 Central African Republic 1 

34 Zambia 1 

35 Yemen 1 

36 Mauritania 1 

37 Malawi 1 

38 Mozambique 1 

39 Tunisia 1 

40 Somalia 1 
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Appendix 2: Largest refugee camps included in this study. USA for UNHCR (2023a). 

Name Country Inhabitants (date) Majority origin country 

Kutupalong Bangladesh 877,710 (Feb 2021) Rohingya, Myanmar 

Dadaab Kenya 224,462 (Feb 2021) Primarily Somali refugees 

Kakuma Kenya 163,299 (Feb 2021) 

Primarily South Sudan, Somalia, 

Sudan and the Democratic Republic 

of the Congo 

Azraq Jordan 37,775 (Feb 2021) Syria 

Zaatari Jordan 80,000 (July 2022) Syria 

 

Appendix 3: Confusion Matrix for U-Net with MobileNet-V2 encoder. 

 
pred noData pred other pred formal pred camp actual% 

actual noData 10.69 0.014 0.02 0.02 10.74 

actual other 18.53 30.14 5.36 30.92 84.94 

actual formal 0.03 0.04 0.88 0.58 1.54 

actual camp 0.04 0.09 0.72 1.94 2.79 

pred% 29.29 30.29 6.98 33.46 100 

 

Appendix 4: Confusion Matrix for U-Net with ResNet-18 encoder. 

 
pred noData pred other pred formal pred camp actual% 

actual noData 10.69 0.009 0.01 0.02 10.73 

actual other 16.38 47.66 8.06 12.85 84.94 

actual formal 0.04 0.08 0.77 0.64 1.54 

actual camp 0.05 0.13 0.58 2.02 2.79 

pred% 27.17 47.88 9.42 15.53 100 

 

Appendix 5: Confusion Matrix for U-Net with EfficientNet-B0 encoder. 

 
pred noData pred other pred formal pred camp actual% 

actual noData 10.56 0.003 0.05 0.12 10.73 

actual other 5.52 18.05 12.54 48.84 84.94 

actual formal 0.002 0.02 0.90 0.61 1.54 

actual camp 0.005 0.02 0.68 2.08 2.79 

pred% 16.08 18.09 14.17 51.65 100 

 

Appendix 6: Confusion Matrix for FPN with EfficientNet-B0 encoder. 

 
pred noData pred other pred formal pred camp actual% 

actual noData 10.71 0.01 0.01 0.0 10.73 

actual other 3.67 59.13 22.14 0.00014 84.94 

actual formal 0.002 0.09 1.45 0.000001 1.54 

actual camp 0.01 0.30 2.47 0.000002 2.79 

pred% 14.40 59.53 26.07 0.00014 100 

 



 

64 

 

Appendix 7: Confusion Matrix for FPN with MobileNet-V2 encoder. 

 
pred noData pred other pred formal pred camp actual% 

actual noData 10.68 0.04 0.01 0.002 10.73 

actual other 1.58 64.33 3.29 15.75 84.94 

actual formal 0.001 0.08 0.66 0.79 1.54 

actual camp 0.002 0.17 0.50 2.12 2.79 

pred% 12.26 64.62 4.46 18.66 100 

 

Appendix 8: Confusion Matrix for FPN with ResNet-18 encoder. 

 
pred noData pred other pred formal pred camp actual% 

actual noData 10,67 0,04 0,01 0,006 10.73 

actual other 1,19 70,33 2,93 10,50 84.94 

actual formal 0,005 0,15 0,81 0,57 1.54 

actual camp 0,002 0,23 0,66 1,90 2.79 

pred% 11,86 70,75 4,41 12,97 100 
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