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Abstract— Large areas of informal settlements on the 
slopes of Medellín are exposed to landslide risk, but there 
exists no accurate and up-to date data set on the location and 
size of informal areas. It is thus difficult to develop mitigation 
strategies to reduce the risk for the local population. Here, we 
tackle the issue of inaccurate geodata and apply a CNN for the 
extraction of individual building footprints from orthophotos. 
With it we achieve a more reliable data base for a more precise 
estimation of the amount of exposed population in informal 
areas towards landslides.  
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I. INTRODUCTION 

The city of Medellín, Colombia, is situated in a valley 
surrounded by steep slopes. The fast industrial and economic 
growth in the middle of the 20th century resulted in a 
significant influx of migrants from the countryside who settled 
informally on the margins of the city. In later years, informal 
housing was further intensified due to conflicts between 
paramilitary forces and guerilla groups [1]. 

The uncontrolled, informal growth expanded the city into 
highly inaccessible areas on the steep slopes. Frequently 
occurring heavy rainfall events and the bedrock consisting of 
weak and highly erosive rocks make these informal 
settlements of low-quality building fabric highly prone to 
landslide hazards [2]. To counter the prevailing risk by 
targeted mitigation strategies, it is important to know where 
the areas at risk are and how many people would be affected 
in case of a landslide event. Official population data for 
Medellín incorporate a precise geolocalization of formal 
residents, but they lack large parts of more recent areas of 
informal settlements on the steep slopes [3] which leads to 
severe underestimation of the exposed population.  

Remote sensing imagery of high spatial resolution allow 
for the detection of areas of the urban poor. Their morphologic 
appearance of small-scaled, complex, dense urban structures 
is characteristic for informal settlements [4]. In this paper, we 
deploy a convolutional neural network (CNN) for the 
detection of informal buildings to create an updated, more 
comprehensive building mask compared to official data 
sources. This improved building mask is then applied to 
estimate the number of the exposed population to landslides, 
and compare to official data to fill current spatial knowledge 
gaps.  

II. STUDY AREA AND DATA 

A. Medellìn  

The study area extends to the very edges of the urban zone 
of the city of Medellín which is formed by 16 comunas. In 
recent years the informal settlements have evolved especially 
in the high and steep areas of the surrounding mountains.  

 

Fig. 1. The study area and the neighborhoods of interest. The map also 

includes the buffer zone with dense built-up structures beyond the official 

border with many informal settlements.  

Here, we focus specifically on the barrios in the boundary area 

of the official administrative city area and 500 m beyond to 

include settlements which are today located outside the 

boundary as those areas are exposed to the highest landslide 

risk (Fig. 1).  

B. Remote Sensing Data  

The image data for the extraction of the informal buildings 
is a true orthophoto mosaic (TOP) from the year 2019 
downloaded from GeoMedellín service 
(https://www.medellin.gov.co/mapas/rest/services/ServiciosI
magen/Ortofoto_Medellin_2019/ImageServer). The images 
are terrain corrected and have three spectral bands 
(blue/green/red) and a geometric resolution of 8 cm.  

C. Building Cadastral Data and Census data 

For training, test and validation of the CNN as well as for 
generating estimates of exposed population, we use the 
official building cadaster from the city of Medellín. It contains 
the spatial footprints for most buildings in Medellin as well as 
building height. However, the official building cadaster lacks 
many informal and/or recently constructed buildings. For the 
population modeling, we use the official census data. 
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D. Landslide hazard map 

We use the mass movement threat map from the year 2014 
(https://geomedellin-
mmedellin.opendata.arcgis.com/datasets/gdb-pot-acuerdo48-
de-2014). It contains five categories of criticality: “very low 
threat” (Probability 0 – 0.2%); “low threat” (Probability 0.2 – 
3.2%); “medium threat” (Probability 3.2 – 5.5%); “high 
threat” (Probability 5.5 – 16.5%). 

III. DEEP LEARNING FOR BUILDING DETECTION 

For the detection and classification of individual informal 
buildings in the orthophotos, we train and apply a CNN. CNNs 
allow for semantic segmentation for the prediction of pixel-
dense outputs in images [5]. These networks are able to learn 
representational features to an increasing abstract degree from 
the original input image. A key property, which is a major 
advantage of deep learning compared to conventional 
classification algorithms, is the ability of the algorithm to 
automatically learn meaningful features. Although hand-
crafted textural, geometric, and spectral attributes could also 
lead to accurate classification results, it is hardly possible to 
achieve an optimal balance between discriminability and 
robustness of image object details [6]. 

CNNs consist of multiple layers or levels of 
representation, based on the raw image data. They are 
obtained by simple, non-linear functions applied to the pixel 
values by applying a moving kernel on an image tile. Every 
single created feature map or layer of representation of these 
tiles transforms the previous layer into a higher, slightly more 
abstract level using a general-purpose learning procedure [7]. 
Semantic segmentation using CNNs has proven to yield high 
classification accuracies for mapping of informal settlements 
on the patch level in very high resolution (VHR) imagery [8]. 
Semantic segmentation of individual buildings in VHR 
imagery, however, poses further challenges, e.g. varying roof 
material/types, high built-up densities, and roof pitches can 
severely complicate this task, especially in structurally 
complex built-up areas on steep slopes. Various FCNs in 
related work have successfully achieved the task of building 
extraction in various urban environments, e.g. Mask-RCNN 
[9], or U-NetInceptionResnetv2 [10]. Here, we build upon 
previous work and use an adaption of the popular U-Net 
architecture as it yielded high accuracies [10]. Originally 
developed for medical image analysis [11], it was soon 
applied to other image data. Its architecture is based on the 
FCN for semantic segmentation [5] and has been adapted to 
deal with a small amount of training data, which is a typical 
constraint in biomedical tasks, and also relevant for the task of 
building extraction (Fig. 2).  

 

Fig. 2. The U-NetEfficientNetB2 architecture. 

The network consists of a contracting (encoder) and an 
expanding part (decoder), whereas the latter makes the main 
difference compared to the classical FCN. After reducing the 
resolution and extracting deep features of the original input 
image, the FCN has one up-sampling module to transfer the 
features to the original resolution, performing a pixelwise 
prediction. In contrast, the U-Net consists of a decoder, which 
is nearly equally structured as the encoder. Combined with 
skip connections, features of all four stages in the encoder and 
therefore, features with the whole spectrum of abstraction and 
resolution will be added to the decoder in the respective stage. 
This enables a more effective and detailed localization of the 
objects in the image. In addition, [11] employed considerable 
data augmentation to deal with less training samples and 
improve generalization ability. We modify the traditional U-
Net architecture in combination with an EfficientNet variant 
as a more modern backbone in order to both benefit from the 
reliability of the established U-Net architecture and to take 
into account recent advancements in the field of deep learning 
using segmentation models [12]. EfficientNet [13] has been 
designed to be more efficient in depth, width, and resolution 
while being lighter and more precise in its predictive ability. 

IV. WORK FLOW 

A. U-NetEfficentNetB2 model training and parameters 

The urban morphology in the Medellín area varies 
significantly between formally developed structures with 
mostly high but structured built-up densities in the urban core 
of the city, and informal, unstructured settlement patterns on 
the slopes with high built-up densities. A decreasing density 
gradient with increasing distance from the city center and 
altitude can be observed [14]. To account for these varying 
building morphologies, the U-NetEfficientNetB2 needs to be 
trained with samples from each characteristic urban 
morphology. Reference data has been collected manually by 
visual delineation of individual building footprints in the 
orthophoto. The reference data set was split into training, 
testing and validation data in the proportion 60/20/20. The 
orthophoto data was split into regular image tiles of 224 x 224 
pixels and an overlap of 1/3 between the tiles to reduce border 
effects induced by the convolutions of the U-Net architecture.  

In order to find the best fitting model parameters, we 
empirically tested various set-ups regarding the data input. 
The original geometric resolution of the orthophoto is with 8 
cm very high but in 224 x 224 pixels per image tile, this results 
in a very small field of view of ~18 m and thus lacks spatial 
context for the building extraction. Therefore, we test for 
model performance at 16 cm and 32 cm input data resolutions. 
Initial models have been trained using the same data 
augmentation, learning rate (0.0001), batch size of 4, class 
weights (buildings: 2, background 0.5), and a training time of 
40 epochs. These parameters are further empirically 
optimized, after the best performing image resolution was 
found. As a final step, the trained models are predicted on the 
test tiles using a majority vote for the parts of the image tiles 
areas with multiple predictions due to the 1/3 overlap. For the 
resulting building footprints, a detailed accuracy assessment 
was performed using the reference data set. The most accurate 
mask was selected for the subsequent population 
disaggregation and exposure analysis. 
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B. Landslide exposure analysis 

The main goal of the current study is to quantify the 
amount of population in informal settlements which is 
exposed to landslide risk. Therefore, the extracted building 
footprints are used as spatial proxy information to estimate the 
number of dwellers per housing unit. Census data are 
disaggregated onto the building footprints to assess their 
geographic location and relate it to landslide exposure. 
Estimation of the exposed population at hazardous sites is 
performed by the following equation: 

 𝑃𝑟 =
𝐵𝑎𝑟

𝐵𝑎𝑡
× 𝑃𝑡 () 

where 𝑃𝑟  and  𝐵𝑎𝑟  are the population and the built-up area 
at risk, respectively, and  𝑃𝑡 and  𝐵𝑎𝑡  are the population and 
the built-up area in total for each barrio, respectively.  

The landslide prone areas are represented by the medium 
and high-hazard areas of the landslide hazard map (see section 
II-D).  

V. RESULTS 

A. Building extraction with U-NetEfficientNetB2 

In a first suite of experiments, the optimal balance between 
the geometric resolution and the field of view in terms of 
model performance for various urban morphologies was 
tested. The results are summarized in Table 1: these indicate 
that high image resolutions alone are not the most important 
factor for building extraction. The field of view for the highest 
resolution of 8 cm is too small when 224 x 224 image tiles are 
fed into the model (Fig. 3). In this case almost the entire tile is 
covered by roofs and thus lacking spatial context. Precision is 
reported highest for the 8 cm data but with lowest recall. Thus, 
we use the harmonic mean 8 (F1-score) of both accuracy 
values. It is reported highest for the 16 cm data resolution and 
thus we apply this data for further analysis. In a next step, 
hyperparameters were empirically optimized to find the best 
fitting combination. It has been found that the change of the 
class weights to 1.5 (buildings) and 0.5 (background), 
enhanced data augmentation and a combination of the cross-
entropy and the Jaccard loss function could increase the 
performance of 0.2 as measured by the F1 score. Here, the 
network is able to better balance between foreground and 
background during the training process.  

 

Fig. 3. Prediction effects of the field of view in dependency of the 

geometric resolution (yellow: 8 cm, green: 16 cm, blue: 32 cm). 

TABLE I.  PERFORMANCE COMPARISON OF VARYING RESOLUTIONS 

AND URBAN MORPHOLOGIES FOR THE THREE TESTED IMAGE RESOLUTIONS 

AND THE TUNED PARAMETERS FOR THE 16 CM DATA. LSSD=LOW 

SOCIOECONOMIC STATUS DENSE, LSSL: LOW SOCIOECONOMIC STATUS 

DENSE, C&I=COMMERCE&INDUSTRY, MSS=MEDIUM SOCIOECONOMIC 

STATUS. 

  
8 cm 16 cm 32 cm 

optimized 

(16 cm) 

LSSD 

PRECISION 

RECALL 

F1 

0.87 

0.79 

0.82 

0.85 

0.96 

0.89 

0.81 

0.98 

0.89 

0.89 

0.95 

0.92 

LSSI 

PRECISION 

RECALL 

F1 

0.97 

0.39 

0.56 

0.66 

0.95 

0.79 

0.49 

0.99 

0.66 

0.78 

0.98 

0.87 

C&I 

PRECISION 

RECALL 

F1 

0.92 

0.94 

0.88 

0.92 

0.97 

0.94 

0.68 

0.96 

0.91 

0.95 

0.94 

0.95 

MSS 

PRECISION 

RECALL 

F1 

0.98 

0.67 

0.79 

0.95 

0.94 

0.95 

0.94 

0.98 

0.96 

0.94 

0.90 

0.92 

AVERAGE 

ACC. 

PRECISION 

RECALL 

F1 

0.94 

0.67 

0.76 

0.85 

0.96 

0.90 

0.73 

0.98 

0.86 

0.89 

0.94 

0.92 

The best performing model was applied on all ~700k 
image tiles for the exposure analysis (Fig. 4).  

 

Fig. 4. Examples of prediction results for varying urban morphologies. 
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B. Exposure analysis 

We aim at estimating the potentially affected population in 
informal settlements by landslide hazards. To do so, we use 
population counts from the official census data and we model 
individual population for each of the extracted building 
footprints. These up-dated population data are subsequently 
overlaid with the hazard map for a quantitative assessment of 
exposed population. 

Results show a total area of 9.54 km² of informal buildings 
as an outcome of the CNN compared to 6.70 km² from the 
official cadaster. This reveals a difference of ~42% in the data. 
Consequently a severe underestimation of affected population 
in official data sets is observed. Further, the spatial analysis 
shows that a majority of the informal areas are exposed to a 
much higher landslide risk compared to formal settlements: 
about 35.2% of informal areas are located in areas of high and 
medium risk, while this accounts only for 8.3% of the formal 
areas. 

Naturally, a higher number of identified informal 
buildings in the areas of high and medium landslide risk lead 
also to a higher number of potentially threatened population. 
While the exposure analysis using official cadaster data claims 
about 205,000 slum dwellers being exposed, the use of a more 
complete and up-to-date building data base reveals that a 
much higher share of the population may be affected by 
landslide risk. The exposure analysis for high and medium risk 
shows that about 230,000 slum dwellers are living in 
endangered areas, which accounts for a difference of about 
+12%. Fig. 5 depicts the number of affected population in 
informal settlements for each hazard class and for both data 
sets: the official building cadaster and the extracted building 
footprints using the U-NetEfficientNetB2. 

 

Fig. 5. Results of the exposure analysis for the estimates of the affected 

population by landslides based on the building footprints extracted by the U-

NetEfficientNetB2 and the official building cadaster. 

VI. CONCLUSIONS 

The results reveal that official population data is especially 
inaccurate for the informal settlements and that the percentage 
of the population living in areas with medium and high 
landslide risk is considerably higher than in the cadaster-based 
analysis. Therefore, we conclude by stressing the importance 
of up-to-date geodata for the estimation of the exposed 
population. Dwellers in informally settled areas are not only 
disadvantaged by their poor living conditions, but also by the 

higher landslide risk due to their location in hazardous zones 
[15], and finally also by the fact, that official authorities are 
lacking precise data on their quantities and locations which 
makes it difficult to provide action plans in case of an event. 
High resolution imagery and current Deep Learning methods 
can make important contributions to foster risk reduction. 
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