Space Sustainability by Laser Propulsion DLR Research from Launch to Post-Mission Disposal

Stefan Scharring, Raoul-Amadeus Lorbeer German Aerospace Center (DLR), Institute of Technical Physics

ESA IP-CCI Workshop on Innovative Propulsion ESA ESTEC, Noordwijk, The Netherlands – 29 June 2023

S. Scharring and R.-A. Lorbeer, DLR Institute of Technical Physics, Jun 29, 2023

Laser Propulsion Studies @ DLR Institute of Technical Physics

Spacecraft Propulsion Concepts

- Laser-ablative micropropulsion
- Remotely powered orbital transfer
- Remotely powered launch

Debris Propulsion Applications

- Collision avoidance by photon pressure
- Laser-ablative collision avoidance
- Laser-ablative debris removal by re-entry

Sustainability Issues of Laser Propulsion

Spacecraft Propulsion Concepts

- Laser-ablative micropropulsion
- Remotely powered orbital transfer
- Remotely powered launch

Debris Propulsion Applications

- Collision avoidance by photon pressure
- Laser-ablative collision avoidance
- Laser-ablative debris removal by re-entry

Eco-friendly exhaust	Propellant reduction
✓	x
\checkmark	\checkmark
\checkmark	\checkmark

Risk mitigation	LEO protection
\checkmark	x
\checkmark	x
\checkmark	\checkmark

Activity status

Spacecraft Propulsion Concepts 1998 Laser-ablative micropropulsion Remotely powered orbital transfer Remotely powered launch DLR USAF In-house studies External funding Early 1990's **Debris Propulsion Applications** \star Planned studies Collision avoidance by photon pressure Laser-ablative collision avoidance Laser-ablative debris removal by re-entry

S. Scharring and R.-A. Lorbeer, DLR Institute of Technical Physics, Jun 29, 2023

Micropropulsion w/o moving Components

State of the art

- Demonstration module for micro thruster
 - 180 mW laser diode (10 µs pulse, 1 kHz)
 - 2D MEMS scanner → residual thrust noise
 - Liquid lens (electro-optical)
 - Propellant: graphite
 - USB-powered

Development needs

- Maturation of core technologies for in space use:
 - ns-pulsed Laser
 - Optical Scanner
 - Optics cleaning

Toni Bauer et al., USB-powered technology platform for laser ablative thrust generation, OSA Continuum 4, 1304-1315 (2021), <u>https://doi.org/10.1364/OSAC.419481</u>

Post-mission Disposal powered from Ground

Target applications

- Deorbiting of space craft post mission.
- Business case: Laser-based deorbiting service

DLR heritage

- Conceptual studies comprising:
 - Power to thrust converter
 - Power beaming
 - Orbital maneuvers

Post-mission Disposal powered from Ground

State of the art

- Detailed calculations and concepts for
 - Power to thrust converter
 - Power beaming
 - Orbital maneuvers

Development needs

- Technologies for ground Station:
 - Laser-system, adaptive optics, large aperture power-beaming
- Technologies on S/C:
 - Large aperture laser-power receiver, beam steering, power to thrust conversion

Laser Lightcraft: Launch by Photons + Air

$I_{sp} \to \infty^{"}$

Target applications

- Picosat launchers
- Ground station for sustainable supply of propulsive energy
- ... or from space-based station:
 - Sample return missions (tractor beam)
 - In-orbit logistics

H.-A. Eckel et al., Concept for a Laser Propulsion Based Nanosat Launch System, AIP Conf. Proc. 702, 263 – 273 (2004), <u>https://doi.org/10.1063/1.1721006</u>

DLR heritage

- Parabolic lightcraft with ignition and steering device
- CO₂ high energy laser experiments: plasma diagnostics, impulse pendulum, lab flight experiments
- Beam-riding analysis

S. Scharring and R.-A. Lorbeer, DLR Institute of Technical Physics, Jun 29, 2023

S. Scharring, Impulse analysis of air-breathing pulsed laser propulsion for space applications using a reflective nozzle (in German), PhD thesis, University of Stuttgart (2013), <u>https://elib.dlr.de/82712/</u>

Picosat Launchers with laser-ablative propellant

State of the art

- Free flight in the laboratory (8 m) with air breakdown (no propellant)
- 10 kW pulsed laser → 30 g vehicle
- Beam-riding constraints identified
- Analysis of laser ablation & detonation

Development needs

- High energy ground laser (10 – 100 kJ, 10 – 1000 Hz, near IR)
- High energy transmitter + adaptive optics
- Beam riding design + steering loop
- Propellant optimization

Front view

Side view

LEO Space Debris Nudging by Photon Pressure

6

force [µN]

Target applications

Collision avoidance:

- Debris vs. debris
- Deb. vs. non-maneuvrable S/C
- Service for propellant saving

DLR heritage

- Laser ranging and lightcurve analysis
- Development of high power solid-state lasers
- Measurement of photon pressure at kW laser power level
- Light force raytracing computations for arbitrarily shaped targets
- Network analysis for laser tracking and momentum transfer (LTMT) including weather constraints
- High-level LTMT station design
- Prime of ESA Phase 0 Study (2019 2021)

S. Scharring and R.-A. Lorbeer, DLR Institute of Technical Physics, Jun 29, 2023

S. Karg et al., Laser Propulsion Research Facilities at DLR Stuttgart, HPLA 2014, https://elib.dlr.de/89162/ 400

 $c_m \approx 5 \ \mu N/kW$

Collision probability from covariance overlap Image: ESA / DLR

S. Scharring et al., LARAMOTIONS: a conceptual study on laser networks for near-term collision avoidance for space debris in the low Earth orbit, Appl. Opt. 60(31), H24-H36 (2021), https://doi.org/10.1364/AO.432160

Space Debris Nudging by a LTMT Station Network

Metsähovi

$\Delta x/\Delta t \approx 2.6 \ m/d \text{ from } \Delta v = 10 \ \mu m/s$

State of the art

Feasible station requirements found:

- 0.1" precision tracking with adaptive optics
- Adaptive focusing supported by laser ranging
- 40 kW by beam combining of solid-state lasers
- 2.5 m transmitter
- 0.1" pointing precision

Development needs

- High power beam combining
- High power adaptive optics
- High precision tracking and pointing
- Risk mitigation (thermal, reflections, political)

E. Cordelli et al., Ground-based laser momentum transfer concept for debris collision avoidance, J. Space Saf. Eng. 9(4), 612-624 (2022), https://doi.org/10.1016/j.jsse.2022.07.004

Ground-based Collision Avoidance by a few Laser Pulses

Target applications

- Collision avoidance:
 - Debris vs. debris
 - Debris vs. non-maneuvrable satellites
 - Service for propellant saving
 - Supplement / upgrade for LTMT by photon pressure

DLR heritage

- Single pulse experiments on laser-induce momentum and heat to cm-sized targets
- FEM and raytracing simulations on thermomechanical laser-matter interaction
- Simulations of atmospheric beam propagation and turbulence compensation

Laser pulse energy: 80 J, single pulse (nHelix, GSI Darmstadt)

R. Lorbeer et al., Experimental verification of high energy laser-generated impulse for remote laser control of space debris, Sci. Rep. 8: 8453 (2018), https://doi.org/10.1038/s41598-018-26336-1

Ground-based Collision Avoidance by a few Laser Pulses

Single-pulse Lase

 Δt

State of the art

- Experimental proof-of-principle in vacuum drop experiment
- Analysis of adaptive optics configuration to achieve relevant fluences in LEO

Development needs

- Adaptation of kJ beamline technology from inertial fusion (or coherent beam coupling)
- High energy transmitter with adaptive optics

De-orbiting of small Space Debris

Target applications

- Removal of debris fragments
- Collision avoidance as integrated business case

DLR heritage

- Development of pulsed high energy solid-state lasers
- Research on coherent beam coupling
- Laser-ablative thrust measurements for space debris materials
- Simulation of laser-momentum coupling to arbitrarily shaped targets
- Propagation of laser-modified orbits
- Analysis of operational safety (thermo-mechanical, legal...)

 $h_{perigee} \rightarrow 200 \ km$

Laser power: 33 W, Thrust: 700 µN

B. Esmiller et al., Space debris removal by ground-based lasers: main conclusions of the European project CLEANSPACE, Appl. Opt. 53(31): I45 – I54 (2014), <u>https://doi.org/10.1364/AO.53.000I45</u>

De-orbiting of small Space Debris

State of the art

- Detailled analysis on momentum coupling
- Identification of thermal constraints
- Pulsed laser sources on the 1 Joule level
- Coherent coupling of a few laser emitters

Development needs

- Predictive avoidance for orbit modification
- Debris reconnaissance for target selection/exclusion
- Pulsed laser sources on the 10 20 J level
- Coherent coupling of a few thousand laser emitters
- Transmitters and adaptive optics for high pulse energies

S. Scharring and R.-A. Lorbeer, DLR Institute of Technical Physics, Jun 29, 2023

343-351 (1991), https://doi.org/10.1016/0094-5765(91)90184-7

1 2 2 2 3 0 *

Thank you for your kind attention

Lasers and Space

The things we see are the result of our past, but the way we act is the result of our future.

S. Scharring and R.-A. Lorbeer, DLR Institute of Technical Physics, Jun 29, 2023

Gravitational lensing smiley, credit: NASA & ESA under CC BY 4.0 license