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ABSTRACT:

Many countries, especially in the global south still lack the ability to effectively pursue basic policies, which can lead, in the worst
case, to armed conflicts. Access to markets is a key factor for economic growth and an important component in reducing poverty.
The SDG 9.1.1 addresses the proportion of the rural population who live within 2km of an all-season road, which can be mapped by
the Rural Access Index (RAI), introduced by the World Bank in 2006. This requires the road network of so-called all-season roads,
population distribution and rural areas. We developed a fully automated approach, using remote sensing and other open source
data to calculate the RAI on an annual basis between 2013 and 2020 for the Lake Chad region. We achieved an overall accuracy
between 97.0% and 97.5% in detecting all-season roads using a Random Forest classification. Our method shows similar results to
those published by the World Bank. However, our approach provides a higher spatial and temporal resolution measuring the RAI
compared to previous studies and is independent of field studies.

1. INTRODUCTION

Countries, which lack the ability to effectively pursue domestic
or international policies are often at risk of becoming what is
known as a ’fragile state’. To assess this risk, scientists use the
concept of state capacity, a measure that is closely connected to
the fragile state concept (Besley and Persson, 2010). It meas-
ures the ability of a state to e.g. ensure political stability, charge
taxes and provide essential health or educational supplies to its
population (Woodward, 2004, Müller-Crepon, 2021).
One of these key factors, access to markets, is crucial to eco-
nomic growth and an important component in reducing poverty.
Especially the rural population is often insufficiently connec-
ted to a well-developed infrastructure. The Sustainable Devel-
opment Goal (SDG) 9.1 also accounts for this factor and in-
cludes the development of ”[...] reliable, sustainable and re-
silient infrastructure, including regional and transborder infra-
structure, to support economic development and human well-
being, with a focus on affordable and equitable access for all”
(United Nations, 2022). The connection of rural population
to infrastructure has been translated into the Rural Access In-
dex (RAI) by Roberts et al., 2006 and estimates the propor-
tion of the rural population with adequate access to the trans-
port system, thus directly mapping SDG indicator 9.1.1 (World
Bank Group, 2016). Precisely, the RAI is defined as the pro-
portion of the rural population living within two kilometers (∼
20-25 minutes walking time) of an all-season road. All-season
roads are defined as being navigable throughout the year and are
only temporarily impassable due to weather conditions. The
initial approach to calculate the RAI was based on household
surveys (Roberts et al., 2006). In 2015, the World Bank de-
signed a new GIS-based method to provide more accurate and
cost-effective results by using specific datasets, i.e. the popula-
tion distribution, road infrastructure and the condition of these
roads (World Bank Group, 2016). According to the World Bank
Group, 2016, roads are all-season roads if they are either paved
(with an International Roughness Index (IRI) of less than 6
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meters/km or in excellent, good or fair condition) or unpaved
(with an IRI of less than 13 meters/km or in excellent or good
condition). Such an assessment requires an on-site survey of
the roads or most often a subjective assessment based on high-
resolution imagery, if available. For the RAI calculation, the
World Bank proposes the use of different data sets, which are
partly publicly available, others restricted, or, depending on the
study area, proprietary. The RAI is made partially available
for various years at country level, in some cases Administrat-
ive Level 1 (admin-1 level) (Workman and McPherson, 2019,
World Bank Group, 2019). Other studies calculated the RAI for
only one point in time (Akin and Demirel, 2019, World Bank
Group, 2016), a specific subregion (Akin and Demirel, 2019),
only partly using remote sensing data (Akin and Demirel, 2019,
World Bank Group, 2016, Workman and McPherson, 2019), or
in a GIS environment (Workman and McPherson, 2021, World
Bank Group, 2016).
Our approach consists of using a standardized objective data
basis, including remote sensing data, in order to be able to cal-
culate the RAI consistently across countries with a higher tem-
poral and spatial resolution than provided to date. Only open
source data is used as part of our framework, which allows
researchers and analysts to gather and analyze large amounts
of data without incurring significant costs. The OpenStreet-
Map (OSM) database is used as basis for the road network.
Since in 2013 about 72% and in 2020 still about 40% of the
roads within our study area do not contain information about
the road surface, a Random Forest classification was carried
out on Landsat 8 and Sentinel-2 data for each year to identify
paved pixels. For this paper, we focus on an annual calculation
of the RAI between 2013 and 2020 in the Lake Chad region,
which includes parts of Niger, Chad, Cameroon, and Nigeria.
As spatial units we use both, admin-1 regions and PRIO-GRID
cells therein, a global vector matrix commonly used in social
sciences (Tollefsen et al., 2012). In summary, the study spe-
cifically addresses the following research questions: (I) Is the
differentiation between paved and unpaved road pixels possible
by conducting a land cover classification? (II) Can adequate
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RAI results be obtained using remote sensing and other open
source data? (III) Is it possible to provide a higher temporal
and spatial resolution of the RAI than previous studies show?

2. MATERIALS AND METHOD

2.1 Study Area

For this paper, we focus on the Lake Chad region, which
covers the cross-border region of Niger, Chad, Cameroon, and
Nigeria. A total of eleven admin-1 regions are considered,
one in Niger, two in Nigeria, two in Cameroon and six in
Chad (Figure 1). All of these countries have been affected
by the violent terrorism of Boko Haram, which has built its
success on dysfunctional socioeconomic and political gaps
(United Nations Development Programme, 2022). The conflict
has resulted in more than 2.9 million people being displaced
and according to UN OCHA, about 5.6 million people are
directly facing food insecurity (UN OCHA, 2022). Insufficient
basic social services and the already low availability of natural
resources are increasingly deteriorating the situation. Due
to years of dominating violence and insecurity, thousands
of children lack education, estimations made by UN OCHA
account for more than 1,000 closed schools (UN OCHA, 2022).
The population derives its income mainly from agriculture and
fishing (Masaki and Rodrı́guez-Castelán, 2021). In some cases,
the poverty rate in the region is up to three times higher than in
the rest of the neighbouring countries reaching values between
31% and 72% (Masaki and Rodrı́guez-Castelán, 2021).

Figure 1. Study Area (data source: Global Administrative Areas,
2012, Tollefsen et al., 2012,OpenStreetMap contributors, 2022;

Service Layer Credits: Airbus,USGS,NGA,NASA,CGIAR,
NCEAS,NLS,OS,NMA,Geodatastyrelsen,GSA,GSI and the GIS

User Community; Esri,HERE,Garmin,FAO,NOAA,USGS)

2.2 Data

Only open source data is used as part of our framework.
The gridded population count dataset from WorldPop, available
annually since 2000, is taken as population distribution data
(WorldPop and CIESIN, 2018). The used mapping approach
is a Random Forest-based dasymetric redistribution (Stevens

et al., 2015). This involves matching census-based population
counts with the corresponding administrative units and disag-
gregating them to 3 arc (∼100x100m) grid cells using machine
learning techniques that exploit relationships between popula-
tion densities and a set of spatial covariates (Lloyd et al., 2019).
As a second dataset, the Global Human Settlement Layer of the
Joint Research Centre (JRC) from 2015 with a spatial resolu-
tion of 1km, is used to identify rural regions which is based on
satellite and population data (Pesaresi et al., 2016). The data-
set from 2015 was chosen because it is the closest to our time
period. Only pixels that are not classified as urban centers or
urban clusters according to the DEGURBA (Degree of Urban-
isation) classification scheme and thus have a population dens-
ity of less than 300 inhabitants per km2 are considered in our
study (OECD et al., 2021)
The road network is obtained via OpenStreetMap (OSM) and
queried for the corresponding, retrospective years through the
ohsome API. This API is a data analysis tool, provided by the
Heidelberg Institute for Geoinformation Technology (HeiGIT),
for working with OSM historical data on a global scale. It al-
lows to query and aggregate the recorded vector data and get
insights into the spatial and temporal evolution and associated
annotated attributes (Raifer et al., 2019).
Atmospherically corrected surface reflectance from Sentinel-2
MSI and Landsat 8 OLI/TIRS time series data is used for road
classification. The data is provided along with a quality assess-
ment (QA) band that indicates the presence of clouds (USGS,
2019, ESA, 2015). In addition, the ESA WorldCover 10m clas-
sification and the JRC Global Surface Water Mapping Layer
are used to mask water and wetland areas from the satellite
mosaics. The ESA WorldCover 10m provides a global land
cover classification of 2020, based on Sentinel-1 and Sentinel-2
data. The classification consists of eleven land cover classes,
one of which designates permanent water bodies (Zanaga et al.,
2021). The JRC Global Surface Water Mapping Layer provides
information about spatial and temporal distribution of surface
water with a spatial resolution of 30 meters between 1984 and
2021, based on Landsat 5, 7 and 8 data. Both permanent and
seasonal water surfaces are recorded (Pekel et al., 2016).
The calculations are performed both on admin-1 level (Global
Administrative Areas, 2012), the largest subnational adminis-
trative unit of a country, and on PRIO-GRID, which is a global
vector matrix of 0.5 x 0.5 decimal degrees spatial resolution
and often used in social science research being insensitive of
political boundaries (Tollefsen et al., 2012).

2.3 Methods

2.3.1 Random Forest and Road Classification Within our
approach we defined all season roads as roads that are paved
to calculate the RAI and determine the condition of the roads.
Even though the literature refers to paved roads as all-weather
roads rather than all-season roads which is rated to a higher
standard (World Bank Group, 2016, Workman and McPherson,
2019), our approach does not rely on time-consuming in situ
data that must be collected annually. To acquire this informa-
tion about the road surface, a yearly Random Forest classific-
ation was carried out on Landsat 8 (between 2013 and 2018)
and Sentinel-2 (for 2019 and 2020) data, where paved pixels
were identified. Figure 2A shows a schematic overview of the
workflow.

As first pre-processing step, annual multitemporal composite
mosaics are created based on the available imagery. Secondly,
cloud masking is performed. The provided QA band contains
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Figure 2. Schematic workflow

bitmasks for clouds and cloud shadows. All pixels containing
the corresponding bit value are removed. To avoid misclassific-
ation, permanent and seasonal water as well as wetland areas,
derived from the ESA WorldCover 10m and Global Surface
Water Mapping Layer, are excluded.
In total, 1,648 training samples were collected on the mosaic
of the year 2021 for the five classes paved roads, open ground,
shrub, vegetation and building. The spectral bands Red, Green,
Blue, NIR and SWIR are used for the classification. Addition-
ally, four indices are added to enhance the detection of paved
roads and the distinction between the different classes:
The Normalized Difference Vegetation Index (NDVI) is used
to highlight the signal from vegetation, which highly reflects
in the NIR band (Kamal et al., 2015). The Modified Normal-
ized Difference Water Index (MNDWI) helps to delineate water
and artificial surfaces (e.g. asphalt roads). Both surfaces have
similar spectral properties and reflect especially in the green
wavelength range, the MIR band used improves the distinc-
tion between the two (Xu, 2007). The Normalized Difference
Built-up Index (NDBI) is particularly useful in detecting built-
up areas (Zha et al., 2003). The Burned Area Index (BAI) is
additionally used to identify burn scars (Chuvieco et al., 2002).
As paved roads also have a lower spectral reflectance in the
Red band than vegetation, this index also helps to distinguish
asphalt from other land covers (Kamal et al., 2015). During the
development of the method it has come to attention that burned
areas were often classified as paved roads, which is prevented
by incorporating the BAI. The indices are calculated as follows:

NDV I =
NIR−RED

NIR+RED
(1)

MNDWI =
GREEN −MIR

GREEN +MIR
(2)

NDBI =
MIR−NIR

NIR+NIR
(3)

BAI =
1

(0.1−RED)2 + (0.06−NIR)2
(4)

After randomizing, the training collection is split into 70%
training and 30% testing points. A 10-tree Random Forest clas-
sifier is then carried out, resulting in an overall training accuracy
of 95.80% and overall testing accuracy of 69.44%.
The classification is used as input for assigning the road sur-
face on the annual OSM road network. A road was classified as
being paved by a winner-takes-all approach, i.e. if most of the

road pixels were classified as such. However, if a definite road
surface attribute was given by an OSM user (e.g. asphalt, paved,
concrete, bitumé, unpaved, sand, earth, dirt, gravel, pebble-
stone), this was taken, accounting for their expert-based know-
ledge (Figure 2B).

2.3.2 Calculating the Rural Access Index The calcula-
tion of the RAI follows the approach suggested by the World
Bank Group, 2019. The RAI represents the percentage of the
rural population (RP ) living within 2km of an all-season road
(RProad):

RAI =
RProad

RP
(5)

This is done by determining the sum of the rural popula-
tion within the Area of Interest (AOI). Subsequently, all roads
marked as all-season roads within the rural regions are provided
with a buffer of 2km and the population is then summarized
within these areas (Figure 2C).

2.3.3 Acccuracy Assessment For the accuracy assessment,
stratified random sampling was used to generate reference
points for 2017 and 2019, evaluating the recorded all-season
roads. These two years were chosen to include both Landsat
8 and Sentinel-2 classifications. All-season roads are defined
here as those captured by the Random Forest classification and
related OSM attributes, as described in chapter 2.3.1. As paved
roads represent a rather small proportion in the study site com-
pared to other land surfaces, the stratified random sampling
method allows us to increase the proportion of the underrep-
resented paved class (Olofsson et al., 2014). Our requirement
was to have at least 100 samples in each stratum, which could
be ensured by a proportional redistribution of the sample size.
In total 4,125 samples were distributed randomly throughout
the whole study area for the two points in time, representing
the strata paved and unpaved. The points were assigned expert-
based to be either paved or unpaved using Google Earth high
resolution imagery of the respective year.

3. RESULTS

3.1 Rural Access Index

The results are shown in Figure 3 and Figure 5 on admin-1
levels and in Figure 4 on PRIO-GRID cells. On average, the
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Figure 3. RAI between 2013 and 2020 on admin-1 level (data source: Global Administrative Areas, 2012)

Figure 4. RAI between 2013 and 2020 on PRIO-GRID cell level (data source: Tollefsen et al., 2012,Global Administrative Areas,
2012)

RAI has increased over time and a larger proportion of rural
population has gained access to all-season roads. Admin-1
areas with larger towns or cities (such as in Ville de N’Djamena
in Chad or Borno in Nigeria) show higher RAI values through-
out the whole time series (RAI >10%) than unpopulated re-
gions (RAI <10%). Figure 5 also shows that the RAI in Ville
de N’Djamena increased from 35.66% to 81.01% between 2013
and 2020. This admin-1 region has the highest RAI values
of all processed admin-1 regions throughout the entire ana-
lysis period. This contrasts with the RAI values in Kanem
(Chad), where population density is very low and the smallest
increase was observed compared to other regions, from 0.00%
to 1.53%. This becomes even more noticeable at PRIO-GRID
levels where grid cells containing larger settlements (such as
Biu in south-western Borno, Nigeria, Guélengdeng in cent-
ral north Mayo-Kebbi Est, Chad or N’Djamena in Ville de
N’Djamena, Chad) stand out clearly (RAI between 28% and
82% over time). The same applies to grid cells holding main
road axes to larger nearby cities (such as PRIO-GRID cells in

the southern part of Nord, Cameroon where Ngaoundéré is a
nearby city). Similarly, it is notable that higher RAI values at
admin-1 level often result from single higher values and a large
number of unpopulated areas in PRIO-GRID cells contained
therein (e.g. Diffa in Niger). In general, the RAI never exceeds
35% during the analysis period, with the exception of Ville de
N’Djamena (Chad).
Statistics can be viewed in more detail in Table 2: A positive
trend of 2.33% can be observed for the whole region regard-
ing the rural populations’ walkable access to all-season roads.
For the entire AOI, the value of RAI is 17.17%. Regions in
Cameroon rank the lowest, with a mean value of 11.33%, while
nigerian regions rank the highest, with 22.79%. Chad regions
show the widest range of RAI values, from 0.00% to 81.01%,
with the high values being attributed to Ville de N’Djamena.
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Figure 5. Lineplot of RAI on admin-1 level between 2013 and 2020, colour-coded by country: Chad (blue), Nigeria (turquoise), Niger
(red), Cameroon (yellow).

Country
(considered
regions)

Minimum
[%]

Maximum
[%]

Mean
[%]

Chad (6) 0.00 81.01 16.47
Cameroon (2) 3.91 19.32 11.33
Niger (1) 12.68 29.09 21.79
Nigeria (2) 10.41 35.02 22.79
Study area 0.00 81.01 17.17

Table 2. Country statistics of calculated RAI results.

3.2 Overall Classification Performance

The accuracy assessment in 2017 results in an overall accuracy
of 97.0%, and the 2019 verification shows an overall accuracy
of 97.5%. The Cohen’s Kappa value is 61.6% for the year 2017
and 66.3% for 2019, with values between 61.0% and 80.0% re-
flecting high agreement (Landis and Koch, 1977). For the paved
class, the precision is 54.0% in both years, which means a slight
overestimation on paved roads. The recall shows accuracies of
76.1% and 90.0% for the years 2017 and 2019. The class un-
paved roads has a precision of 99.1% and 99.7% for 2017 and
2019 and a recall of 97.7% in both years (see Table 3).
By comparing our findings with the World Bank’s results,
which have been published for parts of our study area, we find
an overall strong agreement. For 2014, we obtain a RAI of
15.5% for the admin-1 level of Borno (Nigeria), and 15.9%
for Adamawa (Nigeria), the World Bank values of 14.9% and
12.8% correspond respectively (World Bank Group, 2019).

2017 2019

Precision paved 0.540 0.540
unpaved 0.991 0.997

Recall paved 0.761 0.900
unpaved 0.977 0.977

Overall Accuracy 0.970 0.975
Cohen’s Kappa 0.616 0.663

Table 3. Accuracy assessment values for street classifications for
2017 and 2019.

4. DISCUSSION

The main objective of this study was the application of an auto-
mated workflow using freely available remote sensing and geo
data to calculate the Rural Access Index for admin-1 areas
and PRIO-GRID cells for the Lake Chad region between 2013
and 2020. The comparison between the two spatially differ-
ing admin-1 level and PRIO-GRID regions has shown that the
higher spatial resolution of the PRIO-GRID provides more ac-
curate results with respect to the RAI. Thus, changes can be
observed and analyzed more accurately and may serve as valu-
able input for decision makers.
Based on Landsat 8 and Sentinel-2 mosaics as well as the ad-
ditional use of four spectral indices over the time period con-
sidered, a Random Forest classification was performed to detect
paved pixels. Compared to in situ surveys, the remote sensing
data used has the advantage of being available free of charge
over a long period of time and of allowing an automated clas-
sification procedure. The method used is reproducible over dif-
ferent areas of interest, only the training samples would have to
be adjusted, depending on the land use of the region. In gen-
eral, the distinction between paved roads and other land uses
(e.g. roofs, water) is difficult because the spectral properties are
observed to be often similar (Xu, 2007, Kavzoglu et al., 2009).
This could be solved by the initial masking of water areas and
bringing in historical OSM road data serving as road database.
Due to local wind drifts, asphalt road sections may be covered
with sand or vegetation and identified as such. In order to min-
imize such misclassifications, all OSM roads were assigned the
attribute paved, either if the majority of pixels on a road were
detected as asphalt or if a corresponding tag was provided in
the OSM data itself. Given that OSM is an open user-generated
content platform, the quality of the data provided is dependent
on the OSM community and their know-how (Neis and Zielstra,
2014). Since the OSM roads serve as data basis for calculating
the RAI, a possible mis- or non-editing within the road data-
set is inevitable. There can also be large differences in data
quality between countries, as well as between rural and urban
regions (Neis and Zielstra, 2014). Nevertheless, it is an open
source data portal that has seen a strong increase in contribu-
tions in recent years (Neis and Zielstra, 2014). It keeps being
continuously updated and has been further improved for many
years now, thus offering great advantages compared to time-
consuming and expensive in situ data collection or surveys,
which are often rarely available (Workman and McPherson,
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2021). Partial decreases and increases of the RAI within the
admin-1 regions can result from different reasons. One factor
could be misclassifications resulting from the Random Forest
approach, but also due to the used OSM road data. It can hap-
pen, for example, that some roads were added incorrectly by
OSM users the one year and then deleted in the following year.
The RAI calculations depend not only on the input street net-
work, but also on rural areas and population data used. In
this study we included rural areas from 2015, derived from the
Global Human Settlement Layer of the JRC and annual World-
Pop population densities.These data sets represent an approx-
imation to reality by statistical techniques and thus serve as a
valuable data basis for the RAI calculations, independent of ir-
regular official government data collections.
Research by the World Bank has shown that on average 57% of
the rural population of the International Development Associ-
ation (IDA) countries in 2003, including the four countries of
our study area, have access to the transport network (Roberts et
al., 2006). Our results show that the admin-1 regions we ana-
lyzed do not fall within this national average, with the exception
of Ville de N’Djamena (Chad). These results strengthen the as-
sumptions of the World Development Report that population in
poor countries and regions especially have a longer travel time
to reach basic services (World Bank Group, 2003). The report
also states that children from the poorest 20% of the population
from rural areas in Nigeria have to travel more than five times
farther to the nearest elementary school than children from the
richest 20% and even more than seven times further to the next
health facility. In Chad, 80% of the poorest 20% of the pop-
ulation need to travel more than one hour to reach the nearest
health facility (World Bank Group, 2003).

5. CONCLUSION AND OUTLOOK

This study analyzes temporal and spatial changes in the rural
population in the Lake Chad region between 2013 and 2020 in
terms of access to all-season roads. Our approach shows that
the calculation of the RAI based on open source data in com-
bination with remote sensing data yields very good results. The
availability of time series data from Landsat 8, Sentinel-2 and
OSM (in this case road networks) provides a cost-effective and
solid basis for detecting asphalt roads using a Random Forest
classification. By using the WorldPop population data set, an
annual calculation of the RAI is possible. Furthermore, the
approach can be fully automatized making it transferrable to
other world regions, as long as the ground materials show the
same spectral responses as our study area. Otherwise new train-
ing samples must be collected. Our approach can effectively
contribute to the global calculation of SDG 9.1.1, an important
variable for many political, social and natural scientists. The
methodology of the RAI can also be extended to other research
questions, such as the accessibility of educational institutions or
health sites, which allows drawing conclusions about the need
for political action.

6. ACKNOWLEDGEMENTS

REFERENCES

Akin, O., Demirel, H., 2019. Measuring Rural Access Index via
Spatial Information Science. 2019 9th International Conference
on Recent Advances in Space Technologies (RAST), IEEE, 461–
463.

Besley, T., Persson, T., 2010. State Capacity, Conflict, and De-
velopment. Econometrica, 78(1), 1–34.

Chuvieco, E., Martı́n, M. P., Palacios, A., 2002. Assessment of
different spectral indices in the red-near-infrared spectral do-
main for burned land discrimination. International Journal of
Remote Sensing, 23(23), 5103–5110.

ESA, 2015. Sentinel-2 User Handbook.

Global Administrative Areas, 2012. GADM database of Global
Administrative Areas, version 2.0. www.gadm.org.

Kamal, M., Phinn, S., Johansen, K., 2015. Object-Based Ap-
proach for Multi-Scale Mangrove Composition Mapping Using
Multi-Resolution Image Datasets. Remote Sensing, 7(4), 4753–
4783.

Kavzoglu, T., Sen, Y. E., Cetin, M., 2009. Mapping urban
road infrastructure using remotely sensed images. International
Journal of Remote Sensing, 30(7), 1759–1769.

Landis, J. R., Koch, G. G., 1977. The Measurement of Observer
Agreement for Categorical Data. Biometrics, 33(1), 159.

Lloyd, C. T., Chamberlain, H., Kerr, D., Yetman, G., Pis-
tolesi, L., Stevens, F. R., Gaughan, A. E., Nieves, J. J., Hornby,
G., MacManus, K., Sinha, P., Bondarenko, M., Sorichetta, A.,
Tatem, A. J., 2019. Global spatio-temporally harmonised data-
sets for producing high-resolution gridded population distribu-
tion datasets. Big earth data, 3(2), 108–139.

Masaki, T., Rodrı́guez-Castelán, C., 2021. Lake Chad Regional
Economic Memorandum. World Bank.

Müller-Crepon, C., 2021. State reach and development in
Africa since the 1960s: new data and analysis. Political Science
Research and Methods, 1–10.

Neis, P., Zielstra, D., 2014. Recent Developments and Future
Trends in Volunteered Geographic Information Research: The
Case of OpenStreetMap. Future Internet, 6(1), 76–106.

OECD, The European Commission, United Nations Human
Settlements Programme, The World Bank, 2021. Applying the
Degree of Urbanisation: A Methodological Manual to Define
Cities, Towns and Rural Areas for International Comparisons.
Manuals and guidelines / Eurostat, 2021 edition edn, OECD
Publishing, Paris.

Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Wood-
cock, C. E., Wulder, M. A., 2014. Good practices for estimating
area and assessing accuracy of land change. Remote Sensing of
Environment, 148, 42–57.

Pekel, J.-F., Cottam, A., Gorelick, N., Belward, A. S., 2016.
High-resolution mapping of global surface water and its long-
term changes. Nature, 540(7633), 418–422.

Pesaresi, M., Ehrlich, D., Florczyk, A., Freire, S., Julea, A.,
Kemper, T., Soille, P., Syrris, V., 2016. GHS-BUILT R2015B:
GHS built-up grid, derived from Landsat, multitemporal (1975,
1990, 2000, 2014).

Raifer, M., Troilo, R., Kowatsch, F., Auer, M., Loos, L., Marx,
S., Przybill, K., Fendrich, S., Mocnik, F.-B., Zipf, A., 2019.
OSHDB: a framework for spatio-temporal analysis of Open-
StreetMap history data. Open Geospatial Data, Software and
Standards, 4(1).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-1-2023 
39th International Symposium on Remote Sensing of Environment (ISRSE-39) “From Human Needs to SDGs”, 24–28 April 2023, Antalya, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-123-2023 | © Author(s) 2023. CC BY 4.0 License. 128



Roberts, P., KC, S., Rastogi, C., 2006. Rural Access Index: A
Key Development Indicator. Transport Papers, 10, World Bank,
Washington, DC.

Stevens, F. R., Gaughan, A. E., Linard, C., Tatem, A. J., 2015.
Disaggregating census data for population mapping using ran-
dom forests with remotely-sensed and ancillary data. PloS one,
10(2), e0107042.

Tollefsen, A. F., Strand, H., Buhaug, H., 2012. PRIO-GRID: A
unified spatial data structure. Journal of Peace Research, 49(2),
363–374.

UN OCHA, 2022. Lake Chad Basin: Humanitarian Snapshot:
As of 08 December 2022. https://reliefweb.int/report/chad/lake-
chad-basin-humanitarian-snapshot-08-december-2022.

United Nations, 2022. Goal 9: Build resilient infrastructure,
promote inclusive and sustainable industrialization and foster
innovation. https://sdgs.un.org/goals/goal9.

United Nations Development Programme, 2022. Conflict
Analysis in the Lake Chad Basin 2020-2021: Trends,
developments and implications for peace and stability.
https://www.undp.org/africa/publications/conflict-analysis-
lake-chad-basin.

USGS, 2019. Landsat 8 (L8): Data Users Handbook. Reston,
VA, USA.

Woodward, S. L., 2004. Fragile States: Exploring the Concept.
Peace and Social Justice Meeting.

Workman, R., McPherson, K., 2019. Measuring Rural Access
Using New Technologies: Supplemental Guidlines. ReCAP for
DFID, London.

Workman, R., McPherson, K., 2021. Measuring rural access for
SDG 9.1.1. Transactions in GIS, 25(2), 721–734.

World Bank Group, 2003. World Bank Report: Making services
work for poor people. World development report, 26.2004, Ox-
ford Univ. Press, Oxford.

World Bank Group, 2016. Measuring Rural Access: Using new
technologies. Washington, DC.

World Bank Group, 2019. Measuring Rural Access : Update
2017/18. Washington, DC.

WorldPop, CIESIN, 2018. Global High Resolution Popu-
lation Denominators Project: Global 100m Population. ht-
tps://hub.worldpop.org/geodata/listing?id=29.

Xu, H., 2007. Extraction of Urban Built-up Land Features from
Landsat Imagery Using a Thematicoriented Index Combination
Technique. Photogrammetric Engineering & Remote Sensing,
73(12), 1381–1391.

Zanaga, D., van de Kerchove, R., de Keersmaecker, W., Souv-
erijns, N., Brockmann, C., Quast, R., Wevers, J., Grosu, A.,
Paccini, A., Vergnaud, S., Cartus, O., Santoro, M., Fritz, S.,
Georgieva, I., Lesiv, M., Carter, S., Herold, M., Li, L., Tsend-
bazar, N.-E., Ramoino, F., Arino, O., 2021. ESA WorldCover
10 m 2020 v100.

Zha, Y., Gao, J., Ni, S., 2003. Use of normalized difference
built-up index in automatically mapping urban areas from TM
imagery. International Journal of Remote Sensing, 24(3), 583–
594.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-1-2023 
39th International Symposium on Remote Sensing of Environment (ISRSE-39) “From Human Needs to SDGs”, 24–28 April 2023, Antalya, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-123-2023 | © Author(s) 2023. CC BY 4.0 License.

 
129




