

Internet: http://www.dlr.de/emma

EMMA Project Update

Operational Concept for a complete A-SMGCS

Jörn Jakobi, DLR

Integrated Project of the Sixth Framework Programme, Priority 1.4: Aeronautics and Space. sponsored by EC, DG TREN Contract FP6-503192

Why EMMA

The European Commission funded systematically A-SMGCS implementation projects:

→ FP4: DEFAMM (1996 – 1999)

→ FP5: BETA (2000 – 2002)

→ FP6: EMMA (2004 – 2006)

→ which will pave the way forward to harmonise the implementation of A-SMGCS level 1&2

EMMA2 (2006 - 2008)

→ will consider higher levels of A-SMGCS

Objectives

Harmonisation and Consolidation of level 1&2 Concepts

Implementation of a level 1&2 A-SMGCS

Harmonised Implementation of A-SMGCS

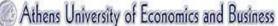
Innovative A-SMGCS-R&D and A-SMGCS-Spin-Offs

Verification and Validation of a level 1&2 A-SMGCS

EMMA Consortium

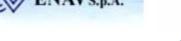
24 Partner, 9 States

24 Months Duration


Budget of 16 Mio. Total

3 Test Sites

v Navegación Aérea

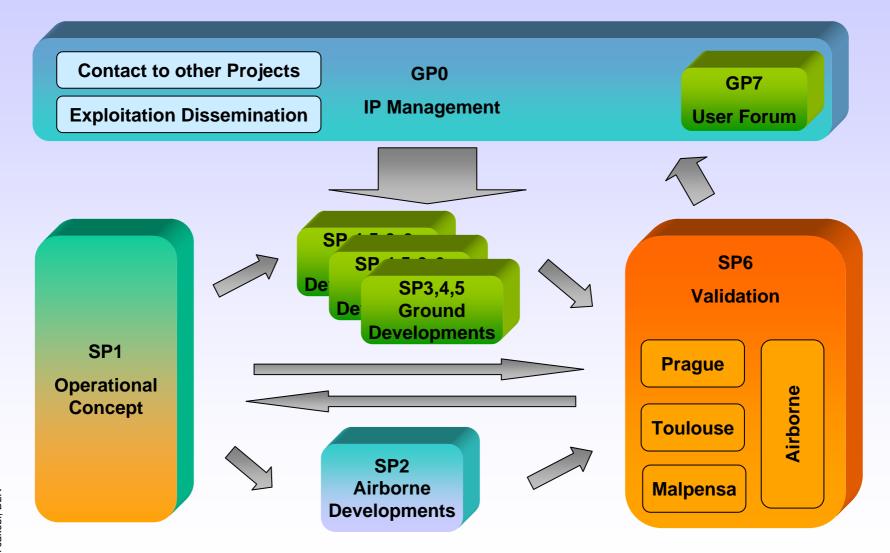


Park Air Systems

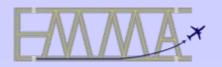
BAE SYSTEMS

DIEHL

ES



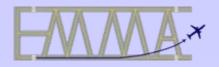
EMMA Project Structure



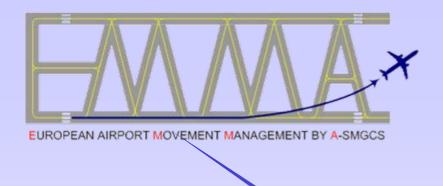
Achievements so far (1)


- A harmonised definition of A-SMGCS levels I & II in partnership with Eurocontrol
- Development of algorithm and analysis tool (MOGADOR by CENA/DSNA) to assess surveillance and alerting performance
- Surveillance performance assessment at the biggest European Hub Paris Charles de Gaulle Airport
- Concept for higher-level services, equipment and procedures outlined
- Functional Hazard Assessment (FHA) and Preliminary System Safety Assessment (PSSA) conducted
- Verification and Validation Methodology harmonised with 3 test sites
- RWY-Incursion Scenarios tested in Real Time Simulation for Prague and Milan Malpensa and Systems tuned to operational needs

Achievements so far (2)


- Cockpit Real Time Simulation performed at Airbus and DLR Cockpit Simulator
- Three different MLAT Systems under development
 - in Toulouse by Thales ATM and
 - in Malpensa by SELEX (formerly Alenia Marconi Systems)
 - In Prague by ERA <u>under operational use</u>
- ADS-B solutions using 1090ES integrated and under test
- Onboard Guidance planned to demonstrate in
 - TUD Test Vehicles
 - DLR Test Aircraft
 - Revenue Aircraft

Dissemination of Results


- Consolidate with EUROCONTROL findings
- Consolidate with C-ATM (Co-operative Air Traffic Management)
- Promoted at different international events (FAA-EUROCONTROL ATM Seminar, ATM Symposium, JISSA, CAATS, A-SMGCS workshops)
- Feedback to ICAO to mature Manual on A-SMGCS in partnership with Eurocontrol
- Feed in EMMA2 (as a perfect starting point same test sites and nearly same partners)
- Feedback to EUROCAE to mature A-SMGCS MASPS
- Co-ordination with other projects (e.g. FLYSAFE, D-TAXI)

Ongoing Issues

- Focus in the remaining runtime of EMMA on
 - Consolidation of concept documents (updates)
 - Toulouse and Malpensa Installations
 - Operational Tests at Prague and Malpensa
 - Shadow Mode Trials at Toulouse
 - D-MAN demonstrations at DLR simulator with Prague scenarios
 - Analysis of Results
 - Recommendation Report
- Consolidate and Disseminate actively the Findings
 (e.g. EMMA Demonstration Day [Prague, 21st/22nd March 2006], Eurocontrol A-SMGCS group)
- Disseminate flyers and a short video

EMMA Operational Concept for a complete A-SMGCS

Integrated Project of the Sixth Framework Programme, Priority 1.4: Aeronautics and Space, sponsored by EC, DG TREN Contract FP6-503192

Background


- EMMA aims to prepare the concept for higher implementation levels of A-SMGCS that will be built up in EMMA2
- Difficulties with existing ICAO, EUOCONTROL, and EUROCAE levels of implementation when describing new services:
 - Currently, 4 A-SMGCS levels
 - But with routing, guidance, and onboard services the system gets more complex (there are more than 2 evolution levels)
 - 4 A-SMGCS functions can hardly be matched to the services received by ATCOs, Pilots, and Vehicles Drivers
 - No care for technical enablers and procedures
 - No evolutionary steps with ICAO requirments

Definition of Services proposed by EMMA

- Service Description is allocated to the user who receives it and not to a primary function
- 3 main users:
 - ATCOs receive
 - Surveillance
 - Routing
 - Control
 - Guidance (ground based guidance) service
 - Pilots receive an onboard service enabled by A-SMGCS
 - Vehicle Drivers receive an onboard service enabled by A-SMGCS

EMMA Approach

4 Work Shops with Partners from

Industry (Airbus, PAS, TATM, SELEX)

– R&D (DLR, NLR, EUROCONTROL)

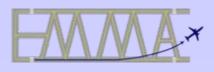
- Users

• ANSPs (ANS_CR, AENA, DSNA, ENAV, DFS)

Airlines (DLH, CSA)

Airports (CSL, AENA)

D131 EMMA OSED-update Document



Definition of Services proposed by EMMA

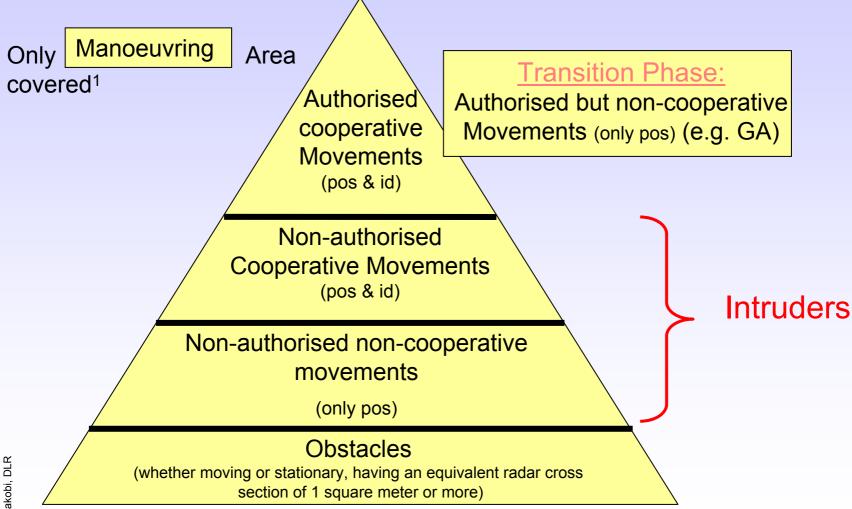
- When defining a service, technical functions and their technical enablers have to be regarded
- It is an iterative process
 - Service

technical Enablers

Definition of Steps of Implementation

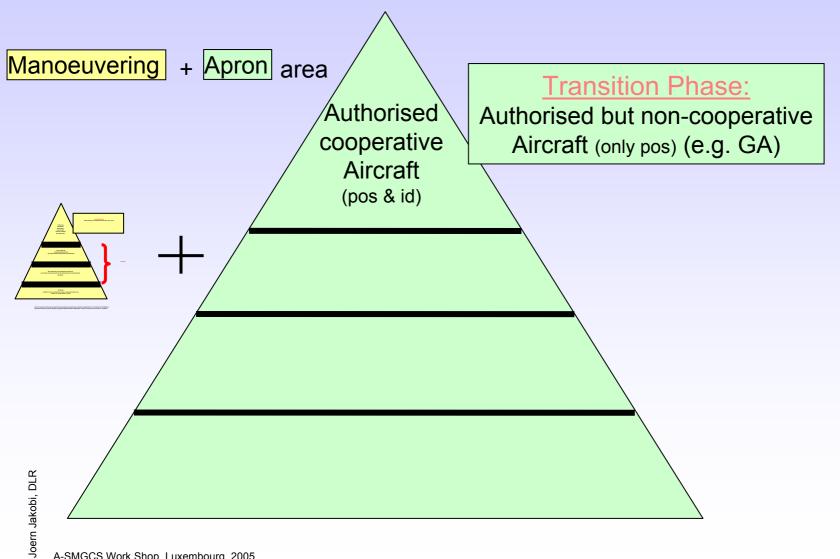
- Different steps of implementation for each individual service that depends on following criteria:
 - (1) Development status of the technical enabler (standardised, on the market or to be developed yet)
 - (2) Development status of the service (already validated or only at the stage of a concept)
 - (3) Degree of interrelations to other functions (complexity)
 - (4) Quality of the enabling equipment (needed reliability, safety)
 - (5) Impact on current operational procedures and size of the changes
 - (6) Cost/benefit considerations

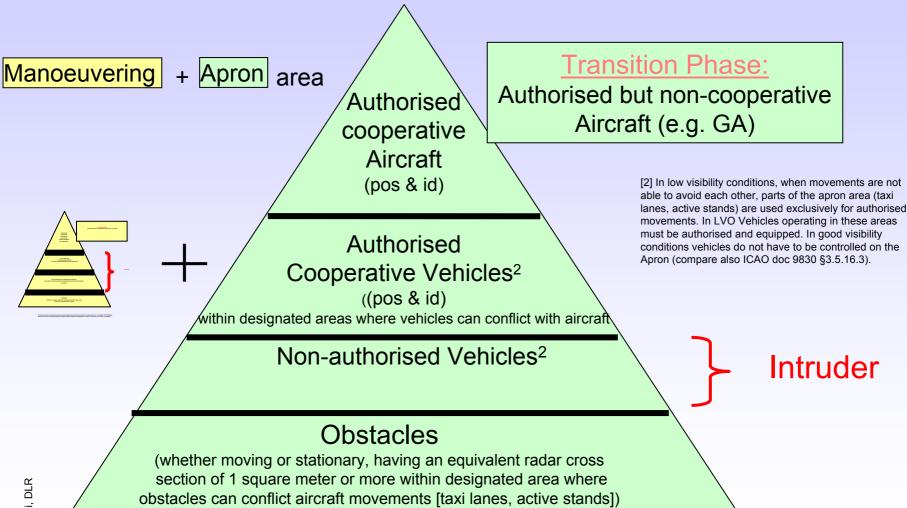
Definition of Functions and Technical Enablers


ATCO - Surveillance

Function	On-board Enabler	Ground Enabler
Provide traffic information	•Mode S transponder •ADS-out	 Cooperative sensors (SSR, Mode-S, ADS-B, GNSS) Non-cooperative sensors (SMR) Sensor data fusion Flight information Vehicle information
Provide traffic context		Aeronautical infoserverMeteo data
Interface with ATCOs		•HMI component

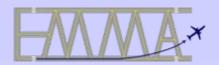
EMMA Surveillance – Service Step 1




EMMA Surveillance – Service Step 2



EMMA Surveillance – Service Step 3 (+VIS3)



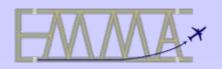
Definition of Services Steps ATCO - Surveillance

Service Steps	Description	Comments
Step 1	 Detection and accurate position of all aircraft, all vehicles, and obstacles Identification of all cooperative aircraft and vehicles 	Manoeuvring area
Step 2	Step1 + Detection and identification of all aircrafts	Movement area
Step 3	 Step2 + Detection and identification of all vehicles Detection of Obstacles 	Movement area •Vis3 - where manoeuvring a/c may come into conflict with each other or with vehicles ICAO doc 9830 §3.5.16.3

Definition of Functions and Technical Enablers ATCO - Control

Function	On-board Enabler	Ground Enabler
Conflict and Incursion Detection and Alerting		•Surveillance function + alerting algorithm
Conflict Resolution		•Resolution algorithm
Support to Communication	Data Link (point to point)Onboard HMI component	•Data Link •Ground HMI component
Support to coordination between ATCOs		Flight DataManagementElectronic Flight Strips

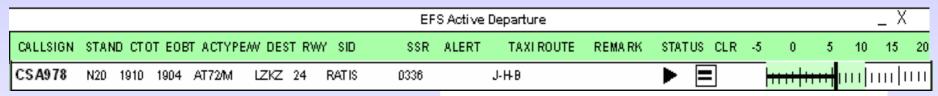
Definition of Service Steps ATCO - Control

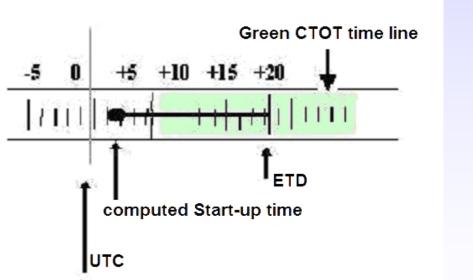

Service Step	Description	Comments
Step 1	•Runway Conflict/Incursion detection and alerting	
Step 2	•Taxiway Conflict/Incursion detection and alerting	Implementation of conflict resolution
Step 3	 Detection of plan / route deviation Support to Communication (CPDLC) ATCO coordination (EFS) 	conflict resolution advisory may be initiated at any step
Step 4	•Conflict/Incursion detection and alerting of apron / stand / gate conflicts	

Definition of Functions and Technical Enablers ATCO - Routing

Function	On-board Enabler	Ground Enabler
Manual Routing	None	Input Devices +simple routing algorithm
Semi-automatic Routing	None	Routing algorithm +Interfaces to external data
Automatic Routing	None	 Routing algorithm + Interfaces to external data Planning algorithm (SU-time, DMAN)

Definition of Service StepsATCO - Routing


Service Steps	Description	Comments
Step 1	Manual Routing	Manual input of a route supported by the shortest taxi route w.r.t. to local standard routes
Step 2	Semi-automatic Routing	Routing service proposes a most suitable route, taking into account control and flight plan information.
Step 3	Automatic Routing	Routing service provides route (track) and time information by aid of a planning function.
Step 4		



Definition of Service Steps ATCO – Routing

Efficient taxi route + Start-up time

Source: BETA

Definition of Service StepsATCO - Routing

Service Steps	Description	Comments
Step 1	Manual Routing	Manual input of a route supported by the shortest taxi route w.r.t. to local standard routes
Step 2	Semi-automatic Routing	Routing service proposes a most suitable route, taking into account control and flight plan information.
Step 3	Automatic Routing	Routing service provides route (track) and time information by aid of a planning function.
Step 4	Automatic Routing + ROP (DMAN)	Planning support is further increased by a departure manager providing optimal runway occupancy times.

Definition of Functions and Technical Enablers

ATCO – Ground Guidance

Function	On-board Enabler	Ground Enabler
Manual Operation	None	 Controller HMI (Switchboard or Lighting Display), Airfield Lighting Control System, Selectively switchable Centre Line Lights and Stop Bars
Automatic Operation	None	Same as above + •Interfaces to Control and Surveillance Function •Automatic Airfield Lighting Control System

Definition of Services Steps ATCO – Ground Guidance

Service Steps	Description	Comments
Step 1	Manual Operation of Ground based Guidance Means	Equipment available on the market.
Step 2	Automatic Operation of Ground based Guidance Means	Automatic generation of guidance information, based on the cleared route and the actual position of the aircraft.



Definition of Functions and Technical Enablers

Pilot ((Flight	Crew)
	•	

Function 1/2	On-board Enabler	Ground Enabler
Airport Moving Map	Own-ship position and state vector Aeronautical database (airport layout)	
Surface Movement Alerting	•AMM •Conflict and Alerting algorithm	
Ground Traffic Display	•ADS-B-in •AMM	•TIS-B (to see non ADS-B aircraft, vehicles)
Traffic Conflict Detection	Conflict and Alerting algorithm	•TIS-B
Ground / Air Database Upload	•Aeronautical database	•Airport Mapping Database server •X-NOTAM •D-ATIS



Definition of Functions and Technical Enablers

Pilot (Flight Crew)

Function 2/2	On-board Enabler	Ground Enabler
CPDLC Ground Clearances and Taxi Route Uplink	•CPDLC (DCL, D-Taxi) •Airport Moving Map	•CPDLC •Routing service
Braking and Steering Cues	Taxi-Route (uplinked or not)Aeronautical database (airport layout)B&S algorithm	
HUD Surface Guidance	Taxi Route (uplinked or not)Own-ship position and state vectorAeronautical database	
Automated Steering A-SMGCS Work Shop, Luxembourg, 2005	Taxi Route (uplinked or not)Own-ship position and state vectorAuto-Pilot for taxiing	30

Definition of Service Steps Pilot (Flight Crew)


Service Steps	Description	Comments
Step 1	Airport Moving MapSurface Movement AlertingBraking and Steering Cue (for landing roll)	•Equipment already available
Step 2	 Ground-Air Database Upload Ground Traffic Display Traffic Conflict Detection CPDLC Ground Clearance and Taxi Route Uplink Braking and Steering Cue (landing roll and taxi) 	•Ground TIS-B + DL needed
Step 3	•HUD Surface Guidance	•HUD is already available for approach
Step 4	•Automated Steering	•Major changes in equipments and procedures

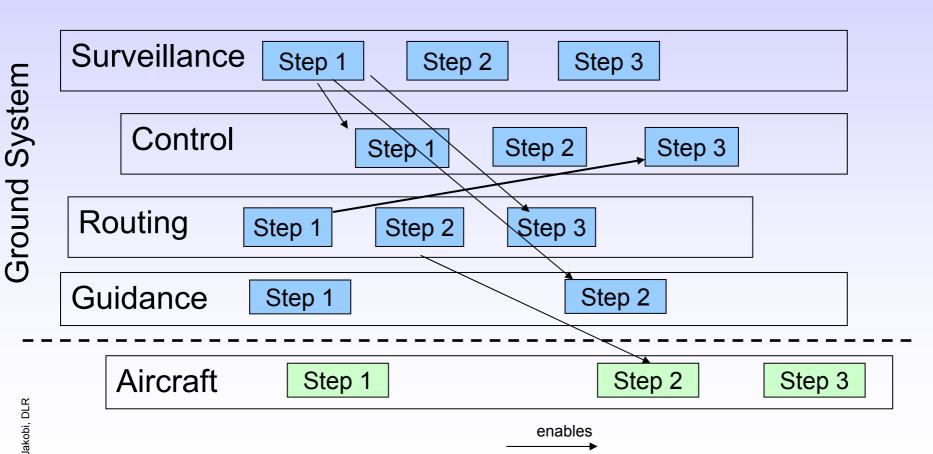
Definition of Functions and Technical Enablers Vehicle Drivers


Function	On-board Enabler	Ground Enabler			
Airport Moving Map	Own-ship position and state vectorAeronautical database (airport layout)				
Surface Movement Alerting	•AMM •Conflict and Alerting algorithm				
Ground Traffic Display	•ADS-B-in •AMM	•TIS-B			
Traffic Conflict Detection	Conflict and Alerting algorithm	•TIS-B			
Support to Vehicles Operations via data link	•Ground/vehicle datalink	•Ground/vehicle datalink			

Definition of Services Steps Vehicle Drivers

Service Steps	Description	Comments
Step 1	•Airport Moving Map inlc. alerts	No ground equipmentEquipment already available
Step 2	Ground-Air DatabaseUploadGround Traffic Display incl. alerts	•Ground TIS-B + DL needed
Step 3	•Dispatch and Guidance via data link	

Definition of Procedures


- Workshop with Users to discuss by which potential procedures the services should be applied
- Procedures defined for higher services but still very prematured
- But we need initial procedures to test them in validation activities (EMMA2)
- Procedures are the <u>core</u> to enable a service to bring benefit
- Initial procedures used to cluster service steps to A-SMGCS implementation packages
- EMMA doc D135 Op. Requirements Doc

Logical Interdependencies between EMMA Service Steps

automation - complexity - new procedures

Logical Interdependencies between EMMA Service Steps

	Expected Steps to each Service									
Surveillance	id/pos everything manoeuvering	S2 Step 1 + id/pos a/c in the movement area				S3 S2 + id/pos vehicles movement area				
Control	C1 Conflict Rwy		C2 Conflict Twy		C3 Plan / Route Deviation		C4 Conflict Apron			
Guidance	G1 G2 Manual switched ground guidance (e.g. Heathrow) Auto switch									
Routing			1 R2 nual Semi-auto						R4 ROP	
Aircraft		A1 AMM		A2 Ground traffic + CPDLC			1	A3 HUD	A4 Auto steerin g	
Vehicles	ıxembourg, 2005	V1 AMM					/3 a link			

ICAO A-SMGCS Categorisation

1. Visibility Conditions

Vis 1 no impact

Vis 2 ATCO cannot see

• Vis 3 Pilots cannot see and avoid (400m < Vis 3 < 75m)

• Vis 4 Pilots cannot taxi (< 75m)

2. Traffic Density

Light (L): 0 < movements < 20

• Medium (M): 20 < movements < 35

Heavy (H): 35 < movements ∞

3. Aerodrome Layout

• Basic (B): = 1 RWY = 1 TWY = 1 Apron

• Simple (S): = 1 RWY \rightarrow 1 TWY \geq 1 Apron

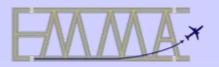
• Complex (C): > 1 RWY > 1 TWY ≥ 1 Apron

ICAO implementation levels

NI R	

Aerodrome	User Surveillance		Conflict	Control		D	Guidance Ground				Level	
Types	User	Surveillance	Prediction and/or Detection	Conflict Analysis	Conflict Resolution	Routing	1*	2×	3*	4*	On Beard	Level
T-1: 1:(B)(L) T-2: 1:(B)(M) T-3: 1:(B)(H)	Controller	X	X	Х	NC	X						
T-4: 1:(S)(L)	Pilot/Vehicle driver		3	[5]	70		Х					I
	System											
T-5: 1:(S)(M) T-6: 1:(S)(H) T-7: 1:(C)(L)	Controller	X	X	X	X	X						
T-10: 2:(B)(L) T-11: 2:(B)(M) T-13: 2:(S)(L)	Pilot/Vehicle driver		X	X	X		Х	Х				II
	System	X	X									
T-8: 1:(C)(M) T-12: 2:(B)(H) T-14: 2:(S)(M)	Controller		X	X	X				Х			
T-16: 2:(C)(L) T-19: 3:(B)(L) T-20: 3:(B)(M)	Pilot/Vehicle driver		X	$X^{1)}$	$X^{1)}$		Х					III
T-22: 3:(S)(L)	System	X	X	X	X	X						
T-9: 1:(C)(H) T-15: 2:(S)(H) T-17: 2:(C)(M) T-18: 2:(C)(H)	Controller		X	X	X							
T-21: 3:(B)(H) T-23: 3:(S)(M) T-24: 3:(S)(H)	Pilot/Vehicle driver		X	$X^{1)}$	X ¹⁾		Х					IV
T-25: 3:(C)(L) T-26: 3:(C)(M) T-27: 3:(C)(H)	System	X	X	Х	X	X				Х		
T-28: 4:(B)(L) T-29: 4:(B)(M) T-30: 4:(B)(H)	Controller		X	X	X							
T-31: 4:(S)(L) T-32: 4:(S)(M) T-33: 4:(S)(H) T-34: 4:(C)(L)	Pilot/Vehicle driver						Х				X	V
T-35: 4:(C)(M) T-36: 4:(C)(H)	System	X	X	X	X	X				Х		

ICAO A-SMGCS Categorisation T1 – T36



	Visibility	conditions /	
1	2	3	4

1	2	3	4
T-1: (B)(L)	T-10; (B)(L)	T-19: (B)(L)	T-28: (B)(L)
T-2: (B)(M)	T-11: (B)(M)	T-20: (B)(M)	T-29: (B)(M
T-3: (B)(H)	T-12: (B)(H)	T-21: (B)(H)	T-30: (B)(H)
T-4: (S)(L)	T-13: (S)(L)	T-22: (S)(L)	T-31: (S)(L)
T-5: (S)(M)	T-14: (S)(M)	T-23: (S)(M)	T-32: (S)(M
T-6: (S)(H)	T-15: (S)(H)	T-24: (S)(H)	T-33: (S)(H)
T-7: (C)(L)	T-16: (C)(L)	T-25: (C)(L)	T-34: (C)(L)
T-8: (C)(M)	T-17: (C)(M)	T-26: (C)(M)	T-35: (C)(M
T-9: (C)(H)	T-18: (C)(H)	T-27: (C)(H)	T-36: (C)(H)

Level II
Level III
Level IV

Level V

ICAO A-SMGCS Categorisation T1 – T36 + EMMA View

1

2

3

4

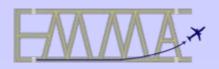
T-3; (B)(H)	T-12; (B)(H) T-13; (S)(L) T-14; (S)(M)	T-21; (B)(H)	T-30: (B)(H)
T-4; (S)(L)		4-22; (S)(L)	T-31: (S)(L)
T-5; (S)(M)		T-23; (S)(M)	T-32: (S)(M)
T-6; (S)(L) T-8; (C)(L) T-9; (C)(H)	T-15: (S)(H) T-16: (C)(L) T-17: (C)(M) T-18: (C)(H)	T-24; (S)(H) T-25; (C)(L) T-26; (C)(M) T-27; (C)(H)	T-33: (S)(H) T-34: (C)(L) T-35: (C)(M) T-36: (C)(H)

Level I

_evel II

Level III

Level IV


Level V

EMMA Matrix for Implementation Packages

L A		VISIBILITY					
Y O U T	TRAFFIC DENSITY	Vis 1	Vis 2	Vis 3	Vis 4		
C O M P	Medium	Implementati on Package (IP) 1	IP2	IP3	IP4		
LEX	Heavy	IP5	IP6	IP7	IP8		

ICAO A-SMGCS Definition

A system providing routing, guidance and surveillance for the control of aircraft and vehicles in order to maintain the declared surface movement rate under all weather conditions within the aerodrome visibility operational level (AVOL) while maintaining the required level of safety.

- SAFETY
- THROUGHPUT

EMMA Matrix for Implementation Packages

Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium				
optional				
Heavy				
Optional				

Logical Interdependencies between EMMA Service Steps

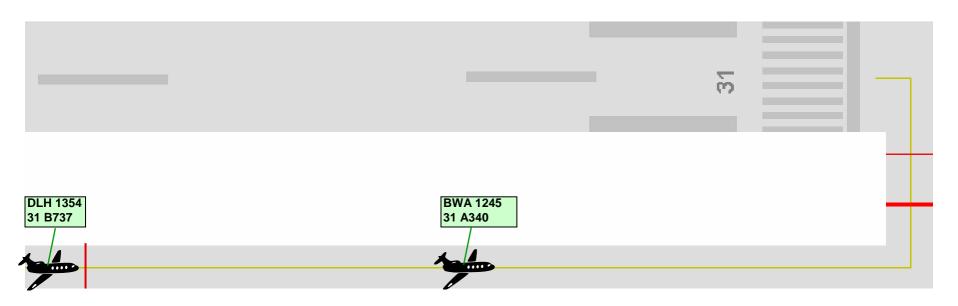
	Expected Steps to each Service									
Surveillance	S1 id/pos everything manoeuvering	S2 Step 1 + id/pos a/c in the movement area					S3 S2 + id/pos vehicles movement area			
Control	C1 Conflict Rwy	C2 Conflict Twy			C3 Plan / Route Deviation				C4 onflict Apron	
Guidance	Manual switc	ched gro		G1 I guida	ance (e.	g. Heathrow	/)	Α	G2 uto sv	
Routing		R Man	1 nual	_	R2 ni-auto	R3 Auto (pla			R R(
Airborne		A1 AMM			A2 Ground traffic + CPDLC			A3 HUD	A4 Auto steerin g	
Vehicles	ıxembourg, 2005	V1 AMM	V2 V3 Ground Traffic Data line							

Proposed Initial Implementation Packages

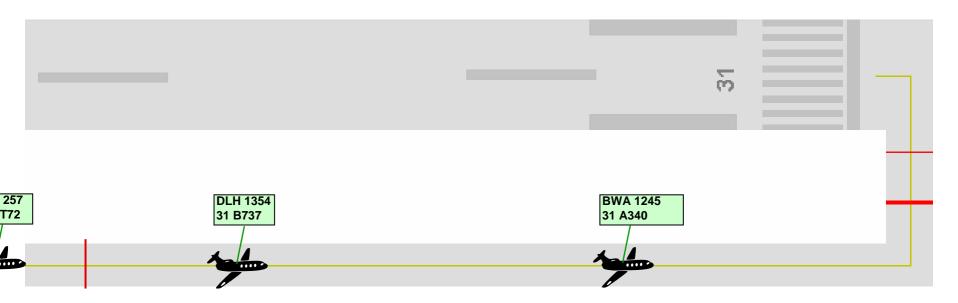
Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium	S1 + C1			
optional				
Heavy				
Optional				

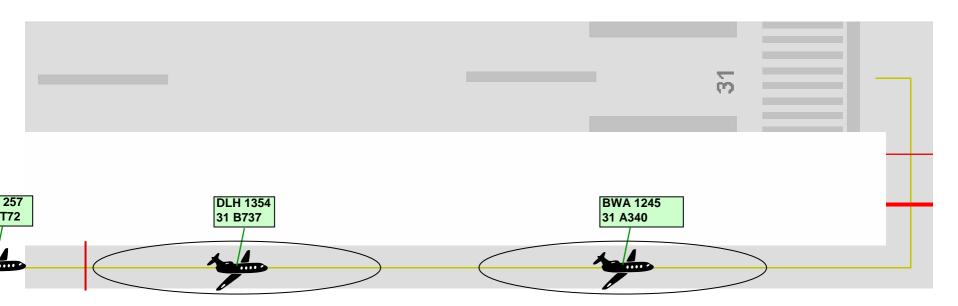
Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium	S1 + C1	S2 + C1		
optional				
Heavy				
Optional				

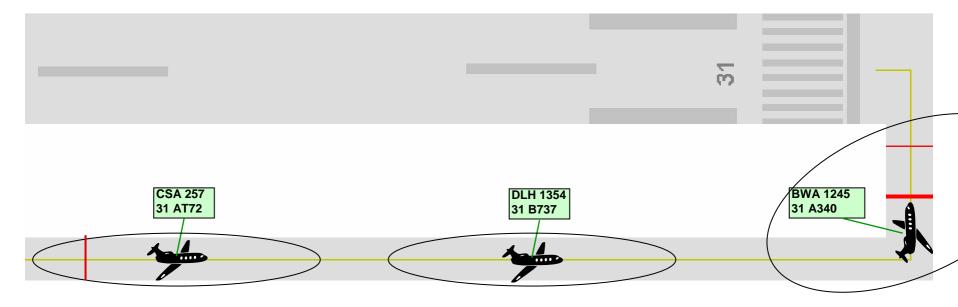
Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium	S1 + C1	S2 + C1	S2 + C1 + A2 + V2	
Heavy				
Optional				



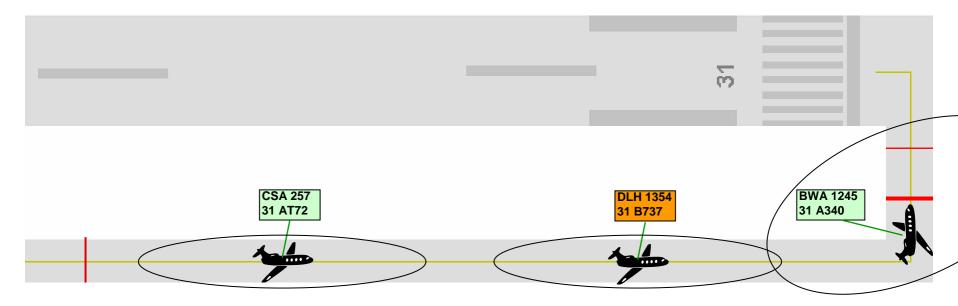
Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium	S1 + C1	S2 + C1	S2 + C1 + A2 + V2 S3 + C4 + R3	
Heavy				
Optional				

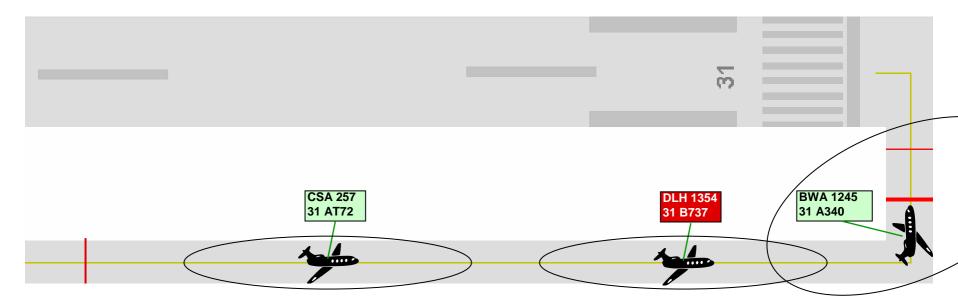

Today


Today with A-SMGCS



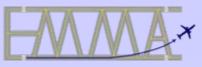
- "Ground STCA" or
- Aircraft approaching stationary traffic (ICAO doc 9830, §3.4.5.7 b) 2))





Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium	S1 + C1	S2 + C1	S2 + C1 + A2 + V2 S3 + C4 + R3	
optional				
Heavy				
Optional				

Proposed Initial Implementation Packages VDLR



Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium	S1 + C1	S2 + C1	S2 + C1 + A2 + V2 S3 + C4 + R3 S2 + C4+ V2+ R3	
Heavy				
Optional				

Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium	S1 + C1	S2 + C1	S2 + C4+ V2+ R3	S2 + C2 + A3 + V2
optional				
Heavy				
Optional				

Proposed Initial Implementation Packages VDLR

Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium	S1 + C1	S2 + C1	S2 + C4+ V2+ R3	S2 + C2 + A3 + V2
optional	A1 + V1 R3/R4 +A2 +V1	A2 + V2 C2+R3/R4+A2+V1	R4 + A2	C4 + A4 + R3/R4
Heavy				
Optional				

Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium	S1 + C1	S2 + C1	S2 + C4+ V2+ R3	S2 + C2 + A3 + V2
optional	A1 + V1 R3/R4 +A2 +V1	A2 + V2 C2+R3/R4+A2+V1	R4 + A2	C4 + A4 + R3/R4
Heavy	S2 + C3 + R4	S2 + C3 + R4	S2 + C4 + V2 + R4	S2 + C3 + A3 + V2 + R4
Optional				

Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium	S1 + C1	S2 + C1	S2 + C4+ V2+ R3	S2 + C2 + A3 + V2
optional	A1 + V1 R3/R4 +A2 +V1	A2 + V2 C2+R3/R4+A2+V1	R4 + A2	C4 + A4 + R3/R4
Heavy	S2 + C3 + R4	S2 + C3 + R4	S2 + C4 + V2 + R4	S2 + C3 + A3 + V2 + R4
Optional	A2 + V2	A2 + V2	A2 + V3	A4 + V3

Proposed Initial Implementation Packages

Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium		S2 + C1 control	S2 + C4+ V2+ R3	S2 + C2 + A3 + V2
optional	A1 + V1 R3/R4 +A2 +V1	A2 + V2 C2+R3/R4+A2+V1	R4 + A2	C4 + A4 + R3/R4
Heavy	S2 + C3 + R4	S2 + C3 + R4	S2 + C4 + V2 + R4	S2 + C3 + A3 + V2 + R4
Optional	A2 + V2	A2 + V2	A2 + V3	A4 + V3

