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Abstract

Fully developed, statistically steady and non-swirling turbulent flow through straight pipes of circular
cross-section is investigated by means of direct numerical simulation. A finite-volume scheme of second-
order accuracy and a semi-implicit time integration scheme of the same order of accuracy are used to
integrate the incompressible Navier—Stokes equations on staggered grids. Significant low-Reynolds-
number effects are observed in the mean axial velocity, the components of the Reynolds stress tensor, the
pressure and vorticity fluctuations, the turbulent kinetic energy budget and two-point velocity correlations.
It is confirmed that turbulence data obtained in the near-wall region do not scale on wall variables. Within
the range of Reynolds numbers investigated, the non-dimensional streak spacing increases slightly with
Re.. © 2001 Elsevier Science Ltd. All rights reserved.

1. Numerical method and computational details

The dynamics of turbulence of an incompressible Newtonian fluid is completely described by
the Navier—Stokes equations, which read in dimensionless form:

V-i=0, (1)
aa . .. |

i . = _ —_ . 2
6t+(u V)u Vp+RerVu (2)
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The velocity vector u is non-dimensionalized with the friction velocity u., the pressure with pu?.
Length and time scales are R, the pipe radius, and R/u,. The turbulence Reynolds number is
defined as Re, = Ru,/v. It can be interpreted as the ratio of an outer length scale R and an inner
length scale v/u,. Egs. (1) and (2) are integrated in a cylindrical (z, ¢, r) coordinate system, using
Schumann’s [4] finite volume technique without subgrid scale model, which essentially leads to
second-order accurate central flux differences in space. The instantaneous pressure gradient is
split into a mean value —VP which balances the viscous friction at the wall and equals 2 when
scaled with R and u,. The pressure fluctuations p’ and the instantaneous velocity vector u
are assumed periodic in axial direction, which makes sense when the pipe is at least 10R
long. Staggered grids are used to integrate the spatially discrete momentum equation in time.
The time-advancement scheme is second-order accurate and semi-implicit, i.e. all convection
and diffusion terms containing derivatives in ¢-direction are treated implicitly. The time step
deduced from a linear stability analysis of the discrete equations takes convective and diffusive
time scales into account. A fractional step method leads to a Poisson equation for the pres-
sure which is solved directly, using FFT in axial and circumferential directions and a tridi-
agonal matrix algorithm. At the wall impermeability and no slip boundary conditions are
satisfied.

The numerical method described is mass and energy conserving but has dispersive errors in the
high wave numbers. It has, however, been confirmed by Choi et al. [3] that second-order accurate
central schemes provide a spectral resolution of the velocity fluctuations for the same number of
grid points.

The computational domain is a pipe of length L = 10R and radius R. This domain is resolved by
grid points which are equidistant in axial and circumferential directions, but non-equidistant in
the radial direction. In terms of wall units, v/u,, the grid spacing varies with the Reynolds number
Re., according to Table 1.

For all Reynolds numbers the grids have (486 x 240 x 70) points. Based on bulk velocity and
pipe diameter D the Reynolds numbers Rep range from 5300 to 10300. The simulations are
started from uncorrelated initial data. After a certain transient time (roughly 24 convective time
scales R/u.) in which correlations build up, a statistically steady state is reached which is inde-
pendent of the initial conditions. This is the moment where time averaging of the data starts. The
simulations were then run over more than 100 convective time scales, so that more than 200
statistically independent time levels could be used for averaging besides spatial averaging in z- and
¢-directions. The smallest time step was 5 x 10~ and about 250 h CPU time on a CRAY T9%4
were needed per case.

Table 1

Grid spacing in wall units for different Reynolds numbers
Reynolds number, Re, Azt (FAP™) s Art Art
180 3.7 4.70 0.36 4.32
250 5.13 6.53 0.5 6.0

320 6.58 8.36 0.64 7.68
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2. Results

In fully developed pipe flow the balance of mean axial momentum reads in wall units:

dlut)

4

dy*

) = 1yt 3)
where (u') = (u.)/u. and y* = yu,/v =R* —r" is the dimensionless distance from the wall. R*
equals the Reynolds number Re,. For infinitely large Reynolds number (Re, — o) this equation
becomes
d(uf)

4

dy*

+ (wul"y =1 (4)

and allows to compute the dimensionless turbulent kinetic energy production rate:

P = gy 4 40 (4 )

00 2 gyt - dy+ dy+

the maximum of which is (P), .. = 0.25. This is the upper bound of the TKE production peak. It
helps to check the quality of the computation. Fig. 1 contains mean velocity profiles for the three
Reynolds numbers in Table 1. For Re, = 180 a comparison with LDA measurements of West-
erweel et al. [5] is provided. It shows good agreement. The universal law contained in the figure is
that derived by Zagarola [6] from measurements in a Re, number range between 3 x 10* and
4 x 10°. We conclude from this figure that even at Rep, = 10300 a logarithmic overlap region has
not yet developed. In that respect pipe flow differs from channel flow (with large or infinite aspect
ratio) where a log region appears much earlier. Profiles of the mean velocity normalized with the

centerline velocity as a function of »/R reveal only minor Reynolds number effects in the core

(uf) ]
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Fig. 1. Mean axial velocity (u}) over wall distance y™: (—) Re, = 180, (---) Re, =250, (----- ) Re. =320, (--)
[uf = (In(y*)/0.436) + 6.13], (+) LDA [5].
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Fig. 2. Mean axial velocity (u.)/u, over pipe radius r/R: (—) Re, = 180, (---) Re, =250, (----- ) Re, = 320.
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) Re, = 320.

region, but steeper near-wall velocity gradients (see Fig. 2). Similar effects are also observed in the
rms velocity fluctuations in Fig. 3. When plotted as functions of the pipe radius, the locations of
their maxima approach the wall as Re, increases. When u__is plotted against y* (not shown) the

zZ,rms

location of its maximum is essentially unchanged. This is in agreement with the situation in a
plane channel [2]. While the maximum value of « - shows only a negligible increase with Re., the

maxima of u, - and ' increase remarkably. From Taylor series expansions of the velocity

,rms r,rms

fluctuations about their wall values (see e. g. Ref. [1]) it is expected that »}  and u! __ divided by

z,rms @,rms
»* should tend asymptotically to constant values near the wall. On the other hand, it is u;" ./ e
that should become constant asymptotically. The logarithmic scale for y* highlights this behavior
for the turbulence intensities in Figs. 4-6 and for the Reynolds shear stress in Fig.7. Obviously, a

scaling with the standard wall variables u, and v/u, is not appropriate to collapse the curves for
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Fig. 4. Rms value: (—) Re, = 180, (---) Re, =250, (----- ) Re. = 320.
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Fig. 5. Rms value: (—) Re, = 180, (---) Re, =250, (----- ) Re, = 320.

different Reynolds numbers. As Antonia and Kim [1] point out, a scaling with the Kolmogorov

length and velocity scales

ny = (v*/e)", v

Uy = (vey)

(6)

(ew being the TKE dissipation rate at the wall) collapses the profiles in the wall region up to the
maximum value of the corresponding variable much better. This is demonstrated in Fig. § for the
axial rms velocity fluctuation, where both scalings are contrasted. Variables with a star are non-

dimensionalized with #,, and vy, viz:

*
Uy ms = uz,rms/UW7

yo=y/n,.

(7)
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Fig. 6. Rms value: (—) Re, = 180, (---) Re, =250, (----- ) Re, = 320.
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Fig. 8. Rms value, ' ___ is normalized with u, and drawn over y*; u?__ is normalized with v, = (vey) /* and drawn over
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Y =y/ny: (—) Re, =180, (----- ) Re, = 320.
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Fig. 10. Reynolds shear stress (u'u!’): (—) Re, = 180, (---) Re, = 250, (----- ) Re, = 320.

A scaling of u, ;s With (u,(r)) in Fig. 9 shows that the axial and circumferential components have
again asymptotic wall values and that their amplitudes increase with the Reynolds number. The
dimensionless Reynolds shear stress versus r/R is plotted in Fig. 10. The limiting curve for infinite
Reynolds number, Re, — oo appears as the straight solid line. For finite Re; this line represents the
sum of the viscous and Reynolds shear stress. Rms pressure fluctuations are shown in Figs. 11 and
12. The Reynolds number effect becomes negligible in the wall region, when p;, is scaled with the

turbulent kinetic energy k. The rms vorticity fluctuations are amplified with increasing Reynolds

number. This is especially true for the streamwise component, @, s, see Fig. 13 and indicates a

strengthening of the quasi-streamwise vortices. The intensification of the wall values of the ¢- and
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Fig. 11. Rms value of the pressure: (—) Re, = 180, (---) Re, = 250, (----- ) Re, = 320.
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Fig. 12. Rms value of the pressure normalized with the turbulent kinetic energy k: (—) Re, = 180, (---) Re, = 250,

z-components is consistent with the increased TKE dissipation rate (DS) at the wall, see Fig. 14.
This entails corresponding effects in the viscous diffusion term (VD) at the wall. The production
term (PR) approaches its maximum value of 0.25 at y* =~ 14 as Re, — oo. Fig. 15, finally, contains
two-point correlations in ¢-direction of the axial velocity fluctuations for the three Reynolds
numbers Re, = 180, 250 and 320. The minima of the axial velocity correlations provide half the
streak spacing. A slight increase in the streak spacing A from, approximately, 114 to 128 can be
observed, when Re, increases from 180 to 320.
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Fig. 14. Budget of the turbulent kinetic energy. The symbols PR, DS, TD and VD stand for production and dissipation
rates, turbulent and viscous diffusion. All terms are non-dimensionalized by u*/v: (—) Re. = 180, (---) Re, = 250,
(----- ) Re, = 320.

3. Conclusions

Direct numerical simulations of turbulent pipe flow have been performed for three different
Reynolds numbers and the effects of Reynolds number on turbulence quantities are investigated.
In contrast to plane channel flow, a logarithmic overlap region does not exist for Reynolds
numbers up to Rep = 10300. Nevertheless, the effects of increasing Reynolds number are quali-
tatively the same as for turbulent plane channel flow: the locations of the maxima of the rms
velocity fluctuations and of the Reynolds shear stress (u”u”) approach the wall as Re, increases.
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Fig. 15. Correlations function in ¢-direction, taken at y* = 14: (—) Re, = 180, (---) Re, = 250, (----- ) Re, = 320.

s "u")/y+ tend asymptotically to constant values
near the wall. These asymptotic values depend on the Reynolds number. It has been shown that
scaling with the Kolmogorov length and velocity scales is more approximate than scaling with
standard wall variables.

+ + gt + gt +2 1,11
The terms u/,  /v", uwms/y ,ul /yt and (u
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