A short history of unconventional thoughts

1714 It is unthinkable to have a precision better than 3 seconds for a clock aboard a ship. (Isaac Newton)

- 1714 It is unthinkable to have a precision better than 3 seconds for a clock aboard a ship. (Isaac Newton)
- 1821 You have got nothing in mind than collecting bugs, chasing, and catching rats. You will do nothing than shame yourself and your family. (Robert Waring Darwin, father of Charles Darwin)

- 1714 It is unthinkable to have a precision better than 3 seconds for a clock aboard a ship. (Isaac Newton)
- 1821 You have got nothing in mind than collecting bugs, chasing, and catching rats. You will do nothing than shame yourself and your family. (Robert Waring Darwin, father of Charles Darwin)
- **1870** Bacteria are woolgathering. (Rudolf Virchow)

- 1714 It is unthinkable to have a precision better than 3 seconds for a clock aboard a ship. (Isaac Newton)
- 1821 You have got nothing in mind than collecting bugs, chasing, and catching rats. You will do nothing than shame yourself and your family. (Robert Waring Darwin, father of Charles Darwin)
- **1870** Bacteria are woolgathering. (Rudolf Virchow)
- Almost nothing can be expected concerning taking photos in natural colours.
 Not only for the near future but, for theoretical reasons, never.
 (Emil du Bois-Reymond, German physician and physiologist)

- 1714 It is unthinkable to have a precision better than 3 seconds for a clock aboard a ship. (Isaac Newton)
- 1821 You have got nothing in mind than collecting bugs, chasing, and catching rats. You will do nothing than shame yourself and your family. (Robert Waring Darwin, father of Charles Darwin)
- **1870** Bacteria are woolgathering. (Rudolf Virchow)
- Almost nothing can be expected concerning taking photos in natural colours.
 Not only for the near future but, for theoretical reasons, never.
 (Emil du Bois-Reymond, German physician and physiologist)
- 1897 Those rays of Mr. Röntgen will turn out to be fraud. (William Thomson (Lord Kelvin))

- 1714 It is unthinkable to have a precision better than 3 seconds for a clock aboard a ship. (Isaac Newton)
- 1821 You have got nothing in mind than collecting bugs, chasing, and catching rats. You will do nothing than shame yourself and your family. (Robert Waring Darwin, father of Charles Darwin)
- **1870** Bacteria are woolgathering. (Rudolf Virchow)
- 1890 Almost nothing can be expected concerning taking photos in natural colours. Not only for the near future but, for theoretical reasons, never. (Emil du Bois-Reymond, German physician and physiologist)
- 1897 Those rays of Mr. Röntgen will turn out to be fraud. (William Thomson (Lord Kelvin))
- 1899 All that can be invented has already been invented. (Charles Duell, U.S. patent office)

- 1714 It is unthinkable to have a precision better than 3 seconds for a clock aboard a ship. (Isaac Newton)
- 1821 You have got nothing in mind than collecting bugs, chasing, and catching rats. You will do nothing than shame yourself and your family. (Robert Waring Darwin, father of Charles Darwin)
- **1870** Bacteria are woolgathering. (Rudolf Virchow)
- 1890 Almost nothing can be expected concerning taking photos in natural colours. Not only for the near future but, for theoretical reasons, never. (Emil du Bois-Reymond, German physician and physiologist)
- 1897 Those rays of Mr. Röntgen will turn out to be fraud. (William Thomson (Lord Kelvin))
- 1899 All that can be invented has already been invented. (Charles Duell, U.S. patent office)
- 1901 The world-wide demand for motor vehicles will not exceed 1 million already due to the lack of available chauffeurs. (Gottlieb Daimler, pioneer of internal-combustion engines)

- 1714 It is unthinkable to have a precision better than 3 seconds for a clock aboard a ship. (Isaac Newton)
- 1821 You have got nothing in mind than collecting bugs, chasing, and catching rats. You will do nothing than shame yourself and your family. (Robert Waring Darwin, father of Charles Darwin)
- **1870** Bacteria are woolgathering. (Rudolf Virchow)
- 1890 Almost nothing can be expected concerning taking photos in natural colours. Not only for the near future but, for theoretical reasons, never. (Emil du Bois-Reymond, German physician and physiologist)
- 1897 Those rays of Mr. Röntgen will turn out to be fraud. (William Thomson (Lord Kelvin))
- 1899 All that can be invented has already been invented. (Charles Duell, U.S. patent office)
- 1901 The world-wide demand for motor vehicles will not exceed 1 million already due to the lack of available chauffeurs. (Gottlieb Daimler, pioneer of internal-combustion engines)
- 1906 Horses will outlive all times. Automobiles are just a temporary phenomenon. (Wilhelm II, German Emperor)

- 1714 It is unthinkable to have a precision better than 3 seconds for a clock aboard a ship. (Isaac Newton)
- 1821 You have got nothing in mind than collecting bugs, chasing, and catching rats. You will do nothing than shame yourself and your family. (Robert Waring Darwin, father of Charles Darwin)
- **1870** Bacteria are woolgathering. (Rudolf Virchow)
- 1890 Almost nothing can be expected concerning taking photos in natural colours. Not only for the near future but, for theoretical reasons, never. (Emil du Bois-Reymond, German physician and physiologist)
- 1897 Those rays of Mr. Röntgen will turn out to be fraud. (William Thomson (Lord Kelvin))
- 1899 All that can be invented has already been invented. (Charles Duell, U.S. patent office)
- 1901 The world-wide demand for motor vehicles will not exceed 1 million already due to the lack of available chauffeurs. (Gottlieb Daimler, pioneer of internal-combustion engines)
- 1906 Horses will outlive all times. Automobiles are just a temporary phenomenon. (Wilhelm II, German Emperor)
- 1911 Aeroplanes are interesting but worthless for the military. (Marshal Ferdinand Foch, French commander)

- 1714 It is unthinkable to have a precision better than 3 seconds for a clock aboard a ship. (Isaac Newton)
- 1821 You have got nothing in mind than collecting bugs, chasing, and catching rats. You will do nothing than shame yourself and your family. (Robert Waring Darwin, father of Charles Darwin)
- **1870** Bacteria are woolgathering. (Rudolf Virchow)
- 1890 Almost nothing can be expected concerning taking photos in natural colours. Not only for the near future but, for theoretical reasons, never. (Emil du Bois-Reymond, German physician and physiologist)
- 1897 Those rays of Mr. Röntgen will turn out to be fraud. (William Thomson (Lord Kelvin))
- 1899 All that can be invented has already been invented. (Charles Duell, U.S. patent office)
- 1901 The world-wide demand for motor vehicles will not exceed 1 million already due to the lack of available chauffeurs. (Gottlieb Daimler, pioneer of internal-combustion engines)
- 1906 Horses will outlive all times. Automobiles are just a temporary phenomenon. (Wilhelm II, German Emperor)
- 1911 Aeroplanes are interesting but worthless for the military. (Marshal Ferdinand Foch, French commander)
- 1932 There is not even the least evidence that we will ever be able to develop nuclear power technology. (Albert Einstein)

- 1821 You have got nothing in mind than collecting bugs, chasing, and catching rats. You will do nothing than shame yourself and your family. (Robert Waring Darwin, father of Charles Darwin)
- **1870** Bacteria are woolgathering. (Rudolf Virchow)
- 1890 Almost nothing can be expected concerning taking photos in natural colours. Not only for the near future but, for theoretical reasons, never. (Emil du Bois-Reymond, German physician and physiologist)
- 1897 Those rays of Mr. Röntgen will turn out to be fraud. (William Thomson (Lord Kelvin))
- 1899 All that can be invented has already been invented. (Charles Duell, U.S. patent office)
- 1901 The world-wide demand for motor vehicles will not exceed 1 million already due to the lack of available chauffeurs. (Gottlieb Daimler, pioneer of internal-combustion engines)
- 1906 Horses will outlive all times. Automobiles are just a temporary phenomenon. (Wilhelm II, German Emperor)
- **1911** Aeroplanes are interesting but worthless for the military. (Marshal Ferdinand Foch, French commander)
- 1932 There is not even the least evidence that we will ever be able to develop nuclear power technology. (Albert Einstein)
- 1943 I think that there is a world market for maybe five computers. (Thomas J. Watson, IBM)

- **1870** Bacteria are woolgathering. (Rudolf Virchow)
- 1890 Almost nothing can be expected concerning taking photos in natural colours. Not only for the near future but, for theoretical reasons, never. (Emil du Bois-Reymond, German physician and physiologist)
- 1897 Those rays of Mr. Röntgen will turn out to be fraud. (William Thomson (Lord Kelvin))
- 1899 All that can be invented has already been invented. (Charles Duell, U.S. patent office)
- 1901 The world-wide demand for motor vehicles will not exceed 1 million already due to the lack of available chauffeurs. (Gottlieb Daimler, pioneer of internal-combustion engines)
- 1906 Horses will outlive all times. Automobiles are just a temporary phenomenon. (Wilhelm II, German Emperor)
- 1911 Aeroplanes are interesting but worthless for the military. (Marshal Ferdinand Foch, French commander)
- 1932 There is not even the least evidence that we will ever be able to develop nuclear power technology. (Albert Einstein)
- **1943** I think that there is a world market for maybe five computers. (Thomas J. Watson)
- 1985 Portable computers might be interesting reporters for taking notes on the way. But for the common user they are meaningless and there is no software for them. (Steve Jobs)

- 1897 Those rays of Mr. Röntgen will turn out to be fraud. (William Thomson (Lord Kelvin))
- 1899 All that can be invented has already been invented. (Charles Duell, U.S. patent office)
- 1901 The world-wide demand for motor vehicles will not exceed 1 million already due to the lack of available chauffeurs. (Gottlieb Daimler, pioneer of internal-combustion engines)
- 1906 Horses will outlive all times. Automobiles are just a temporary phenomenon. (Wilhelm II, German Emperor)
- 1911 Aeroplanes are interesting but worthless for the military. (Marshal Ferdinand Foch, French commander)
- 1932 There is not even the least evidence that we will ever be able to develop nuclear power technology. (Albert Einstein)
- **1943** I think that there is a world market for maybe five computers. (Thomas J. Watson)
- 1985 Portable computers might be interesting reporters for taking notes on the way. But for the common user they are meaningless and there is no software for them. (Steve Jobs)
- 1986 The Chernobyl power plant exhibits safe and reliable control systems protecting the reactors against any disturbances via three independently operating safety systems. (Vitali Sklyarow, Ukrainian Minister for Energy Affairs)

- 1897 Those rays of Mr. Röntgen will turn out to be fraud. (William Thomson (Lord Kelvin))
- 1899 All that can be invented has already been invented. (Charles Duell, U.S. patent office)
- 1901 The world-wide demand for motor vehicles will not exceed 1 million already due to the lack of available chauffeurs. (Gottlieb Daimler, pioneer of internal-combustion engines)
- 1906 Horses will outlive all times. Automobiles are just a temporary phenomenon. (Wilhelm II, German Emperor)
- 1911 Aeroplanes are interesting but worthless for the military. (Marshal Ferdinand Foch, French commander)
- 1932 There is not even the least evidence that we will ever be able to develop nuclear power technology. (Albert Einstein)
- **1943** I think that there is a world market for maybe five computers. (Thomas J. Watson)
- 1985 Portable computers might be interesting reporters for taking notes on the way. But for the common user they are meaningless and there is no software for them. (Steve Jobs)
- 1986 The Chernobyl power plant exhibits safe and reliable control systems protecting the reactors against any disturbances via three independently operating safety systems. (Vitali Sklvarow, Ukrainian Minister for Energy Affairs)

1998 Newspapers will be dead by the year 2000. (Bill Gates)

Laser Propulsion Lectures on Unconventional Space Propulsion

911 Aeroplanes are interesting but worthless for the militan Part 1: Introduction 932

IRS Institute of Space Systems, University of Stuttgart February 10, 2023

Dr. Stefan Scharring Institute of Technical Physics, Dances via three independently operating safety systems. German Aerospace Centre (DLR) initian Minister for Energy Affairs)

1998 Newspapers will be dead by the year 2000. (Bill Gates

1980 People who have a vision should turn to a doctor. (Helmut Schmidt, German chancellor)

Laser Propulsion

Lectures on Unconventional Space Propulsion

Part 1: Introduction

IRS Institute of Space Systems, University of Stuttgart February 10, 2023

Dr. Stefan Scharring

Institute of Technical Physics, German Aerospace Centre (DLR)

Wissen für Morgen

Institute of Technical Physics

Head of Institute: Prof. Dr. Thomas Dekorsy

Laser systems for:

Aeronautics

Flight instruments

Space Detection and characterization of space debris

Security Standoff detection

Defense

Long-range laser effectors

Laser Applications: Science, Vision and Fiction

Death ray

Definitions and Examples

Laser Thruster

Thruster in which laser energy contributes substantially and indispensably to kinetic energy.

Lightcraft (in the broader sense)

Thruster based on electromagnetic radiation (laser or microwave)

Lightcraft (in the narrower sense)

Thruster based on detonations induced by a remote laser source

Experiment No. 1: Thrust from photon pressure

- Can you exert thrust to a wall using a laser pointer? If so, how much?
 - Momentum coupling from photon pressure: ~ 5 nN/W
 - Laser pointer power: < 1 mW
 - Exerted thrust: ~ 5 pN
- How can you increase the thrust?
 - Increase laser power
 - Create a focal point

Compress irradiation

 \rightarrow induce material reaction + recoil

Experiment No. 2: Thrust from laser-induced material ablation

Demonstration experiment from the EU study "CLEANSPACE" at DLR – Institute of Technical Physics

Laser:

- Average laser power: 33 W
- Laser pulse duration: 3 ns
- Laser pulse power: 94 MW
- Wavelength: λ = 1064 nm

Focus:

- Target: aluminum
- Size: 3 mm diameter
- Intensity: 190 MW/mm²
- Fluence: 4.7 J/cm²

Thrust: 700 μN

• Momentum coupling: $c_m = 21 \mu N/W$

Laser-matter Interaction Phenomena and Propulsion Principles

Part I. Introduction

Part II. Lasers

Part III. Power beaming propulsion

- Absorption and/or reflection
 → Laser photon propulsion
- Absorption and conversion

 → Laser photovoltaic propulsion
- Heating and ionization
 → Laser-thermal propulsion

Part IV: Laser launchers

Detonation and combustion
 → Laser Lightcraft

Part V: Laser-ablative propulsion

Material ablation

Part VI. Spacecrafts' debris propulsion

Material ablation

THE Figure of Merit in Laser Propulsion

• Impulse (Momentum) coupling coefficient c_m

$$c_m = \frac{F}{P_L} = \frac{\Delta p}{E_L}$$

F: thrust P_L : average laser power Δp : imparted momentum E_L : laser pulse energy

• System momentum coupling coefficient $c_{m,sys}$

$$c_{m,sys} = \frac{F}{P_{el}} = \eta_{eo} \frac{F}{P_L}$$

- = Thrust/power ratio in electric propulsion
- Efficiency of electro-optical energy conversion η_{eo}

A brief History of Laser Propulsion

1953	E. Sänger	Concept for photon rockets
1967	G.A. Askarian	Experimental proof of laser-ablative momentum
1972	A.Kantrowitz	Concept for ground-based laser propulsion
1989	Metzger	Concept for laser-based removal of space debris
1995	Liukonen	Laser-propelled free flight in the laboratory
1997	Myrabo	Laser-propelled outdoor free flight
1998	DLR	Start of laser lightcraft research at DLR
2000	Myrabo	World record flight, 71 m altitude
2002	Phipps	Concept for laser-ablative micro propulsion
2006	Bae	Concept for photonic intra-cavity propulsion

reflector

photonic propulsion

nuclear pumped gas laser

nuclear reaction - fission (- fusion) (- matter - antimatter)

W.L. Bohn, Laser Propulsion – Quo Vadis, AIP Conference Proceedings **997**: 47 (2008); DOI: 10.1063/1.2931919

EHICLE

Laser Propulsion

Lectures on Unconventional Space Propulsion

Part 2: Lasers Light Amplification by Stimulated Emission of Radiation

IRS Institute of Space Systems, University of Stuttgart February 10, 2023

Dr. Stefan Scharring

Institute of Technical Physics, German Aerospace Centre (DLR)

Wissen für Morgen

No Light Amplification by Stimulated Emission of Radiation **but** Light Saving (from Absorption)

Parallel Mirrors

Scaling

Light Amplification by Stimulated Emission of Radiation

$E_{rot} = 1/2 \cdot M \cdot \omega^2 \cdot R^2$

Discretized (quantized) energy levels

Smiley Image Credits: Best Greetings, e-Cards, Orkut Scraps, Glitter Graphics 4 All, Smilie Center...

Continuous transitions between different energy levels

Light Amplification by Stimulated Emission of Radiation

Pumping and Lasing

Solid-State Lasers (SSL)

Laser-active ions (e.g., Neodymium, Ytterbium, Holmium) + host material (e.g. glass, crystal, polymer)

Example: Nd:YAG (Neodymium-doped Yttrium aluminum garnet, Nd:Y₃Al₅O₁₂)

Pump mechanisms:

- Gas-discharge lamp
- Laser diodes

Solid-State Lasers (SSL)

Laser-active ions (e.g., Neodymium, Ytterbium, Holmium) + host material (e.g. glass, crystal, polymer)

Example: Nd:YAG (Neodymium-doped Yttrium aluminum garnet, Nd:Y₃Al₅O₁₂)

Pump mechanisms:

- Gas-discharge lamp
- Laser diodes

National Ignition Facility:

Experiments on inertial confinement fusion 192 beamlines of Nd:phosphate lasers (18.8 kJ each, single pulse)

Thermal Management?

- Heating
- Expansion
- Gradients of refractive index

SSL Geometries: Thin Disk Laser

- Joint invention of DLR-TP / IFSW Uni Stuttgart
- Crystal disk, 100 200 µm thin, e.g., Yb:YAG
- Pump modules: Laser diodes
- Continuous wave (cw) operation at the kW level
- Good power scalability
- Pulsed operation possible (ns, ps, fs)
- High beam brilliance (Power x beam quality)

SSL Geometries: Fiber Laser

DLR

CO₂ Laser Example

Pump mechanisms:

Electrical discharge Vibrational excitation of N₂ molecules by electron collisions

Energy transfer $N_2 \Rightarrow CO_2$ Laser emission at $\lambda = 9.6$ and $10.6 \ \mu m$ Relaxation to ground state ⇒ heat

Advantages:

Homogeneous profile of the refractive index Cooling by gas recycling or Admixing of helium

Natural CO₂ Laser

Emitted laser power:

Venus: $P = 5.6 \ \mu W / cm^2$

D. Deming et al. Observations of the 10-µm natural laser emission from the mesospheres of Mars and Venus, *Icarus* **55**(3): 347 (1983), DOI: 10.1016/0019-1035(83)90107-0

MOLECULAR PHYSICS OF NATURAL MARTIAN LASER

"Bio Laser"

- Single cell of a jellyfish placed in a resonator setup
- Optical pumping by laser pulses
 ns, nJ, blue
- Laser gain medium: GFP (green fluorescent protein)
- Laser emission: $\lambda = 516 nm$ (green)
- Cell survives even after long-time laser emission.

M.C. Gather et al, Singlecell biological lasers, Nature Photonics **5**, 406-410 (2011), DOI: 10.1038/nphoton.2011.99 **Laser Light: Properties**

- Coherence: Photons sharing the same...
 - ... frequency
 - ... phase
 - ... direction

- Laser pulses
 - ("focusing on the time-scale")

- ... can be applied in
 - ... spectroscopy
 - ... interferometry
 - ... power beaming and
 - ... high-intensity focusing
 - ... local material modifications

and ablation

Fenste

Detektor

Methan-

hintergrund

Focusability

Lightcraft

Laser Propulsion

Lectures on Unconventional Space Propulsion

Part 3: Power Beaming Propulsion

IRS Institute of Space Systems, University of Stuttgart February 10, 2023

Dr. Stefan Scharring

Institute of Technical Physics, German Aerospace Centre (DLR)

Wissen für Morgen

Outline

Part I. Introduction

Part II. Lasers

Part III. Power beaming propulsion

- Absorption and/or reflection
 - \rightarrow Laser photon propulsion
 - \rightarrow Intra-cavity photon propulsion
- Absorption and conversion
 - \rightarrow Laser photovoltaic propulsion
- Heating and ionization
 - \rightarrow Laser-thermal propulsion

Part IV: Laser launchers

Part V: Laser-ablative propulsion

Part VI. Spacecrafts' debris propulsion

Photon propulsion: Main interaction mechanisms...

$$E_{Photon} = hv$$
 $m_{Photon} = 0$ $p_{Photon} = \frac{hv}{c}$

La.

Photon propulsion: ... and its potential

$c_m \approx 0.00000005 N/W$

Breakthrough Starshot...

Mission

- Destination α Centauri
- Propulsion: Photon pressure
- Acceleration: 9 minutes, 15000 G, to 0.2 c (near Mars)
- Funding: initially 100 M\$; intended: 40 B\$, 40 years

... and its proof of principle

Mission

- Hovering in Earth's gravity field at 10 cm altitude
- Propulsion: Photon pressure
- Hovering duration: 0.5 seconds

Digression: Thrust Balance Calibration using Photon Pressure

Intra-cavity Photon Propulsion

Y.K.Bae, The Past, Present and Future of Photon Propulsion, Symposium on High Power Laser Ablation / Beamed Energy Propulsion 2014

100

10

0.1

0.01

thruster nai

Launch Platform

lor

0.01

0.1

Photon Thrust (mN)

1,000 X

AFRL 2010 with 6.5 kW TDL

(Estimated)

10,000 ×

YK Bae Corp. Present NIAC Goal with 1 kW TDL

10

1

```
TDL: Thin Disk Laser
```

tracavity Multiplication Factors

100×

Boeing 2013 with 30 kW TDL

Laser-powered propulsion in shadowed areas

Beamed Energy: Thermal Propulsion – General Remarks _P

Special laser-thermal propulsion concepts:

- Detonation and combustion \rightarrow Laser Lightcraft (Part IV)
- Material ablation \rightarrow Laser-ablative propulsion (Part V)
 - \rightarrow Space debris propulsion (Part VI)

Propulsion principle:

- Remotely based high power laser (or microwave) source (cw or pulsed)
- · Propellant heating by focused beam
- · Jet expansion and thrust generation

Architecture for remotely-powered Laser Propulsion

J.R. Cook, Atmospheric Applications of High Energy Lasers, Proc. of the XV. International Symposium on GCL-HPL 2004, Prague

A

Energy Conversion Efficiencies in remotely-powered Laser Propulsion

Laser Propulsion

Lectures on Unconventional Space Propulsion

Part IV: Laser Launchers

IRS Institute of Space Systems, University of Stuttgart February 10, 2023

Dr. Stefan Scharring

Institute of Technical Physics, German Aerospace Centre (DLR)

Wissen für Morgen

DLR.de • Folie 56 > IRS Lecture series on Unconventional Propulsion > Dr. Stefan Scharring • Laser Propulsion > February 10, 2023

Outline

Part I. Introduction

Part II. Lasers

Part III. Power beaming propulsion

Part IV: Laser launchers

- Lightcraft Technology Demonstrator
- Parabolic Lightcraft
- Russian Aerospace Laser Propulsion Engine

Part V: Laser-ablative propulsion

Part VI. Spacecrafts' debris propulsion

Laser Launchers

Carrying the energy carrier...

Payload: Sputnik-I 83,6 kg, 58 cm Intercontinental missile 280 t, 34 m since 1957 * 2032 ? 75 years of R&D? 75 years of R&D since 1804 * 1879 DLR

External energy source

Plasma frequency:

$$\omega_p = \sqrt{4 \pi e^2 \mathbf{n}_e / m_e}$$

Laser (radian) frequency:

$$\omega_L = 2\pi c / \lambda$$

Laser Supported Combustion Wave (LSCW) $l < 10^7 W/cm^2$ $l > 10^7 W/cm^2$ $\omega_p \ll \omega_L$ $\omega_p \rightarrow \omega_L$ Shock Wave Supersonic Plasma Wave Plasma

Laser Supported Detonation Wave (LSDW)

Laser-supported Absorption Waves

Propellant Detonation

Internal efficiency of pure ablation (cf. Part V):

Internal efficiency of exothermal reactions:

$$\eta_{abl} = 1/2 c_m \cdot v_{jet} = \alpha \beta$$

1 /

$$\eta_{ex} = \alpha \left(\beta + m \, Q/E_L\right)$$

 α Expansion efficiency β Absorption efficiency

Q Specific heat of reaction E_L Laser pulse energy

with:

$$Q = Q_{det} + N_{db}Q_{db}$$

 Q_{det} Specific detonation energy N_{db} Fraction of delayed burning Q_{db} Specific energy of combustion

Detonation and combustion of CHO polymers

$$C_a H_b O_c \rightarrow CO_2 + H_2 O + H_2 + C + Q_{det}$$

 $C + H_2 + O_2 \rightarrow CO_2 + H_2 O + Q_{db}$

Example: Polyoxymethylene (Delrin, POM)

A.A. Ageichik et al, Detonation of CHO Working Substances in a Laser Jet Engine, Technical Physics 54: 402 (2009), DOI: 10.1134/S1063784209030128

L.N. Myrabo, World Record Flights of Beam-Riding Rocket Lightcraft: Demonstration of "Disruptive Propusion Technology, AIAA Paper 2001-3798, DOI: 10.2514/6.2001-3798 DLR.de • Folie 61 > IRS Lecture series on Unconventional Propulsion > Dr. Stefan Scharring • Laser Propulsion > February 10, 2023

DLR.de • Folie 62 > IRS Lecture series on Unconventional Propulsion > Dr. Stefan Scharring • Laser Propulsion > February 10, 2023

Fig. 5 Mirror-actuating system for active laser control. Deformable mirrors are used to compensate for the coma aberration and disturbance in the wave front of the laser beam.

M. Takahashi and N. Ohnishi, Beam-Riding
 Flight of a Laser Propulsion Vehicle
 Using Actively Controlled Pulse, Journal of
 Propulsion and Power 32(1): 237 (2016), DOI:
 10.2514/1.B35631

b) Angular offsets with and without GA control

Altitude Simulation (no propellant)

Ballistic pendulum in vacuum chamber

Altitude Simulation (with Propellant)

Wire-guided Flight Experiments

- Lightcraft mass 22...55 g
- No propellant
- 8 Laser pulses
- Pulse energy: 80 J
- Pulse repetition rate: 15 Hz

- Acceleration: ~ 1g
- Thrust: 1.05 N
- Flight altitude: 6 m

Free-flight Experiments (no Spin)

Fig. 5. Time-altitude curves of five flights each of a parabolic lightcraft during a laser burst of 10 pulses, $P_{\rm L} = 2.9 \,\rm kW$ averaged, (a) without ignition pin, $m_{\rm LC} = 45.6 \,\rm g$, and (b) with ignition pin, $m_{\rm LC} = 49.3 \,\rm g$.

Hovering Experiments

Russian Aerospace Laser Propulsion Engine

HIGH-POWER LASER PROPULSION

Laser Propulsion

Lectures on unconventional propulsion

Part V: Laser-ablative Propulsion

IRS Institute of Space Systems, University of Stuttgart February 10, 2023

Dr. Stefan Scharring

Institute of Technical Physics, German Aerospace Centre (DLR)

Wissen für Morgen

A Thought Experiment

Access virtual

Position x [nm]

Results from hydrodynamic simulations with Polly-2T from the Joint Institute of High Temperatures, Russian Academy of Sciences, Moscow

Regimes of Interaction in Laser Ablation

Measurement of momentum: Piezo-electric sensors

Laser Ablation of Metals

 c_e, c_i : specific heat capacities T_e, T_i : electron and lattice temperature, resp. κ_e, κ_i : heat conductivity γ_{ei} : heat exchange coefficient τ_e, τ_i : thermalization times *S*: laser energy density

Laser Ablation of Metals

Ion lattice

In-orbit Applications

Logistics

Sample Return

Image credits: ESA, montage:DLR

DLR.de • Folie 85 > IRS Lecture series on Unconventional Propulsion > Dr. Stefan Scharring • Laser Propulsion > February 10, 2023

T-Mode Micro Laser Plasma Thruster (msµLPT)

Propellants:

	PVC, exothermal polymer	(C-doped)	track selection
Т	0.14 … 0.29 mN (PVC:C) 2.8 … 7.2 mN (EP:C I)		laser & Lape motion
C _m	60 … 120 μN/W (PVC:C) 1170 … 3000 μN/W (EP:C)		
I _{sp}	650 750 s (PVC:C) 160 540 s (EP:C)	Transmission mode msµLPT Polymer	
Laser:	Diode laser	transparent substrate	No a Tradit
τ	2 ms	laser	1 _{Cm}
λ	920 nm		
f _{rep} E _L	80 Hz 30 mJ	Phipps et al, Micropropulsion using a Laser Ablation Jet, J. Prop. Pow. 20(6), 1000-1011 (2004), DOI: 10.2514/1.2710	Minimum impulse bit: $\Delta p = 0.05 \ \mu Ns$

a.

Ultimate Demands for Attitude and Orbit Control Systems (AOCS)

Low-Noise Microthruster Concept (MICROLAS, DLR)

DLR microthruster demonstrator

Advanced Concepts

Hybrid ablative/electrostatic thruster

optional:

- + electrical discharge (electro-thermal)
- + high currents \rightarrow self-induction

Advanced Concepts

Hybrid ablative/electrostatic thruster

optional:

- + electrical discharge (electro-thermal)
- + high currents \rightarrow self-induction

Acceleration Propellant tape electrode Target (Cathode) (Anode) Laser Relativistic irradiation B Plasma Beam $\tau = 10 \, fs \dots 5 \, ps$ Intense laser Exhaust (10²³ W/cm²) speed 0.87 c d = 100 nm**Nonlinear Interaction** H. Horisawa. Overview of Laser Strong Electric Field Propulsion Research Activities at Tokai, High Power Laser Ablation / Phipps et al, Review, Journal of Beamed Energy Propulsion 2014 Propulsion and Power 26(4): 609-637 (2010), DOI: 10.2514/1.43733

Relativistic thruster

Coulomb explosion

Generation of high energetic electrons

A

- Strong electric field
- Ion gas expansion

Laser Propulsion

Lectures on Unconventional Space Propulsion

Wissen für Morgen

Part 6: Spacecrafts' Debris Propulsion

IRS Institute of Space Systems, University of Stuttgart February 10, 2023

Dr. Stefan Scharring

Institute of Technical Physics, German Aerospace Centre (DLR)

The Space Debris Threat

Objects > 10 cm

- Fragments, Rocket bodies, Defective satellites
- s/c destruction (\rightarrow Kessler syndrome)
- Monitoring & obstacle avoidance possible
- 34,000 objects;
 - Public catalogue: 18,800 objects

Objects between 1 cm and 10 cm

- s/c wall penetration (\rightarrow loss of functionality)
- Difficult to detect
- 900,000 objects (estimated)

Impact of aluminum sphere in aluminum block @ 6.8 km/s

Objects between 1 mm and 1 cm

- 128,000,000 objects
- s/c damage (\rightarrow loss of performance)
- No detection possibilities

In the Low Earth Orbit, everything is for a long time ...

Extending Propulsion ...

... from "cooperative" targets ...

- Intensity (focused): 3.3 MW / cm²
- Mechanism: Laser-supported detonation and combustion

Laser parameters in both cases:

- Average optical power: 7.5 kW
- Pulse duration: ~ 10 µs
- Pulse energy: 150 J
- Pulse repetition rate: 50 Hz
- Beam diameter: 8 cm

Solar constant: 137 mW / cm²

... to "uncooperative" targets

Intensity (unfocused): 290 kW / cm²

Fluence: 3 J/cm²

Mechanism: Laser ablation

Debris Mitigation Step 1: Collision Avoidance (Step 0: Avoid Generation of New Debris)

Passive-optical Detection

Laser Tracking

ESA's Annual Space Environment Report Issue Date 17 July 2019 Ref GEN-DB-LOG-00271-OPS-SD ESA Space Debris Office, European Space Operations Centre (ESOC), Darmstadt

Cosmos./.Iridium collision

Payload Payload Fragmentation Debri Payload Debris

10000

Payload Mission Related Obje Rocket Body Rocket Fragmentation Debris Rocket Debris

Rocket Mission Related Obi

Debris Mitigation Step 1: Collision Avoidance (Step 0: Avoid Generation of New Debris)

Collision Avoidance by Laser Ablation Single pulse laser

Collision Avoidance by Laser Photon Pressure Laser Station Network

Single station transit Irradiation time $\Delta t = 5 \min$, Full power absorption Momentum direction discarded

$$\Delta v = \frac{3.3 \,\mu N/kW \cdot P_L[kW] \cdot 300 \,s}{m}$$
$$= 1 \,mm/s \cdot \frac{P_L[kW]}{m[kg]}$$

C. Bamann et al., Analysis of collision avoidance via ground-based laser momentum transfer, Journal of Space Safety Engineering 7(3): 312-317 (2020). DOI: 10.1016/j.jsse.2020.07.023

Required MT success rate [%] for 80 % COLA success Chaser altitude h = 850 km, inclination $i = 65^{\circ}$, conjunction angle $\psi = 45^{\circ}$ Only chaser nudged via MT

				$A/m = 0.008 \text{ m}^2/\text{kg}$	
network	laser power [kW]	atmosphere	time to event [d]	$S_{\rm T} + S_{\rm C} = 2 {\rm m}$	$S_{\rm T} + S_{\rm C} = 10 {\rm m}$
7-station network	40	none	6	1	4
			4	9	12
			2	34	45
		uncompensated	6	24	32
			4	50	64
			2	-	122
4-station network	40	none	6	18	11
			4	19	24
			2	60	78
		uncompensated	6	43	53
			4	83	-
			2	-	-

The Early Concepts of Laser-based Space Debris Removal (LDR)

Space-based LDR (Wolfgang Schall, 1991)

Earth-based LDR (Claude R. Phipps, 1996)

Astrodynamical Options for Space Debris Orbit Modification

In-track / radial momentum transfer

Target deceleration for atmospheric burn-up Perigee lowering

Debris Removal: Constraints of Laser-Matter Interaction

Debris Propulsion Outlook: Deflection of Near-Earth Objects (NEO)

DLR.de • Chart 103 > IRS Lecture series on Unconventional Propulsion > Dr. Stefan Scharring • Laser Propulsion > February 10, 2023

Summary: Laser Power Scaling vs. Applications

... What has been achieved in *their* lifetime?

Albert Einstein (1879 – 1955)

- 1916: Stimulated emission of light postulated
- Minor technological relevance (first MASER emission, 1954)
- Albert Einstein dies 1955.
- The success story of lasers: not anticipated
 - First Ruby laser: 1960
 -
 -

Stephen Hawking (1942 – 2018)

- 1963: ALS disease diagnosed; predicted lifetime: + 2 years
- 1966: PhD at Cambridge University
- Theory of singularities, quantum gravitation
- 1988: A Brief History of Time
- Stephen Hawking dies 2018.

Unconventional ideas foster unconventional propulsion

- Breaking the rules is the first step to innovation
- How does a caterpillar evolve to a butterfly?
 Lesson 1: Don't step upon.
- Practise First Aid for ideas: Don't critize, improve.
- "Doesn't work!" often just means "Didn't understand"
- Leaving the known always requires exceptional power.
- Prior to success there is not only readiness for failure, but in fact failure itself.
- Old ideas always stand in the way of new ideas.
- Everyone has got a prejudice about everything.
- Have you already calculated the costs of not risking anything?

Martin Gaedt, Rock your idea, Murmann Publishing (2016)

Watch this lecture and more at:

Lasers and Space

Thank you for your kind attention

"Technology Vision Checkboxes"

- Feasible?
- Reasonable?
- **Desirable?**
- → Already realized in the future
- → Be part of its development now

