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Spectral mixture analysis is a widely used method to determine the sub-pixel

abundance of vegetation, soils and other spectrally distinct materials that

fundamentally contribute to the spectral signal of mixed pixels. In this paper we

present a computing and environmental analysis tool, named VMESMA, which

extends the possibilities of conventional spectral unmixing. The basis is the

categorization of the scene into different units or scene sub-areas and software

guidance for endmember selection, allowing for a better adaptation of the model

to the conditions of the main cover types. For each pixel an individual

combination of endmembers may be selected by automated matching to model

quality criteria. This hierarchical assessment can incorporate a priori knowledge

from different data sources, including information derived from the unmixing

results. Based on an iterative feedback process, the unmixing performance may

be improved at each stage until an optimum level is reached. VMESMA allows

an immediate estimate of the proportions, which is very robust against external

factors (e.g. illumination) and canopy shade. An application of VMESMA on

hyperspectral data has been conducted to evaluate the possibilities to map

residual sludge and sludge derivatives for two consecutive years with changing

land surface conditions. The method offered greater flexibility and new

possibilities to improve the understanding and modelling of the scene

characteristics.

1. Introduction

The estimation of sub-pixel proportions of land surface elements in general, and of

vegetation components in particular, has been largely addressed in the remote

sensing literature. Spectral mixture analysis (SMA) has been developed in recent

years to model the spectral variability in multi- or hyperspectral images, and to

relate the results to the physical abundance of surface constituents represented by a

small number of spectral endmembers (EMs), which correspond to the spectral

characteristics of the scene cover types (Adams et al. 1986, Smith et al. 1990,

Thomson and Salisbury 1993, Roberts et al. 1998). Unlike other techniques, SMA is

especially adequate for dealing with scenes in which the spatial variability within a

pixel is high. Thus it provides a means to detect and represent components that

occur entirely at a subpixel level, such as sparse vegetation in an arid environment.
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EM fractions can be used for classification and/or monitoring surface changes over

time (Adams et al. 1995, DeFries et al. 2000). Finally, when supported with spectral

ground truth data, SMA allows the repeatable and accurate extraction of

quantitative subpixel information that can be incorporated into physical models

of surface processes, which is the ultimate goal for most remote sensing data

analysis.

Linear mixture is the basis hypothesis of some simple BRDF models (e.g.

geometrical-optical (GO) or kernel-driven models). However, the degree of validity

of this assumption depends primarily on (1) the presence of multiple scattering, (2)

directional effects that can be expressed by variations of downwelling and upwelling

radiative fluxes as a function of the solar and viewing directions, and (3) the scale

size (Qin and Gerstl 2000).

In practice, the strategy to reflect the variety of optical properties of the most

relevant scene elements in the EM selection is one of the key issues in the successful

application of SMA, since the attainable accuracy is highly influenced by the

spectral similarity between EMs. Different SMA approaches have been described in

the literature. The most widely used method consists of employing a single set of

EMs (typically between two and five) on the whole image, and using all available

EMs at the same time. Though it is mathematically feasible to use in the

decomposition as many EMs as spectral bands available, even with a small number

of EMs noisy and highly correlated data exert a significant influence on the

proportion estimates of the lowest contrast materials (Smith et al. 1994, Garcı́a-

Haro et al. 1996, Drake et al. 1999). However, many vegetation types, soils and

other components are present in the scene, in such a way that 2–5 EMs are often

insufficient to describe the scene fully, and lead to unclear results. For example,

fractions of the unmodelled EMs will be partitioned or allocated to incorrect EMs.

Fractional errors result also in physically unrealistic negative or overpositive

fractions. Simple unmixing is, in addition, unable to address correctly the natural

variation of components in the scene. Smith et al. (1994) found that the dominant

effect of EM spectral variability is expressed in changes in fractions rather than an

increase of the modelling error.

In recent years, many authors have proposed a more complex model where both

the number and the set of EMs vary on a per-pixel basis. Roberts et al. (1998) refer

to this technique as multiple endmember spectral mixture analysis (MESMA).

Initially the method was proposed to map several different types of green vegetation,

non-photosynthetic vegetation, shade and soil EMs in semi-arid environments

(Roberts et al. 1991, 1993). The idea consists of restricting the large set of possible

EMs within a scene to a number of small sets of appropriate EMs that can be

different for each pixel, thereby allowing an accurate decomposition using a

virtually unlimited number of EMs. The dynamic identification of the optimum EM

subset for each image pixel provides a more accurate interpretation of the mixed

pixels than SMA, improving the fit of the model. Also the accuracy of fractions

increases due to the increase of the probability that the exact number of EMs

required to account for the sub-pixel spectral variability is utilized (Sabol et al. 1992,

Garcı́a-Haro 1997). Because the optimum subset for the spectral description of each

pixel is always maintained, the number of components in the scene is only limited by

the computational cost and the spectral separability between intra-class materials.

Different criteria for selecting the EMs in multiple EM submodels have been

proposed by many authors in different studies (Garcı́a-Haro et al. 1995, Hill et al.
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1995, Maselli 1998, Painter et al. 1998, Roberts et al. 1998). However, there are a

number of methodological and practical application problems that often impede the

operational use of MESMA:

1. While SMA is computationally modest, MESMA can be very CPU-intensive

because it often implies the evaluation of tens of models for every image pixel

(Okin et al. 1999). This may result in a large number of abundance images of

different EMs, which increases the complexity of the analysis and may

produce an undesired over-stratification of the scene.

2. Estimated local EMs may be incorrect. In general, authors consider, as a

unique condition, that EMs characterize the overall variance in the image to

the noise level. However, this is not sufficient since low modelling errors may

coexist with relatively high fractional errors, e.g. when the spectrum of interest

resembles a mixture of other materials, such as that of dry grass, which

resembles mixtures of shade, green foliage, and soil (Ustin et al. 1993). Thus,

one additional prerequisite is that EMs should reflect the different surface

conditions in the scene.

3. As a consequence of the large variety of different objects or subunits that may

be found in a scene, many EM contributions are needed to describe all

possible objects. This slows down the process and also introduces some errors

in the modelling of the pixels that do not contain these objects. EM candidates

chosen to represent the spectral variability of one area of interest can

overdetermine the spectral signal of most other scene areas (e.g. a higher

number of EMs used than really represented in the pixel). An optimum

strategy seems to be identifying different sub-areas and decomposing them in

a separate stage. For example, for agricultural studies one possible procedure

would consist of first classifying the pure pixels and then unmixing the mixed

pixels (Klein-Gebbinck 1998).

Against this background a Variable Multiple Endmember Spectral Mixture

Analysis (VMESMA) strategy for improved performance of the unmixing processes

has been developed and implemented in a flexible data processing tool. VMESMA is

based on a stratification of the area and a zone-dependent choice of multiple

candidate submodels and unmixing algorithms, each valid within a scene sub-area.

By formalizing some knowledge of the application domain into a simple scene

model, the spatial relationships between the pixels can be used to meet the user

requirements. In the following section we describe the concept of VMESMA in

detail. An example of the application of VMESMA on hyperspectral data in the

context of determining levels of heavy metal contamination after a mining accident

is provided in §3. Finally, the conclusions are presented in §4.

2. The VMESMA package – methodological concept and application tool

The immanent problems of the overall spectral unmixing concept imply the necessity

of a variable but nonetheless streamlined modelling strategy, in terms of optimized

selection of EM sets taking into account the spectral and spatial variability of the

image scenes. In the VMESMA concept in principle this includes:

N new ways of reducing the influence of external factors such as shading,

brightness differences due to variability of surface roughness and terrain

illumination by standardizing the spectra in the unmixing;
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N robust, novel criteria to assess the performance quality of alternative EM sets

in the selection process of optimum EMs for individual pixels; and

N guided and streamlined injection of a priori knowledge in the unmixing process.

Table 1 shows some relevant features of VMESMA, which will be described in

detail here.

2.1 The VMESMA scheme

VMESMA is conceived as an iterative feedback process, in which unmixing

performance may be potentially improved in each stage until an optimum level is

reached. This permits the definition of standard and repeatable pathways to

incorporate information dynamically derived from the most recent unmixing

outcomes with other sources of data, in order to optimize the algorithms and

increase the flexibility of the modelling approach. The structure of VMESMA is

summarized in figure 1.

After each unmixing iteration, an abundance of similar EMs is usually merged to

thematically group EMs into general categories, as it provides the physical context

necessary to interpret the results. A suite of outputs is readily available to conduct

the error assessment, mainly to evaluate the model performance and fractional

errors. With this aim, the ‘Linking tools’ function provides overlay capabilities that

show all the specified spectral information of the chosen pixel. Thus the researcher

can seek for pixels with high rms or fractional errors, relating such results with

simultaneous analysis of their reflectance spectra, best-fit modelled spectra, residual

spectra, model chosen, unit number and set of abundances obtained.

Problematic areas are usually found from high modelling and abundance errors

(typically identified from negative values or not matching the proportions derived

from the field observations or other sources). This information can be used to

incorporate new areas to the image segmentation. Next, new EMs can be extracted

from these areas, which will be incorporated in the unmixing library. The

subsequent iteration will be performed on the basis of the updated segmentation

and using a modified models list extracted from the updated library. VMESMA

enables selective unmixing in which only a few image subunits are processed, while

leaving unaltered the abundance of the rest, as obtained in a previous iteration. This

strategy may considerably speed up the computations.

Table 1. Summary of some relevant VMESMA features.

Use of spatial information Stratification driven by the targeted application
EM submodels adapted to physiographic conditions
Reduced EM misidentification
Reduced computation time

Problem diagnosis and
solution

Addressing unmodelled EMs
Link with a thematic spectral library
More reliable modelling of scene characteristics

Hierarchical assessment Incorporation of prior knowledge and previous unmixing
results
Focussed analysis of specific subareas
Flexibility to improve model parameters

Advanced unmixing
methodology

Standardized unmixing
Use of contextual information
Speed optimization capabilities
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Figure 1. Flowchart of the working VMESMA scheme.
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The Unmixing frame (see figure 2) is an interface for specifying the EM submodels

and the strategy to unmix each individual unit. Each unmixing is executed in a sequence

unit by unit. For each individual unit the following parameters can be specified:

N The expert system used to select the best EM subset (see §2.4). Although

VMESMA is based on an adaptable selection of the number of EMs (2, 3 or 4),

a ‘hard’ criterion (e.g. selecting always a 3-EM model) or, alternatively, a

simpler mixed criterion (e.g. enabling only 2 or 3 EM solutions) is also possible.

N The lists of candidate EM subsets (see §2.6).

N The type of unmixing algorithm, i.e. conventional or standardized unmixing

(see §2.2).

N The final criterion used to evaluate the model performance, i.e. rms residual,

maximum residual or colinearity factor (see §2.3).

Figure 2. The Unmixing sheet allows specification of the EM submodels and a strategy to
unmix each individual unit. The frame also provides helpful information on the unmixing
parameters and specialized tools to unmix, visualize the results and improve them.
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N The task performed on each individual unit: (i) mask, (ii) unmix using the

updated submodels list, or (iii) keep the abundances of the last unmixing (i.e.

selective unmixing).

N The covariance matrix of the observations, e.g. to modify the relative

contribution of each specific spectral band in the unmixing analysis (see §2.7).

In summary, the segmentation of the scene in combination with a knowledge-

based expert system adds flexibility to the solution. Hence the determination of the

optimum pixel submodel is not a ‘black-box’ but it may be effectively assisted by

unmixing outputs, field information, image characteristics and the targeted

application.

2.2 Conventional vs standardized unmixing

VMESMA allows the application of conventional unmixing to estimate the EM

proportions, based on reflectance, but it also provides an alternative solution,

namely standardized unmixing, which offers new, more appropriate, solutions to

specific problems. We now express briefly the formulation of conventional unmixing

using matrix-vector notation, and then introduce the standardized unmixing.

2.2.1 SMA theory and equations. We will refer to n as the dimensionality of the

spectral observations and the column vector r(r1,r2, …, rn) will be the measured

spectrum of the mixture. Assuming that there are c composing EMs within the

mixture we will order their spectral response in an n6c matrix, E, with the

reflectance of the c EMs in columns. Let f (f1, f2, …, fc) be the column vector with c

unknown proportions of the EMs in the mixture. The SMA assumes a linear

dependence of the theoretical prediction r on the unknown parameter f:

r~E f ze, ð1Þ

where e is the residual vector, which would ideally be a multivariate normal

distribution with a mean of zero. This mixing equation is usually accompanied by

two constraints. The normalization constraint says that a pixel is well defined by its

components, whose proportions or abundances should therefore add up to unity:

Xc

i~1

fi~1 ð2Þ

The positivity constraint says that no component of a mixed pixel can make a

negative contribution:

fi§0 i~1, . . . ,c ð3Þ

Let V(r) denote the error matrix of the observations r, namely its covariance matrix.

The least-square principle establishes that the unknown parameters are those that

minimize the Mahalanobis distance between the pixel r and point E f:

x2~ r{E fð ÞTV{1 r{E fð Þ ð4Þ

A large number of solution methods exist for this type of linear problem, including

least-squares estimation, singular value decomposition, Gram-Schmidt orthogona-

lization and factor analysis (Boardman 1989, Smith et al. 1990). However, not all

solutions are independent. For example, the singular value decomposition is
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mathematically equivalent to the least-squares solution without constraints. In

general, solutions that do not constrain the abundances to the normalization

condition produce biased and highly noise-dependent solutions for the abundances

(Garcı́a-Haro 1997). VMESMA uses a partially constrained least-squares solution,

which introduces in equation (4) a Lagrange multiplier to impose the sum-to-one

constraint (Garcı́a-Haro et al. 1996). This solution provides a unique and unbiased

solution that is computationally fast due to its matricial form. However, abundances

are not constrained to lie between 0 and 1. Thus, noise in the observations and

inaccuracies of the model can bring about undesirable outcomes. We have preserved

negative fractions since they may also convey useful information and provide an

additional means of assessing model accuracy. Although numerical methods are

available (Boardman 1989, Klein-Gebbinck 1998), the computational complexity of

these methods often cannot be afforded with satellite data and moreover they

introduce a bias in the solution (Garcı́a-Haro 1997).

2.2.2 Problems derived from a shade EM. Shade refers to shadow cast by objects at

all spatial scales as well as shading (variation in lightness) by topography, and the

effects of soil/rock roughness. Hence, a spectral EM is usually required in the SMA

to isolate the influence of shading and shadows. In the literature, its spectral

characteristics are often approximated with a continuous spectrum of zero

reflectance. Other authors have proposed a 10% reflectance shade EM (Accioly et

al. 1998). However, the shade ‘contains’ radiance scattered on soil by atmospheric

components and canopy elements. Thus, reflectance of shaded soil is directly related

to leaf transmittance and inversely proportional to density and opacity of leaves in

the canopy, and can also increase with the turbidity of the atmosphere (Garcı́a-Haro

et al. 1999). A constant shade EM is unable to capture the spectral variability of

shading and shadows, resulting in fractional errors since surfaces shadowed by

plants are enriched in near-infrared radiations (Leblon et al. 1996).

Although shade conveys useful information regarding vegetation structure, a key

to vegetation type identification and classification (Ustin et al. 1993, Adams et al.

1995, Shimabukuro et al. 1998, Roberts et al. 1998, Peddle et al. 1999), the use of a

shade EM introduces important drawbacks:

1. It is difficult to define unambiguously an average pixel signature for the shade

component, since the ‘obscurity’ or tonality of shadow cast by vegetation

varies depending on the canopy structure and the leaves’ transmittance

(Garcı́a-Haro and Sommer 2002).

2. The shade abundance is less directly interpretable in ecological terms than soil

and vegetation maps. Moreover, shade is dependent on sun/view angles and

topography, and varies with time.

3. Using a shade EM results in a more unstable solution of the SMA due to

lowering of spectral complexity between EMs, since the shade EM, by

definition a very dark spectrum, makes the mixing library less well

conditioned (Boardman and Goetz 1991).

4. Retrieving the absolute abundances of the EMs requires partitioning of the

shade abundance between the remaining components. One common

procedure consists of re-scaling the remaining fractions so that they sum to

one (i.e. multiplying by a renormalization factor F51/(1–fshade)). For example,

Camacho-de Coca et al. (2003) proposed a different renormalization factor

that depends on the canopy structure. However, renormalizing the shade
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introduces systematic errors, since at the subpixel scale, where shadows

cannot be spatially resolved, it is not possible to tell whether shade is due to

shading, shadows, or to a combination of both (Smith et al. 1990).

2.2.3 An alternative procedure: Standardized SMA. We propose an alternative

approach, which consists of performing a standardization on both the EMs and the

image spectra as a previous step before applying the SMA. This standardization

transforms the data to a set of variations about the mean value with a mean value of

zero and a standard deviation of one. This allows matching of the data in a manner

independent of the reflectance scale (Mackin et al. 1991):

_
r~

r{mr

sr
ð5Þ

where is the standardized pixel vector associated r, with mean mr and standard

deviation sr. We will refer to this new approach as standardized unmixing. This

procedure enhances the information due to the spectral shape, such as gradient (i.e.

derivative features) and absorption bands. Using the standardized EMs,

i~1, . . . , cð Þ, the unmixing is formulated:

_
r~
Xc

i~1

_

Ei

_

fize
_ð6Þ

where is the proportion of such EM in the standardized coordinates, and is the

residual vector expressed in standardized units. The outputs are the proportions

and the residuals . Although the solution equations are similar to the conventional

SMA, the normalization constraint is now expressed differently:

Xc

i~1

ð7Þ

By combining equations (5) and (6) we have:

r{mr

sr
~
Xc

i~1

Ei{mEi

sEi

ð8Þ

Thus the linear assumption implies that a simple relationship exists between f and :

fi~
sr

sEi

fi
_:ð9Þ

As opposed to conventional SMA, standardized unmixing already accounts for

differences in shadow or shade, thereby reducing the error of estimated abundances

caused by the use of a shade EM. Since conventional and standardized unmixing

convey different information, both strategies may be used to model mixed pixels,

each one assessing opposite features. While conventional SMA is rather insensitive

to spectral absorptions of minor constituents because the analysis predicts the best-

fit least-squares regression over the full spectrum, standardized unmixing may

increase the enhancement of small absorption features. To illustrate how the

discrimination of ground components is influenced by the standardization, figure 3

(5)

(6)

(7)

(9)

(8)
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compares different green vegetation spectra, selected from the MedSpec database

(see §2.6), with their corresponding standardized spectra.

Logically, differences in architecture of the various plant canopies (grass, shrub

and forest) cause different shade proportions. However, after performing the

standardization, only one vegetation spectrum may be sufficient to represent the

spectral variability of the green vegetation components. Similar results have been

obtained analysing real images. This proves the effectiveness of standardized SMA

to represent the spectral variability of green vegetation types using as few as one

single vegetation EM despite the variable structure of scene cover types. Figure 4

shows another example corresponding to four spectrally separable soils. The

standardization removes most of the spectral differences associated with soil texture

(i.e. the grain aggregation) while retaining the inherent features related with its

composition.

Figure 5 shows the distribution, in the principal component (PC) feature space, of

a set of 260 spectra extracted from the MedSpec database to represent the dominant

vegetation species, soils and rocks. In order to address the influence of the soil

background, we have included in the analysis two samples corresponding to the

same green broad leaf placed on two different soil backgrounds, a very dark soil (D)

and a very bright one (B).

Figure 3. Four different vegetation types: green herbaceous (Asphodelus albus), green shrub
(Euphorbia characias) with some shade, young dense light green forest (Pinus brutia) and dry
shrub (Arbustus unedo). Absolute reflectance (a), standardized reflectance (b).

Figure 4. Four different soil types: silty dark reddish soil (type 1) and brown reddish Karst
filing soil (type 2), with two different types of aggregation, coarse and medium. Absolute
reflectance (a), standardized reflectance (b).
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We can observe that the spectral features of the green vegetation are highly

influenced by the optical properties of the soil background. Nevertheless, the use of

standardized units considerably normalizes this influence (i.e. the positions of B and

D are almost coincident). The analysis has also shown that broad land cover classes

such as canopy areas, desert and urban areas are more easily discriminated using

standardized units. Consequently, standardized unmixing may simplify the EM

submodels because it reduces the model sensitivity to the natural variability of EM

spectra, calibration errors, topography or differences in illumination conditions.

2.3 The model performance: the colinearity factor

The model performance is usually assessed in the literature from the residual

spectrum (e.g. rms, maximum residual or the quadratic form x2 (equation (4)). We

have developed a new and alternative criterion that has been demonstrated to be

very robust and faster than the residual one, since it reduces the dimensionality of

the problem. We will now briefly summarize its formulation. Let us consider a

mixed pixel with reflectance spectrum r, and a subset of c potential EMs represented

by the column vectors E1,…, Ec. Let M be a p6n matrix M5{E1, …, Ec, r}, where n

is the number of spectral bands and p5c + 1. A p6p matrix A is constructed using

the expression:

A~M:MT ð10Þ

If the pixel is a mixture of the c considered EMs, the last column vector of matrix M

Figure 5. Distribution, in the abstract space of the primary PCs, of 260 MedSpec spectra
representing the dominant cover classes of the Mediterranean areas. Different symbols were
used to label vegetation (*), soil (D) and rock ( + ). The positions of B and D samples have been
marked.
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will be spanned by the other column vectors, and hence M will be a singular matrix.

The same reasoning applies to matrix A. Consequently, the aim is to determine the

set of c EMs that maximizes the ‘singularity’ of matrix A. Since A is a symmetric

positive definite matrix, it is possible to apply a Cholesky decomposition, i.e. to

determine an upper triangular matrix L such that:

A~L:LT ð11Þ

The solution, referred to as ‘taking the square root’ of the matrix A, is expressed by

the following equations (Nash 1990, Press et al. 1992):

L2
ii~ aii{

Xi{1

k~1

L2
ik

 !
ð12Þ

Lji~
1

Lii

aij{
Xi{1

k~1

LikLjk

 !
j~iz1,iz2, . . . ,cz1 ð13Þ

To simplify the computations, a normalization transformation can be applied on all

EM spectra, in such a way that aii51 (i51, 2, …, c). All except the last column of

matrix L need to be determined only once for each EM subset. It turns out that the

pixel reflectance will be a linear combination of the EMs only if the term of the

triangular matrix Lpp (or equivalently, L2
pp) is equal to zero. We will refer to L2

pp as

the colinearity factor, since it indicates to what extent r is expressed as a

linear combination of the candidate subset (i.e. lower values indicate higher

confidence that the submodel EMs explain physically correct the mixed spectral

signature). The colinearity factor is equal to the Euclidean distance from r to

the subspace spanned by the EMs, and is similar to the rms residual of the least-

square solution as obtained without the sum-to-one constraint. In fact, a low

residual implies a high degree of colinearity. Several tests on simulated mixtures with

varying levels of noise have shown that the colinearity factor is as powerful as

methods based on the residuals to identify the best EM subset, though it is

considerably faster.

Logically, the colinearity factor does not take into account the problem of

negative abundances, i.e. when the orthogonal projection in the features space lies

outside of the EM’s polyhedron. Nevertheless, in order to incorporate the sum-to-

one constraint to the solution it is possible to use, instead of the matrix M, a matrix

M of dimensions p6n + 1 as obtained by adding to matrix M a column vector of

value w. This value controls the relative weighting of the sum-to-one condition

compared with the model performance. In addition to a high computational

efficiency, the colinearity factor presents other advantages:

1. It is not biased, i.e. it is zero only if r is a perfectly linear combination of EMs,

whereas the higher the colinearity factor, the lower the level of reproduction

of r.

2. It is well-defined, i.e. invariant respect to a change of the EMs order.

3. The number of EMs is usually unknown and the problem thus becomes to

unmix the given compositions into a number of EMs supported by the

dimensionality of the data. The colinearity factor enables a direct comparison

between submodels having a different number of EMs. Increasing the number

of EMs by one usually translates into a lower colinearity factor, since the
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accuracy of the reconstruction tends to increase with the number of freedom

degrees. Nevertheless, this increase of model performance may translate into

more unstable fractions due to progressive lowering of spectral contrast

between EMs, thereby causing higher fractional errors.

2.4 An expert system to select the best submodel

An efficient and accurate method is needed to determine the EMs making up each

reflectance pixel. An expert system, which does not require prior knowledge of the

study area, was developed with this aim. The algorithm basically ties together

modelling errors and fractional errors, and makes an automated decision to assign

each constituent material to its optimum EMs subset. The procedure is composed of

three steps (see figure 6): (1) The colinearity factor criterion is applied to all

submodels in order to preselect the most probable candidates, i.e. a small number of

submodels presenting the lowest colinearity factor; (2) fractional errors (eneg) and

modelling errors (er) are used to identify the most likely 2-, 3- and 4-EM subsets, and

(3) the three best subsets are compared using an expert system in order to select a

single subset. We now describe steps 2 and 3.

2.4.1 Decision between subsets with the same number of EMs. This step involves the

comparison among preselected submodels with the same number of EMs. er is

assessed either from the colinearity factor, the rms or the maximum residual,

depending on the user specifications, whereas eneg is calculated from the summation

of the abundances that lie outside the interval [0,1], i.e.

eneg~
1

2

Xc

k~1

f̂fk

���
���{f̂fk

� �
z

1

2

Xc

k~1

1{f̂fk

���
���{ 1{f̂fk

� �n o
ð14Þ

Figure 6. Flowchart of the expert system used to select the EM subset.
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where f̂fk represents the estimate of the true proportion fk. The main difficulty

consists of weighting appropriately both types of error in order to express them in

comparable units. Based on the observed existence of a strong positive correlation

between er and eneg, we propose a function, h(er, eneg), that balances the contribution

of both types of error in such a way that the best candidate must minimize the

function h:

h er,eneg

� �
~er

: azeneg

� �b ð15Þ

where a and b are positive constants. It is obvious that the higher the values of b and

a, the higher the relative importance of eneg in the decision. To gain an insight into

the problem, let us compare two submodel candidates, i and j, and define the terms

Der5er(i) 2 er(j) and Deneg5eneg(i) 2 eneg(j). Let us consider the non-trivial case, i.e.

when Deneg and Der have different sign, e.g. Der.0 and Deneg,0. The question is to

decide if the improvement in model performance of submodel j makes it more

suitable than submodel i, even though it causes higher fractional errors. By taking

increments in equation (18) we have:

Dh~b:a2:er
: Denegz

azeneg

b

Der

er

� �b

ð16Þ

Hence, model i will be selected only if 2Deneg overweighs
azeneg

b
Der

er
. Consider an

example in which Der

er
~0:3 (i.e. submodel i performs 30% better than j), submodel j

presents positive abundances (i.e. Deneg (j)~0) and appropriate values are assumed

for constants a and b, e.g. a51.0 and b53.0. With these premises, submodel j is

preferred only if Deneg(i).0.05, e.g. if submodel i abundances are as negative as

2 0.10 for one of its EMs.

2.4.2 Decision between subsets with different number of EMs. In the last step,

an expert system selects the best EM subset among the 2-, 3- and 4-EM

best candidates. The algorithm chooses first between the 2- and the 3-EM

submodels, and then compares the selected submodel with the 4-EM submodel.

Results have revealed the advantages of deducing the number of EMs on a

per-pixel basis (Brink et al. 2003). For example, a two or three EM solution

may be insufficient for many image units because of their high complexity,

whereas in relatively uniform sub-areas using as much as four EM submodels

would mean there is a high risk of producing mathematically well fitting results

that are physically misleading and do not explain the real composition of

the pixel.

In general, increasing the complexity of the model (i.e. a 3-EM model compared

with a 2-EM model) causes an increase of the model performance (i.e. a reduction of

er) along with an increase of eneg. Thus the idea of a mixed criterion is that a

2-EM model is preferable when it performs similarly to a 3-EM model (in terms of

both errors, er and eneg), whereas a 3-EM model is preferred if it performs

significantly better. The algorithm computes both the difference between 2- and 3-

EM ‘negative errors’ (i.e. Deneg5eneg3 2 eneg2) and the percentage of improvement in

the modelling error (i.e. improvement %½ �~100 Der

er2
~100 er3{er2

er3
). Deneg determines the

improvement in the modelling error that is necessary to compensate for this decrease

of negative errors. An example of mixed criterion is given by the following

pseudocode:
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Case of

1: Deneg,–0.03 R 3-EM

2: ( 2 0.03,Deneg,0.03) R if improvement ,10% then 2-EM else 3-EM

3: (0.03,Deneg,0.08) R if improvement ,20% then 2-EM else 3-EM

4: (0.08,Deneg,0.15) R if improvement ,30% then 2-EM else 3-EM

5: (0.15,Deneg,0.20) R if improvement ,40% then 2-EM else 3-EM

6: Deneg.0.2 R 2-EM

According to these criteria, in case of non-negative abundances (i.e.

Deneg5eneg15eneg250) a 2-EM model is preferred when improvement ,10% and a

3-EM model otherwise.

2.5 Updating the segmentation

Stratifying the images may improve identifications of specific compounds and is the
basis of the variable unmixing strategy. Multispectral information (e.g. reflectances,

PCs, NDVI), unmixing results (e.g. modelling errors, abundances) and auxiliary

data (e.g. land cover, land use, soil type) may assist in revealing the structure of the

area and allow its partition into characteristic zones with user-specified attributes.

The segmentation frame (see figure 7) allows for simple mask definition using logical

relational operators or brightness histogram thresholding based upon multiband

open files. Simple masks define compound masks through the concatenation of

Boolean operators combined at will.

In addition, the interface allows for:

1. Interactive selection of regions of interest (ROI).

2. Definition of spectral class boundaries using an interactive 2-dimensional

scatter plot. Masking and scattergram analysis are performed at the level of

individual subunits, increasing thus the benefit of the hierarchical assessment.

2.6 Estimation of key EMs and submodel creation

The categorization of the scene is especially helpful in estimating image EMs in user-

defined areas. The Spectral Library Sheet allows the extraction of image EMs using

different tools such as non-supervised clustering, PCA-based algorithms or the use

of texture information to seek for homogeneous areas (e.g. water bodies, dense

forests, bare soil). Even though the above methods are limited to address external
EMs, i.e. materials not fully occupying a pixel, this weakness may be alleviated by

spectrally matching the image EMs with a spectral library, which moreover provides

them with a physical interpretation.
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The spectral matching function compares the specified spectrum against each

spectrum (reference EM) of a regionally specific spectral database, namely

MedSpec, the Mediterranean Spectral database (Preissler et al. 1998). This database

contains about 1500 visible to SWIR spectra and data acquired during many field

campaigns in the Mediterranean countries.

Several different methods are used to enhance the discrimination, including

spectral angle (Boardman and Kruse 1994), Euclidean distance in standardization

units and band-shape fitting (Kruse 1988). The final decision relies on the combined

scores of the considered metrics along with the visual examination of the matching.

Usually EM subsets with only a limited number of components (2–4) should be

sufficient to model a pixel. Otherwise noise would exert a significant influence on the

proportion estimates of the lowest contrast materials. A function enables the user to

create and edit the 2-, 3- and 4-EM combinations by selecting them from the current

library. Additional constraints may be added, e.g. to prevent EMs showing small

spectral separability occurring together.

Figure 7. The Segmentation sheet.
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Taking decisions about model creation may be useful in order to reduce the model

set to a smaller, more appropriate one, thereby saving computational time and

improving the final results (Roberts et al. 1998). Models that account for less than a

prescribed percentage, are too fragmented, or that cause unrealistic proportions, can

be interactively removed.

2.7 Defining the covariance matrix

The VMESMA algorithm requires specifying the covariance matrix of the

observations, V (see equation 4). The root squares of the diagonal elements of

V 2 1 constitute the weighting factors of each individual band. In general, channels

should be prevalent that are more uncorrelated, present higher radiometric accuracy

and enhance the contrast between EMs. Simulations using synthetic data have

shown that this weighting scheme improves the accuracy and efficiency. For

example, a preliminary study has shown that the estimation of carbonates and clay

is increased using higher weights for channels corresponding to their major

absorption bands in the SWIR (i.e. [2200, 2450] nm). The suitability of this region to

unmix green vegetation, litter and soil in arid environments was also demonstrated

(Asner and Lobell 2000).

The use of weighting factors to incorporate a priori knowledge into the inversion

unmixing algorithm is even more critical when the analysis combines channels with

different characteristics, e.g. thermal channels and NDVI (DEMON-II 1999). The

different potential of data from the spectral and angular domains to retain

information of ground properties in different applications is a critical aspect in the

development of operational algorithms for new sensors (Privette et al. 1996, Garcı́a-

Haro et al. 2002).

2.8 Combined use of different levels of detail

The large quantities of data associated with multi- and hyperspectral images may

cause severe problems in data handling and storage. To reduce them and speed up

the computation capabilities, the algorithm includes a compression tool that

performs a data quantity reduction by a desired factor. The use of small images

brings previously slow computation up to interactive speeds. The compression

scheme subdivides the data into square blocks (e.g. 363 or 565) and takes a single

pixel value from the block centre.

The first steps of the process—EM submodel creation, segmentation of the area

and identification of unmodelled EMs—are thus performed using smaller images,

whereas the level of data quality is increased in the successive unmixing iterations.

Several tests have shown that the unmixing outcomes, such as mean and standard

deviation of abundances, submodel percentages, rms and fraction histograms, are

almost invariant with respect to this compression scheme (e.g. the fractions changed

typically less than 0.5% on average).

When using hyperspectral data, a similar compression scheme is also

possible in the spectral domain (Ben-Dor and Banin 1994, Kemper and Sommer

2002).

2.9 VMESMA resources

The software is a modular environment that is cross-platform and robust. The frame

is implemented in Interactive Data Language, IDL, and fully supported by a
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Graphical User Interface (GUI), which provides a graphical means of interacting

with menus and data. System memory usage is optimized by breaking the images

into manageable pieces (e.g. blocks of rows or spatial subsets) before being

processed in memory in order to alleviate the high demand in random access

memory. The most time demanding computations have been implemented in C + +
and Fortran95 languages.

The frame is organized into four Property Sheets: ‘Reflectance image’, ‘Library’,

‘Segmentation’ and ‘Unmixing’ (see examples in figures 2 and 7), which allows

common processing problems to be addressed with the necessary flexibility.

Although not shown for the sake of brevity, they include advanced methods to

improve the likely accuracy of estimating proportions, such as: (i) an image

restoration method, which corrects the effects on the fractions due to the spatial

degradation of the signal caused by the scanner Point Spread Function (PSF); and

(ii) a contextual method that relies on estimating fractions in surrounded pixels to

improve the selection of local EMs (e.g. less fragmented submodels). The interface

also includes batch-processing of archived datasets and session back-up facilities for

making the unmixing process repeatable.

3. Application: mapping residual tailings sludge after a mining accident

The application of VMESMA is demonstrated in a case study on contamination

mapping after a mining accident in Spain. The collapse of the tailings pond in

Aznalcóllar in April 1998 had left several thousands of hectares in the Guadiamar

floodplain contaminated with pyritic sludge and high concentrations of trace metals.

Pyrite oxidization is one of the most acid-producing natural weathering processes, in

which trace metals are mobilized and released into the river system and the

groundwater. The iron-bearing secondary minerals are iron-rich and hydroxyl-

and/or water-bearing, which makes it possible to identify them on the basis of

their diagnostic spectral reflectance features (Swayze 2000). Thus, one of the

objectives of this case study was identification of residual contamination and

monitoring of the oxidation process using hyperspectral data. The ongoing

remediation work and intense geochemical processes caused strong interannual

variations, which make high demands on the flexibility of the analysis tool with

respect to image analysis and EM selection, and are thus an appropriate test case for

VMESMA.

3.1 Study area

The study area is situated approximately 40 km west of Seville, Spain (figure 8).

After a collapse of a tailings dam at the Aznalcóllar Mine on 25 April 1998,

four million cubic metres of acidic water and two million cubic metres of

toxic sludge with high heavy metal concentrations flooded the Agrio and

Guadiamar rivers, endangering the wetlands of the Doñana National Park.

This national park is one of Europe’s biggest wetlands areas and a very important

refuge for migrating waterfowl. The toxic sludge had covered an area of

4286 ha, mainly agricultural and marshland. Sludge and contaminated topsoils

had been removed within six months after the accident using heavy machinery.

Monitoring activities have been started by Spanish institutions to control

the possible mobility of residual contaminants due to oxidation processes

(Grimalt et al. 1999).
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3.2 Dataset

Two extensive field campaigns were carried out in May/June 1999 and June/July
2000. They included airborne imaging spectrometer and concomitant field data. The

imaging spectroscopy data were acquired by DLR with the HyMap sensor on behalf

of the JRC. The data takes covered the entire contaminated area and were

accompanied by a radiometric calibration field campaign. The HyMap system

provides 128 wavebands over the range [403, 2480] nm. The data were

delivered atmospherically and geometrically corrected by DLR according to the

methods described by Richter (1996) and Schlaepfer et al. (1998). Because of

the good data quality no further pre-processing was necessary; only 16 bands in
the atmospherically affected areas of the spectrum were excluded from further

analysis.

Nearly simultaneously, representative sites along the affected river catch-

ments were selected and spectrally characterized. Spectral measurements

taken using GER S-IRIS and ASD Fieldspec II resulted in a VIS to SWIR high-

resolution library hierarchically organized of rocks, soils and vegetation,

close related to their physiographic context. The spectra were integrated in

MedSpec database. Furthermore, a detailed soil sampling was carried out for
geochemical laboratory analysis in order to characterize the contamination level of

the soils.

Figure 8. Sketch of the study area.
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3.3 Results and discussion

Our purpose is to extract the highest amount of systematic variability that is related

to our interests (i.e. sludge and sludge derivatives), while minimizing the effect of the

variability that is related to the other properties present in the area (soil, vegetation,

water bodies). The structure of VMESMA allows an iterative analysis of the image,

which is of utmost importance in this study. In a first step the VMESMA

segmentation tool (§2.5) is used to separate non-affected areas from the

contaminated areas based on GIS information about the maximum extent of the

sludge.

In the next step the EM selection capabilities of VMESMA were used for the

identification of appropriate EMs (§2.6). The selection of EMs has to consider the

variability of the occurring surface materials, the spatial and spectral resolution of

data and the thematic purpose of the study. For the extraction of the residual sludge

signal it was necessary to separate sludge related spectral information from other

‘background’ information. Using the automated EM selection, followed by the

spectral matching capacity of VMESMA, spectra of green and dry vegetation and

two different soils were selected from the spectral database as background

information (figure 9). A spectrum of stacked sugar beet leaves was used to

represent the green vegetation EM whereas the dry vegetation EM was measured

over a stack of dry grass. The brighter soil had a fine texture and a yellowish red

colour (Munsell value 5YR 5/6), the absorption at about 1.0 mm is indicative of

certain amounts of iron oxides and the absorption at 2.2 mm is typical for clay

minerals. The darker soil has an intermediate structure and a brown colour (Munsell

value 7.5YR 5/3). This soil does not exhibit strong iron absorption, but has a

distinct absorption caused by clay minerals.

To select sludge EMs we had to consider the potential secondary minerals of

pyrite, such as jarosite, copiapite, ferrihydrite and goethite. However, for the 1999

images, the oxidation was limited to areas with a constant water supply and for the

major part of the contaminated area no considerable oxidation took place. Thus, a

single spectrum of pure sludge was sufficient to represent the sludge variability. This

result was also confirmed by the automated EM selection, which also identified a

Figure 9. Background EM: green vegetation (e), dry vegetation ( + ), soil 1 (D), soil 2 (6).
Absolute reflectance (a), standardized reflectance (b).
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sludge spectrum besides soil and vegetation spectra. In the year 2000 other sludge

related spectra had to be taken into consideration, because field and image

assessment confirmed that the oxidation processes had produced various crusts on

the soil surface. During the second field campaign, spectral measurements of the
most abundant crusts were recorded, from which the EMs were selected (see

figure 10). Figure 10 illustrates another advantage of VMESMA for this case study.

The standardization strongly enhances the absorption features of the sludge spectra

compared to the reflectance spectra. In particular, the pyritic sludge, which in

reflectance is almost featureless, has a more distinct shape after standardization.

In the first unmixing step, the four background spectra were used to unmix the

entire scene. Although a maximum of four EMs per pixel was allowed, only in less

than 0.5% of the cases as many EMs were used. In the majority (75%) two EMs were

sufficient to model the scene. The rms obtained after the first unmixing clearly
separated the sludge-affected areas with a high rms from the non-contaminated

areas. A good agreement was found between these areas and the maximum sludge

extent. In areas with a higher rms the residuals also clearly reflect the lack of another

EM. On the other hand, in most of the non-affected areas, the proposed EMs were

sufficient, which is illustrated by low rms and featureless residuals (figure 11). Prior

to the next unmixing step, the segmentation tool was used to stratify the image. The

abundances outside the affected area were disregarded, and in the affected area, an

rms threshold was used to separate sufficiently well-modelled areas from areas most
probably affected by sludge.

The resulting sludge abundance map for June 1999 (figure 12) shows that the

sludge abundances were still very high, with an average abundance of 0.51. The

results were obtained with only one sludge EM. In fact, tests with additional sludge

EMs were not successful. This is a clear indicator that at this point in time, 13

months after the accident, oxidation of pyrite did not yet reach a high intensity and

consequently it was possible to map the sludge using only the pyrite sludge EM. The

estimated sludge distribution is in good agreement with the field observations and
the results of the geochemical analysis, and reflects the discontinuous distribution

pattern caused by the mechanical clean up.

Figure 10. Sludge and secondary mineral EM: pyritic sludge (e), yellowish jarosite
dominated crust ( + ), bright gypsum crust (D). Absolute reflectance (a), standardized
reflectance (b).
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The same unmixing strategy was applied for the data collected in 2000. However,

the situation had changed significantly. The remediation activities proceeded with a

second cleaning phase in combination with fixation of the trace metals. This was

achieved by augmentation of the pH level of the soil through addition of lime-rich

material. At the time of the second field and flight campaign the work was still

ongoing. In many areas, particularly in the northern part, efflorescent crusting could

be observed. According to Nordstrom (1982), these crusts are most commonly

formed during dry periods when evaporation promotes the rise of subsurface water

to the uppermost soil surfaces by capillary action. As the water reaches the surface it

becomes progressively more concentrated and finally precipitates various salts in

efflorescence. The formation of these iron sulphate salts is an intermediate step,

which precedes the precipitation of more common insoluble iron minerals such as

goethite and jarosite. In order to account for this change in surface composition two

new EMs representing these efflorescent crusts were included in the SMA modelling

(see figure 10).

The abundance map for July 2000 shows a considerable reduction of areas with

sludge EM abundances compared to the abundances obtained for June 1999

(figure 12). The reduction was achieved by the second remediation process initiated

by the local authorities. However, in areas where the remediation was not finished

the oxidation of the residual sludge had started, resulting in higher abundances of

secondary minerals. Major problematic areas are found in the gravel pits at

Sobarbinas and in the riverbed of the Agrio River at the confluent of the Agrio and

Guadiamar rivers, where the sludge wave contaminated the wide floodplains. In this

area, jarosite was found to be abundant. It is formed under dryer conditions

according to the reaction sequence explained by Nordstrom (1982). The patches of

gypsum are restricted to shallow depressions, in which more water gathered after

rainfalls and the humidity was sufficient for the formation of gypsum when the

water evaporates. However, below these thin surface crusts, only a few millimetres

thick, secondary minerals are found. Thus, the presence of gypsum is on the one

hand an indicator of buffering of acidity by the distributed material Ca-rich

material; on the other hand it shows that there is still residual sludge in the soil,

which produces acidity.

Figure 11. Comparison of original ( + ) and modelled (e) spectra and residuals (D). Pixel in
sludge affected area (a) and pixel in non-affected area (b).
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For comparison, the abundances were also estimated using the conventional

approach with a fixed EM set including a shade EM. Consequently, the image from

1999 was unmixed using the four background EMs, the sludge EM and shade. For

retrieval of absolute abundances the shade EM was removed and the remaining

EMs were rescaled as outlined in §2.2. However, the increased number of EMs in

combination with rescaling due to the shade EM produced a high number of

negative fractions. For the conventional approach 63.1% of the pixels are negative in

Figure 12. (a) Sludge abundance map 1999. The affected area (black) superimposed on the
HyMap false colour image for better orientation. Sludge abundance within the affected area is
scaled from zero (black) to one (white). (b) Mineral abundance map 2000. The mixtures of the
different EMs can be derived from the colour coded ternary diagram. Red is the pyrite EM,
green is the jarosite EM, blue the gypsum EM.
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at least one fraction and 37.1% are more negative than 2 0.1; using the VMESMA

approach only 0.01% of negative pixels occur.

In addition, using a fixed EM set overestimates the area in which sludge is present,

on the one hand, and on the other hand sludge abundances in contaminated areas

are underestimated due to the spectral similarity between sludge and shade.

4. Conclusions

The degree of validity of spectral mixture analysis (SMA) is limited by the presence

of multiple scattering, directional effects and difficulties of addressing the spectral

EMs in the scene. In this paper, we have developed a methodology that extends the

possibilities of conventional SMA. This method is aimed at improving under-

standing and modelling of surface optical properties in the EM selection. EMs are

chosen to reflect the actual surface conditions in the scene, while at the same time

maximizing the spectral contrast, which is necessary to obtain improved

abundances. The basis is a hierarchical subdivision of the image for addressing

the variations of the level of complexity between the various image sub-areas along

with an iterative feedback process to focus the analysis on problematic areas.

VMESMA requires expert monitoring for guided injection of prior spatial and

spectral knowledge from different data sources, including the assessment of previous

unmixing results. While potentially a weakness, the method is potentially better

suited to meet the research requirements and to reduce model sensitivity to

nonlinear/directional effects and data inaccuracies. The streamlined use of a priori

knowledge in the unmixing process is considered the best option, if not necessary,

when different submodels tend to model the same areas equally well, which is very

common with low spectral resolution data. In addition, VMESMA mitigates

possible unmixing errors when key spectra are missing in the library or can be found

only in small parts of the scene (local EMs).

The VMESMA approach offers also new contributions for fulfilment of unmixing

analysis, including methods for dynamic identification of the optimum EM subset

and an alternative solution, namely standardized unmixing. This solution reduces

EM spectral variability due to shade and brightness variations attributed to

illumination and topography. Although this reduction can be a serious drawback to

distinguish subcanopies with different structures, such as crop varieties and forest

types, the solution may outperform conventional unmixing when the property is

masked by external factors (e.g. illumination) and canopy shade. Furthermore,

standardized unmixing is potentially more suited for hyperspectral applications

since it may enhance small absorption features.

The results of VMESMA experiments, compared to those of a conventional

procedure, show that the new method identifies more clearly the spectral signal

associated to all scene components and significantly reduces the modelling error. In

particular, the potential of VMESMA to map sludge residual has been demon-

strated on hyperspectral airborne data. In summary:

1. The iterative approach starting with a simple EM configuration of back-

ground materials allowed delineation of the affected area from the rms values,

which was congruent with the GIS layers of the affected area.

2. The standardization of spectra was very helpful for detection of sludge, which

is a very dark and almost spectral featureless material. First, it was possible to

use EM models without shade, which caused problems in separation of shade
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and sludge. Second, the standardization enhanced the wide absorption

features of sludge, while letting different types of green vegetation appear so

similar that a single vegetation EM is sufficient to cover their variability.

3. A comparison between the sludge abundance obtained in 1999 and the

oxidation products obtained in 2000 showed that imaging spectroscopy is able

to follow the full process of pyrite oxidation: the initial pyrite could be

identified in 1999 mapping the oxidation potential. In 2000, the complex

weathering leads to an efflorescence of easily dissolved salt crusts and more

stable secondary minerals, which could be differentiated and mapped using

VMESMA.
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Aznalcóllar. Science of the Total Environment, 242, pp. 3–11.

GROSS, H.N. and SCHOTT, J.R., 1998, Application of spectral mixture analysis and image

fusion techniques for image sharpening. Remote Sensing of Environment, 63,

pp. 85–94.

HILL, J., SMITH, M.O., MEHL, W., LACAZE, B. and SOMMER, S., 1995, The use of high spectral

resolution imaging systems for mapping land degradation patterns in Mediterranean

ecosystems. In MAC Europe 91, Final Results Workshop Proceedings, 2–6 October

1994, Lenggries (Frascati: ESA), ESA WPP-88, pp. 31–47.

KEMPER, T. and SOMMER, S., 2002, Estimate of heavy metal contamination in soils after a

mining accident using reflectance spectroscopy. Environmental Science & Technology,

36, pp. 2742–2747.

KLEIN-GEBBINCK, M.S., 1998, Decomposition of mixed pixels in remote sensing images to

improve the area estimation of agricultural fields. PhD thesis, University of Nijmegen

(Veenendaal: University Press).

KRUSE, F.A., 1988, Use of airborne imaging spectrometer data to map minerals associated

with hydrothermally altered rocks in the northern Grapevine Mountains, Nevada and

California. Remote Sensing of Environment, 24, pp. 31–51.

LEBLON, B., GALLANT, L. and GRANBERG, H., 1996, Effects of shadowing types on ground-

measured visible and near-infrared shadow reflectances. Remote Sensing of

Environment, 58, pp. 322–328.

MACKIN S., SETTLE, J., DRAKE, N. and BRIGGS, S., 1991, Curve shape matching, end-member

selection and mixture modelling of AVIRIS and GER data for mapping surface

mineralogy and vegetation communities. Airborne VISIBLE/Infrared imaging

spectrometer (AVIRIS). In Airborne Geoscience Workshop Bibliographies, 20–21

May 1991 (Pasadena, CA: JPL Publications), pp. 158–162.

2160 F. J. Garcı́a-Haro et al.



MASELLI, F., 1998, Multiclass spectral decomposition of remotely sensed scenes by selective

pixel unmixing. IEEE Transactions on Geoscience and Remote Sensing, 36,

pp. 1809–1820.

NASH, J.C., 1990, The Choleski Decomposition. In Compact Numerical Methods for

Computers: linear algebra and function minimization (Bristol: Adam Hilger),

pp. 84–93.

NORDSTROM, D.K., 1982, Aqueous pyrite oxidation and the consequent formation of

secondary iron minerals. In Acid Sulfate Weathering, J.A. Kittrick, D.S. Fanning

and L.R. Hossner (Eds) (Madison, Wisconsin: Soil Science Society of America),

pp. 37–56.

OKIN, G.S., SIEGEL, H., OKIN, W.J., MURRAY, B., COLLIER, J., ROBERTS, D.A.,

MILLER, C.D., H., PAINTER, T.H. and CURKENDALL, D.W., 1999, The super-

computing visualization workbench for the analysis and classification of imaging

spectrometer data. In AVIRIS Airborne Geoscience Workshop, 8–11 February 1999

(Pasadena, CA: JPL Publications), pp. 317–322.

PAINTER, T.H., ROBERTS, D.A., GREEN, R.O. and DOZIER, J., 1998, The effect of grain size on

spectral mixture analysis of show-covered area from AVIRIS data. Remote Sensing of

Environment, 65, pp. 320–332.

PEDDLE, D.R., FORREST, G.H. and LEDREW, E.F., 1999, Spectral mixture analysis and

geometric-optical reflectance modelling of boreal forest biophysical structure. Remote

Sensing of Environment, 67, pp. 288–297.

PREISSLER, H., BOHBOT, H., MEHL, W. and SOMMER, S., 1998, MEDSPEC-A spectral

database as a tool to support the use of imaging spectrometry data for environmental

monitoring. In 1st EARSeL Workshop on Imaging Spectrometry, 6–8 October 1998,

Zurich, Switzerland (Paris: EARSEL), pp. 455–462.

PRESS, W.H., FLANNERY, B.P., TEUKOLSKY, S.A. and VETTERLING, W.T., 1992, Cholesky

Decomposition. In Numerical Recipes in FORTRAN: §2.9 The art of scientific

computing (Cambridge: Cambridge University Press), pp. 89–91.

PRIVETTE, J.L., MYNENI, R.B. and EMERY, M.J., 1996, Optimal sampling conditions for

estimating grassland parameters via reflectance inversion models. IEEE Transactions

on Geoscience and Remote Sensing, 34, pp. 272–284.

QIN, W. and GERSTL, S.A.W., 2000, 3-D scene modelling of semidesert vegetation cover and

its radiation regime. Remote Sensing of Environment, 71, pp. 197–206.

RICHTER, R., 1996, Atmospheric correction of DAIS hyperspectral image data. In

Proceedings of SPIE, 2758, pp. 390–399.

ROBERTS, D.A., SMITH, M.O., ADAMS, J.B. and GILLESPIE, A.R., 1991, Leaf spectral types,

residuals, and canopy shade in an AVIRIS image. In 3rd Airborne Science Workshop,

20–21 May 1991 (Pasadena, CA: JPL Publications), pp. 43–50.

ROBERTS, D.A., SMITH, M.O. and ADAMS, J.B., 1993, Green vegetation, nonphotosynthetic

vegetation, and soils in AVIRIS data. Remote Sensing of Environment, 44, pp.

255–269.

ROBERTS, D.A., GARDNER, M., CHURCH, R., USTIN, S., SCHEER, G. and GREEN, R.O., 1998,

Mapping chaparral in the Santa Monica Mountains using multiple endmember

spectral mixture models. Remote Sensing of Environment, 65, pp. 267–279.

SABOL, D.E., ADAMS, J.B. and SMITH, M.O., 1992, Quantitative subpixel spectral

detection of targets in multispectral images. Journal of Geophysical Research, 25,

pp. 2659–2672.

SCHLAEPFER, D., SCHAEPMAN, M.E. and ITTEN, K.I., 1998, Parge: parametric geocoding

based on GCP-calibrated auxiliary data. Proceedings of SPIE, 3438, pp. 334–344.

SHIMABUKURO, Y.E., BATISTA, G.T., MELLO, E.M.K., MOREIRA, J.C. and DUARTE, V., 1998,

Using shade fraction image segmentation to evaluate deforestation in Landsat

Thematic Mapper images of the Amazon region. International Journal of Remote

Sensing, 19, pp. 535–541.

Variable multiple endmember spectral mixture analysis 2161



SMITH, M.O., SUSAN, L.U., ADAMS, J.B. and GILLESPIE, A.R., 1990, Vegetation in deserts: I.

A regional measure of abundance from multispectral images. Remote Sensing of

Environment, 31, pp. 1–26.

SMITH, M.O., ADAMS, J.B. and SABOL, D.E., 1994, Spectral mixture analysis: new strategies

for the analysis of multispectral data. In Imaging Spectrometry – A tool for

Environmental Observations. Euro Courses, Remote Sensing, J. Hill and J. Megier

(Eds) (Boston, MA: Kluwer Academic), vol. 4, pp. 125–143.

SWAYZE, G.A., SMITH, K.S., CLARK, R.N., SUTLEY, S.J., PEARSON, R.M., VANCE, J.S.,

HAGEMAN, P.L., BRIGGS, P.H., MEIER, A.L., SINGLETON, M.J. and ROTH, S., 2000,

Using imaging spectroscopy to map acid mine waste. Environmental Science and

Technology, 34, pp. 47–54.

THOMSON, L.J. and SALISBURY, J.W., 1993, The mid-infrared reflectance of mineral mixtures

(7–14 mm). Remote Sensing of Environment, 17, pp. 37–53.

USTIN, S.L., SMITH, M.O. and ADAMS, J.B., 1993, Remote sensing of ecological processes: a

strategy for developing and testing ecological models using spectral mixture analysis.

In Scaling Physiological Processes: Leaf to Globe, J. Ehlringer and C. Field (Eds)

(New York: Academic Press), pp. 339–357.

2162 Variable multiple endmember spectral mixture analysis


