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Abstract

Shells and plates exposed to supersonic flow can be subject to dynamic aeroelastic instability called
panel  flutter,  which  is  caused  by  the  elimination  of  the  system’s  damping.  This  is  initiated  by
aerodynamic loads induced by initial structural motions. Experimental activities on this subject were
performed  by  DLR  Institute  for  Aeroealsticity  at  DNW  Transonic  Wind  Tunnel  in  Göttingen  on
rectangular  and  flat  plates.  Besides  the  aerodynamic  parameters  Mach  number  and  Reynolds
number,  structural  parameters,  such  as  amplitude  and  excitation  frequency,  were  varied  for  two
simulated  modal  shapes  by  means  of  a  forced  excitation  approach.  Unsteady  pressure  and
deformation  measurements  were  done  in  order  to  determine  the  local  aerodynamic  responses
evoked  by  the  structure’s  oscillating  deformation  and  based  on  that  Generalized  Aerodynamic
Forces.  The excerpt  of  those tests that  is presented in this  paper focuses on the Mach number’s
impact,  which is varied in a range of  0.7 <  M∞ < 1.2,  on the pressure response and the resulting
aerodynamic damping. For validation analytic approaches for high supersonic and low subsonic flow
conditions are applied.  Elaborate knowledge about the non-linear aeroelastic behaviour in the high
subsonic and low supersonic flow domain may lead the way to less conservative designed and thus
light weight designed aerospace structures. A contribution to sustainability follows due to resulting
savings in mass and fuel.
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Nomenclatur

 Latin

 Â = Amplitude of Oscillation
 a = Length
 b = Width 
 cp = Pressure Coefficient
 D = Plate Bending Stiffness
 E = Young’s Modulus
 d = Time depending z-Deflection
 fexc = Excitation Frequency
 h = Panel Thickness
 ℑ = Imaginary Part of a Complex Number
 J = Geometrical Moment of Inertia
 l = Length
 n = Plate Bending Mode Number
 t = Time 
 M∞ = Free Stream Mach number
 p = Pressure
 ℜ = Real Part of a Complex Number
 U∞ = Free Stream Velocity
 W = Width

x = x-Coordinate
y = y-Coordinate
z = z-Coordinate

Greek

𝜙    =   Phase Angle
ρs = Structure Density
𝜓 = Eigenfunction
𝜔 = Angular Frequency

Abbreviations

CFD Computational Fluid Dynamics
DNW German Dutch Wind Tunnels
DOF Degree of Freedom
FEM Finite Element Method
GAF Generalized Aerodynamic Forces
LCO Limit Cycle Oscillation
MAC Modal Assurance Criterion
SPR Stereo Pattern Recognition
TWG Transonic Wind Tunnel Göttingen
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1. Introduction
In the scope of the US spaceflight programs and the connected first manned moon landing of the
Apollo 11 mission extensive investigations were carried out on a aeroelastic phenomenon known
as panel flutter, investigated in the mid 1940s, which arises due to the interaction between thin
shell and plate structures and flowing fluid. In supersonic flow those structures, which are exposed
to the flow on one side, can undergo self excited oscillations caused by the aerodynamic response
induced by the structure’s motion. Figure 1 shows a simple model according to Dowell [1] with a
plate of length a, that has clamped mechanical boundary conditions on leading edge and trailing
edge. The plate is exposed to a flow M∞ that has a boundary layer that is not considered in this
paper. The shown oscillating motion of the structure is the first modal shape of a clamped beam. 

Figure 1 – Panel flutter model.

In case of arising oscillations of the structure, these are of a limit cycle type that eventually leads to
the plate’s failure due to fatigue [2]. Among others, important experimental and theoretical research
on this topic was done by Muhlstein [3] [4] and Dowell [1] [5], respectively. The applied theories
enables describing the system’s aeroelasticity in the low subsonic and high supersonic domain, but
failed by approaching the vicinity of the speed of sound. New numerical computational FSI (Fluid
Structure Interaction)  methods using Computational  Fluid  Dynamics  (CFD)  and Finite  Element
Methods (FEM) showed themselves capable of closing this gap, as presented by Hashimoto [6].
Therefore,  at  DLR investigations  were  done  in  order  to  develop  numerical  tools  validated  by
experimental results [7], from which an excerpt on the Mach number’s Influence is shown in the
paper at hand. In addition to the validation of numerical approaches, the performed experiments
shall  give  insight  in  the  local  and  global  physical  phenomena  related  to  aeroelastic  dynamic
instability. 

The left side of Equation 1 describes the structure by means of a two-dimensional Kirchhoff plate
equation [8]. The first term represents the structure’s elastic forces and the second one describes
the inertia forces depending on the structure’s density  ρs, its thickness h, its Young’s Modulus  E
and the time t. A third term for structural damping is not considered since it is assumed very small
compared to the dominating aerodynamic damping. The latter is part of the aerodynamic loads that
are represented on the equation’s right side by the pressure difference ∆p between flow faced and
flow averted side of the structure.

                                            EJ (∂
4 d(x , t)
∂ x4 )+ ρs(x)h ∂

2d (x , t)
∂t 2

=−∆ p ( x , t )   (1)

In order to calculate the aerodynamic loads, a subsonic theory as well as a supersonic theory by
Dowell [5] are employed. Equation 2 shows the calculation of the pressure coefficient cp, which is
the pressure difference divided  by the dynamic  pressure  and the excitation  amplitude  Â.  The
equation shows a complex pressure coefficient with real part terms ℜ and imaginary part terms ℑ,
as indicated by the characters above the equation.
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                                             c pM<1=
1
π [ d2ψn
d x2 + j 2ω

U∞

dψ n
dx

−ω2 ψn
U∞

2 ]             (2)

Besides the structure’s frequency ω (2πfexc) and the free stream velocity U∞, the structure’s modal
shape ψn is crucial for the result. Since the phasing between the structure’s and the aerodynamic
oscillation is responsible for the damping of the system, this paper focuses later on the pressure’s
imaginary part.  With no imaginary part  the damping is zero, whereas a positive imaginary part
indicates a positive damping and a negative one a negative damping. The latter is required for
vreating aeroelastic instability. The theory is only valid for low subsonic Mach numbers M∞ <  0.3
and by using the Prandtl-Glauert transformation even for high subsonic Mach number M∞ < 0.7 [9],
[10].  The theoretical approach applied for supersonic flow in Equation 3 is based on the Piston
Theory by Ashley [11] and is also described by Dowell [5]. The Equation is composed of the same
variables as in the subsonic case, except for the free stream Mach number M∞. Again, the equation
can be divided in real part and imaginary part components. Since the Piston Theory is also a linear
theory, the non-linearities occurring in the vicinity of M∞ = 1.0 are not considered and its validity is
limited to supersonic Mach numbers M∞ > √2. 

                                                     c pM>1 ,n=
2
M ∞

[d ψndx + j ω
U∞

ψn]           (3)

The one parameter in the equations that needs to be considered in more detail is the structure’s
mode shape. Figure 2 shows results by Alder [13], where the frequency of the flutter instability is
shown as a function of the free stream Mach number.

Figure 2 – Aeroelastic instability in low supersonic flow [13].

The Results for viscous flow (viscous SA) show the aeroelastic mode shapes and frequencies of
for  a  two-dimensional  plate  that  is  simply  supported at  leading  and trailing  edge.  Considered
parameters are the length-to-width ratio  a/b, the flow boundary layer thickness 99 and the mass
ratio  μ.  The illustrated mode shape are very close to the structure’s  first  modal  shape  𝜓1   for
1.0 < M∞ < 1.3 and an increasing impact of the second mode shape 𝜓2 for 1.3 < M∞ < 2.0. Derived

         ℜ ℑ

                       ℜ ℑ ℜ
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from those results is the requirement for the test setup to enable the simulation of the first modal
shapes of the test plate. The modal shapes of beams and plates can be calculated analytically by
applying  an  initial  function  under  consideration  of  the  mechanical  boundary  conditions  of  the
clamped structure [12]. It can also be calculated by a FEM modal analysis as shown in Figure 3. 

Figure 3 – Modal shapes one (𝜓1) and two (𝜓2) of a flat rectangular plate; FEM calculation. 

A  test  setup  able  to  simulate  these  shapes  can  induce  the  required  aerodynamic  response.
Content of the paper at hand are the measurements in connection with the simulation of the first
modal  shape.  A  direct  measure  for  the  aerodynamic  damping  are  Generalized  Aerodynamic
Forces (GAFs), which are directly based on the aerodynamic loads and the involved modal shapes
of the structure. According to Equation 4, the GAFs  Qn for a single degree of freedom (1 DOF)
system (n = 1) can be calculated by multiplying the specific modal shape 𝜓n with the pressure
difference ∆p evoked by that shape.

                             Qn(x , y , t)=Qnn(x , y , t)=∫
0

w

∫
0

l

Δ pn(x , y , t )ψn(x , y , t)dx dy  
    (4)

Since the product of pressure and shape is integrated over the plate’s length and width, the result
is one global value. In case a local observation is needed, only the product of shape and pressure
is calculated as a function of x and y giving information on the local state.

2. Experimental Setup
The wind tunnel experiments are based on a forced motion conception, where hydraulic actuators
induce harmonically oscillating deformations of the test specimen, which is a flat rectangular panel
made of steel. Figure 4 shows a scheme of the test setup in the 𝜓1 configuration, which is subject
of the paper at hand. A comparison by means of a MAC (Modal Assurance Criterion) approach
shows excellent  agreement of the calculated first  modal shape and the measured deformation
(simulated  shape)  that  is  evoked  by  one  hydraulic  actuator  attached  to  the  panel’s  center
(Figure 4 (a) and (b)) [7]. 
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(a) Non-deflected. (b) Deflected.

Figure 4 – Experimental Setup.

With respect to Figure 2, which indicates single mode flutter for  1.0 < M∞ <  1.2, the test setup
simulates a 1 DOF system that  allows exclusively  structural  motions of  the plate’s  first  modal
shape  𝜓1.  The  parameters  of  the  test  panel  deformation  are  the  amplitude  Â,  which  is  the
actuator’s stroke, and the excitation frequency fexc. Both are measured optically by a stereo pattern
recognition system (SPR) and additionally by a travel sensor that is integrated in the hydraulic
actuator. Figure 5 presents a detailed view on the test structure. The pattern of white markers
tracked by the two cameras of the SPR system is shown on the left Figure (sections  Sz1 to  Sz6),
which illustrates a view on the test specimen’s flow faced side. 

(a) Marker pattern for unsteady deformation
measurement (top view).

(b) Pressure sensor positions for unsteady
pressure measurement (rear view).

Figure 5 – Test specimen with applied sensor patterns [9].

The applied measurement technique focuses further on the aerodynamic response evoked by the
deformations by means of unsteady pressure. That response is measured by highly sensitive and
unsteady miniature pressure transducers indicated in Figure 5 (b), which shows the flow averted
side of the panel, where the transducers are attached to the depicted orifices. The experiments are
carried out in the Transonic Wind Tunnel in Göttingen (DNW-TWG) within a Mach number range of
0.7  <  M∞ <  1.2 and  for  three  different  Reynolds  numbers  (Re1 =  2.5·106,  Re2 =  5.0·106,
Re3 = 7.5·106). The main components of the test facility are shown in Figure 6. The rotation speed
of  the  axial  compressor  (1)  as  well  as  the variable  diffuser’s  adjustment  (2)  control  the  wind
tunnel’s Mach number. A pressure chamber (4) enables the wind tunnel for a variation of the total
pressure. The test setup is installed in the test section (3) having a cross section of 1m squared. 
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Figure 6 – Transonic Wind Tunnel Göttingen (DNW-TWG, source: DNW).

3. Results
This section illustrates the results of measurements done on the first modal shape tests and in
particular on the transition of characteristics of the aerodynamic response by crossing of M∞ = 1.0
from subsonic to supersonic characteristics. Excitation frequency, amplitude and Reynolds number
remain constant. As indicated in the preceding section, the pressure data is presented by means of
complex  values.  The  reference is  the  actuator’s  and thus  the structure’s  motion.  Although  all
components of the complex numbers are shown, at least for the pressure, the focus is drawn on
the imaginary part, which indicates the aerodynamic damping. First, illustrations of two-dimensional
results (f(x,y)) over the entire test structure shall give a general impression on the acquired data.
Based on the sections of markers and transducers shown in Figure 5, the data is interpolated and
extrapolated over the plate. In the second part only one-dimensional results gained at y/w = 0.5 are
used for detailed discussion.

3.1 Deformation 

Deformation results  for  different  Mach numbers are shown in  Figure  7.  Since the structure is
oscillating completely without phasing to the actuators motion, there is no imaginary part.  This
means the deformation’s real part and its absolute value are equal. The latter is illustrated, which
shows at a first glance a good agreement with the calculated modal shape shown in Figure 3. This
impression  is  proven  by  an  excellent  outcome of  a  comparison  of  the  modal  shape  and  the
measured shape by using the Modal Assurance Criterion MAC [9].

(b)  M∞ = 0.7 (b) M∞ = 1.2

Figure 7 – Real part of structural deformation; Influence of excitation frequency at subsonic flow
conditions; fexc= 10.0 Hz; Re = 7.5·106; Â  = 1.8 mm; 𝜓1 [7].
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3.2 Pressure 

Representative  results  of  subsonic  and  supersonic  pressure  measurements  are  shown  from
Figure 8 to Figure 10 by means of the total values of the complex pressure data, the real parts and
the imaginary parts. The absolute pressure shows for subsonic flow a characteristic that has lines
of symmetry at x/l = 0.5 and at y/w = 0.5. For supersonic flow, the symmetry line at x/l = 0.5 has
vanished. The pressure maximum clearly visible in the panel’s center for  M∞ = 0.7 has shifted to
about x/l = 0.75 for M∞ = 1.2.

(b)  M∞ = 0.7 (b) M∞ = 1.2

Figure 8 – Absolute pressure at subsonic and supersonic flow conditions; fexc= 25.0 Hz;
Re = 7.5·106; ÂN = 1.8 mm, 𝜓1 [7].

In Figure 9, which shows the pressure’s real part of the same measurement point, a similar shift
occurs.  The  dominating  negative  domain  with  its  maximum in  the  panel’s  center  has  moved
downstream for supersonic conditions.

(b)  M∞ = 0.7 (b) M∞ = 1.2

Figure 9 – Real part of pressure at subsonic and supersonic flow conditions; fexc= 25.0 Hz;
Re = 7.5·106;  ÂN = 1.8 mm, 𝜓1 [7].
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The pressure’s  imaginary  components  shown  in  Figure  10 do  not  show the  previously  made
observation of a shift of the characteristics. Here, the impression of a change in algebraic signs
from subsonic to supersonic flow is given. With reference to the introductory section, the subsonic
results show positive aerodynamic damping for x/l < 0.5 and a negative damping for x/l > 0.5. The
other way around are the characteristics shown in Figure 10 (b) for supersonic conditions.  After
depicting the results over the whole plate, a more detailed presentation along the plate’s length at
y/w=0.5 follows in the next sections. This enables a more detailed view for validation purpose and
for analyzing the transition happening by passing M∞ = 1.0. 

(b)  M∞ = 0.7 (b) M∞ = 1.2

Figure 10 – Imaginary part of pressure at subsonic and supersonic flow conditions; fexc= 25.0 Hz;
Re = 7.5·106; ÂN = 1.8 mm, 𝜓1 [7].

 

3.3 Theoretical references

The results for the complex pressure calculated according to the theories described in Equation 2 and
Equation 3 are shown in Figure 11 and Figure 12 for y/w = 0.5. On the left side the real part is shown,
whereas the imaginary part is presented in the right figure. The filled gray shape in the lower half of
each diagram depicts the underlying structural deformation causing the colored pressure curves. For
subsonic  conditions  the pressure’s  real  part  is  calculated  according  to  Equation  2  and  shows a
cosinusoidal  characteristic  which  is  opposed  to  the  structure’s  deformation  𝜓1.  The  first  term of
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Figure 11 – Pressure; Subsonic theory and measurements; 𝜓1, y/w=0.5, fexc = 1.0 Hz, M∞ = 0.7.
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with the theory. The difference in amplitude in the real part can be explained by transverse flows in the
real three-dimensional experiments as well as the existence of a boundary layer, which has a damping
influence on the pressure’s amplitude. The small discrepancies at leading edge and trailing edge for
the imaginary pressure results may be caused by imperfections of the plate model, which is supposed
to has a curvature of zero at the edges. Figure 9 (a) shows an extensive negative domain in the plate’s
center and smaller positive domains at the edges, which is also shown in Figure 11. The positive
domain in the first half of the panel and the negative one in the second half shown in Figure 10 is also
in agreement with pressure’s imaginary part in Figure 11.

The theoretical results for supersonic flow show approximately the opposite of the subsonic results.
The real part is sinusoidal whereas the imaginary part has a cosinusoidal characteristic. Equation 3
shows that this is in agreement with the rank of derivatives in the two terms for the real and the
imaginary components. The positive pressure domain in the first half of the plate and the negative one
in the second half for subsonic imaginary pressure appear for supersonic flow for the pressure’s real
part. The supersonic imaginary part has the cosinusoidal characteristics with a dominating positive
domain also shown in Figure 10 (b).   

Figure 12 – Pressure; Supersonic theory and measurements for 𝜓1, y/w=0.5, fexc = 1.0 Hz, M∞ = 1.2.

The minimum Mach number established in the measurements is M∞ = 0.7  at which the subsonic
equations are just about still valid and the agreement between both is good. For supersonic results the
situation is different. The maximum Mach number maintained in the measurements is M∞ = 1.2, where
the supersonic theory is just not valid anymore. The agreement is still satisfactory, though no perfect
agreement can be expected here. It can be assumed, that test results at higher Mach numbers would
show better agreement to that theory.

3.4 Influence of Mach number

The previous section has shown at least plausibility of the measured results and also a change in
characteristics from high subsonic flow conditions to low supersonic flow. That transition can not be
calculated with the applied theories. Since this change is depending on the Mach number, the next
section shows a close examination of the Mach number range in between for two different subsonic
Mach numbers at  M∞ = 0.7, M∞ = 0.95 and two supersonic Mach numbers at  M∞ = 1.05,  M∞ = 1.2.
Since the overall objective is the observation of damping, only the imaginary parts are considered. In
addition the product of the pressure’s imaginary part and the structure’s deformation is illustrated (see
Equation 4), which is a direct measure for local damping.  

The pressure shown in Figure 13 (a) for M∞ = 0.7 has characteristics very similar to those depicted in
Figure 11 with a positive (0.0 < x/l <  0.5)  and a negative (0.5 < x/l < 1.0) domain. The product of
pressure and deformation clarifies those domains being of equal size due to the crossing of the x-axis
at x/l=0.5. Because of that the resulting integrated GAFs are almost zero. The system has neither a
positive nor a negative aerodynamic damping. Results for the second subsonic Mach number, which
is close to M∞ = 1.0, are illustrated in Figure 13 (b). Although the characteristics are similar to those
observed at M∞ = 0.7, a decisive change occurs. The zero crossing at half-length, at which the
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product of pressure and deformation changes from positive to negative, is shifted slightly from x/l =
0.5 to x/l > 0.5. The result is a clearly increased positive domain, both in x-range and in amplitude,
and a decrease of  the negative domain.  The outcome are positive GAFs indicating  a positive
damping. 

(a) M∞ = 0.7 (b) M∞ = 0.95

Figure 13 – Pressure imaginary part as a function of Mach number; Re = 5.0·106; ÂN = 1.8 mm, 𝜓1,
y/w=0.5, Subsonic.

At M∞ = 1.05, illustrated in Figure 14 (a), the stream-wise shift of the crossing point of the x-axis has
increased that leads to a large positive domain and a diminished negative domain. Eventually, Figure
14 (b) shows a product of pressure and shape, which has exclusively positive values for 0.0 < x/l < 1.0.
With each step presented in Figure 13 and Figure 14 the pressure’s characteristics are moving from
the characteristics calculated by the subsonic theory to those calculated by the supersonic equations.
The strongest changes in this transition occur in the vicinity of M∞ = 1.0.

(c) M∞ = 1.05 (d) M∞ = 1.2

Figure 14  – Pressure imaginary part as a function of Mach number; Re = 5.0·106; ÂN = 1.8 mm, 𝜓1,
y/w=0.5, Supersonic.
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4. Conclusions
Wind tunnel tests were performed in order to obtain information on the aerodynamic damping of a
flat  rectangular  plate  in  high  subsonic  and low supersonic  flow.  A 1-DOF system was set  up
allowing  the  plate  doing  motions  in  its  first  modal  shape  𝜓1.  A  hydraulic  actuator  forced  the
structure  to  undergo  those  motions  in  for  inducing  aerodynamic  responses.  The  structure’s
oscillating  motions as well  as the aerodynamic  responses (indicated by the complex  pressure
coefficient) evoked by those motions are measured. Based on those pressure and deformation the
system’s damping was determined. 

A validation with analytic approaches has shown good agreement for high subsonic (M∞ = 0.7) and
low supersonic (M∞ = 1.2) flow conditions, whose Mach numbers are also the validity limits of the
theories. The focus was drawn on the influence of the Mach number for constant Reynolds number
and excitation frequencies. The measured damping characteristics for the Mach number range
0.7 < M∞ < 1.2 were analyzed and the transition from subsonic to supersonic characteristics was
understood.  

Negative global damping was not obtained, which indicates single mode flutter under the tested
conditions was unlikely.

In  a  next  step,  the  also  performed tests  with  a  simulated  second  modal  shape  𝜓2  are  to  be
discussed and associated with this the possibility  of coupled mode instability.  Furthermore, the
boundary layer’s impact, which was not considered, is to be analyzed.
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