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Abstract

This paper presents an isothermal, single-phase model for direct ethanol fuel cells. The ethanol electro-

oxidation reaction is described using a detailed kinetic model that is able to predict anode polarization

and product selectivity data. The anode kinetic model is coupled to a one-dimensional (1D) description

for mass and charge transport across the membrane electrode assembly, which accounts for the mixed

potential induced in the cathode catalyst layer by the crossover of ethanol and acetaldehyde. A simple

1D advection model is used to describe the spatial variation of the concentrations of the different species

as well as the output and parasitic current densities along the flow channels. The proposed 1D+1D model

includes two adjustable parameters that are fitted by a genetic algorithm in order to reproduce previous

experimental data. The calibrated model is then used to investigate the consumption of ethanol and the

production, accumulation and consumption of acetaldehyde along the flow channels, which yields the

product selectivity at different channel cross-sections. A parametric study is also presented for varying

ethanol feed concentrations and flow rates. The results obtained under ethanol starvation conditions

highlight the role of acetaldehyde as main free intermediate, which is first produced and later consumed

once ethanol is fully depleted. The detailed kinetic description of the ethanol oxidation reaction enables

the computation of the four efficiencies (i.e., theoretical, voltage, faradaic, end energy utilization) that

characterize the operation of direct ethanol fuel cells, thus allowing to present overall fuel efficiency vs.

cell current density curves for the first time.

Keywords: Direct ethanol PEM fuel cells, detailed EOR kinetics, modeling, product selectivity, faradic

efficiency, energy utilization

∗Corresponding author. Tel.: +34-916249987; fax: +34-916249430.
Email addresses: Juan.SanchezMonreal@dlr.de (Juan Sánchez-Monreal), pagsalab@ing.uc3m.es (Pablo A.

Garcı́a-Salaberri), marcos.vera@uc3m.es (Marcos Vera )
URL: http://fluidosuc3m.es/people/mvcoello (Marcos Vera )

Preprint submitted to Applied Energy April 2, 2019



1. Introduction

Fuel cells are electrochemical devices that convert the chemical energy contained in a fuel directly

into electrical energy with high thermodynamic efficiency, low pollutant emissions, and essentially no

moving parts [1]. Unlike low-temperature polymer electrolyte membrane (PEM) fuel cells, powered by

hydrogen, direct alcohol fuel cells (DAFCs) use liquid alcohols as fuels, which avoids the need of a

reforming step and facilitates the transport, storage and handling of the fuels through the existing dis-

tribution network [2]. In particular, DAFCs constitute a promising power source for portable electronic

devices and small electric vehicles [3, 4].

Among alcohols, ethanol stands out as a very attractive fuel for sustainable energy systems. It presents

multiple advantages over its main competitor (i.e., methanol) including its lower toxicity, production via

fully renewable processes, and higher theoretical energy density [5]. Ethanol is currently obtained on

a large scale from the conversion of sugars, biomass, cereals or other carbon-based feedstock [6], and

can be easily and safely stored and transported with systems already established for the petrol station

network [7]. More recently, ethanol has also attracted attention as a renewable fuel for the production of

hydrogen in electrochemical reformers [8].

In contrast to its favorable thermodynamic performance compared to hydrogen [5], and its various

advantages over other alcohols such as methanol, the kinetics of ethanol electro-oxidation is far more

complex and therefore slower. It is characterized by an intricate reaction mechanism that involves multi-

electron transfer and complex C-C bond cleavage [7]. In state-of-the-art direct ethanol fuel cells (DE-

FCs), the ethanol oxidation reaction (EOR) faces a central drawback related to the C-C bond cleavage

step, which is critical for the activation of the so-called C1 pathway leading to the complete oxidation of

ethanol to CO2 with the release of 12 electrons. Otherwise, the reaction path follows the C2 pathway,

where the C-C bond remains intact, resulting in the incomplete oxidation of ethanol to acetaldehyde and

acetic acid, with the release of only 2 and 4 electrons, respectively [9, 10].

Besides i) the low CO2 selectivity that characterizes most state-of-the-art electrocatalysts [11], addi-

tional drawbacks of DEFC technology include ii) the low activity of those catalysts, which only improves

at high temperatures, iii) the cross-over of ethanol and other reactive species through Nafionr type mem-

branes, which reduces fuel utilization, iv) the significant depolarization of the cathode electrode resulting

from the parasitic oxidation of the species crossing the membrane, and iv) the poisoning of the anode

and cathode electrodes by strongly adsorbed intermediates (such as CO) formed during the direct and

parasitic oxidation of ethanol and acetaldehyde [7].

The combined effect of these technical problems is to significantly reduce the energy efficiency of
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the system. The overall efficiency of a DEFC is determined by the product of the theoretical efficiency

(εrev = ∆G/∆H ' 0.97), the voltage efficiency (εE = Ecell/Erev, where Erev ' 1.4 V is the reversible cell

potential), the faradaic efficiency (εF = neff/12, where neff is the average number of electrons obtained

per ethanol molecule, and the energy utilization (εU = ∆H/(∆H + ∆Hloss), where ∆H is the available

enthalpy actually used to produce current and ∆Hloss is the enthalpy loss due to crossover), namely

εT = εrev × εE × εF × εU (1)

The theoretical or thermodynamic efficiency, εrev, is fixed, and corresponds to the complete oxidation of

ethanol to CO2. The voltage efficiency, εE, is due to the different overpotentials that appear in the cell

(i.e., activation and ohmic overpotentials), and is lower in DEFCs compared to other low-temperature

PEM fuel cells due to the combination of the low catalyst activity, electrode poisoning and cathode

depolarization due to crossover. The energy utilization factor is induced by species crossover, an effect

that is particularly relevant at low current densities and high ethanol concentrations. Due to the dual role

of acetaldehyde, which may act both as product or as reactant, in DEFCs it is more convenient to consider

the energy utilization factor than the classical fuel utilization customarily used in direct methanol fuel

cells (DMFCs). This is because, unlike methanol in DMFCs, a significant fraction of the ethanol feed

to the cell is only partially oxidized to acetaldehyde, which still has the potential to release a significant

amount of energy under appropriate conditions. Thus, accounting only for the ethanol used in the anode

and lost to the cathode would disregard the important role played by acetaldehyde in DEFCs, to be

discussed below.

However, the real Achilles’ heel of DEFCs is their low faradaic efficiency, εF, which poses the most

serious challenge for the future development of this technology. While in fuel cells based on simpler

fuels, such as hydrogen or ethanol, complete oxidation is easily achieved leading to near-unity faradaic

efficiencies, in DEFCs the faradaic efficiency is much smaller due to the low CO2 selectivity of currently

available catalysts. This results in the production of partially oxidized products such as acetaldehyde or

acetic acid, instead of the complete oxidation of ethanol to CO2. The role of the faradaic efficiency in the

evaluation of DEFCs energy-conversion performance has long been recognized in the literature [12, 13].

However, research on this topic has been mostly devoted to the experimental assessment of the selectivity

towards CO2 of different catalysts formulations and supports [14]. The most thorough investigation of

the faradaic efficiency of ethanol electro-oxidation has been carried out by Pickup et al. [15, 16]. In a

long series of papers, Pickup’s group has developed or applied a large variety of experimental techniques

(operating DEFCs in crossover mode [17], using the flow rate dependence of the current to estimate

the faradaic efficiency of ethanol oxidation [16, 18], pulsing the potential or current to increase CO2
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yields [19, 20, 21], applying different methodologies for the online analysis of DEFC products [22, 23],

etc.) combined with simple but insightful experiment-based models [16, 24], to analyze systematically

both PEM electrolysis cells and DEFCs. These techniques have enabled the determination of the sto-

ichiometry, efficiency, and product distribution for ethanol electrolysis or electro-oxidation in fuel cell

hardware under different operating conditions [25], employing different catalysts formulations [26] and

structures [24, 27, 28, 29], and for different system or electrode architectures [30, 31]. Not to mention

the precise assessment of the effects of species crossover [32].

In this context, more thorough mathematical models would serve as a powerful tool to analyze the

complex physicochemical interactions between the electrochemical reactions and the mass and charge

transport phenomena that take place in DEFCs. Advanced multi-scale and multi-physics models have

enabled significant improvements in fuel cell design, operation and performance in more mature fuel

cell technologies, such as PEMFCs [33, 34, 35, 36, 37] and DMFCs [38, 39, 40]. Some of them couple

traditional continuous macro-homogeneous descriptions with pore-network models [41, 42] or lattice

Boltzman simulations [43] for solving the pore scale, take into account inhomogeneous compression

effects [44], or are validated against time-resolved neutron imaging data [45]. By contrast, a survey of

the available models for DEFCs [46], which are briefly reviewed below, shows that these models are still

in their early stages and are not yet able to fully describe the operation of a DEFC system as a whole.

They exclude systematically, for instance, the prediction of the faradaic efficiency of the cell, or the

evaluation of the energy utilization factor.

The first DEFC models considered that the EOR was much slower than the oxygen reduction reaction

(ORR). As a result, the activation overpotential of the cathodic reaction was often neglected [47, 48].

Later work modeled the ORR as a single Tafel reaction [49, 50, 51, 52, 53], while more recent models

included also the reverse reaction using Butler-Volmer kinetics [54]. Most early DEFC models also

assumed the complete oxidation of ethanol to CO2 with the transfer of 12 electrons [47, 48, 49, 50, 53].

Surprisingly, this drastic simplification, which completely overlooks the electrochemical complexities of

the EOR, is still used today [55, 56]. By contrast, other models considered the oxidation of ethanol to

acetic acid with the transfer of only 4 electrons [52, 57, 58, 59, 60, 61, 62, 63, 64]. It was not until recently

that some DEFC models started to account for the complex multi-step kinetics of the EOR, including the

effect of intermediate species such as acetic acid and acetaldehyde [54, 65, 66]. These models typically

involved the calculation of the coverage factors of the adsorbed intermediates, an approach that had been

previously applied to DMFC modeling [67, 68].

Due to the relevance of crossover in DEFC performance, most models also include this effect [47, 48,
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49, 50, 55, 56, 58, 62, 63, 64]. Since the molecular structures of ethanol and methanol are very similar, all

crossover models for ethanol are based on those previously developed for methanol, where the crossover

fluxes are driven mainly by diffusion and electro-osmotic drag, with hydraulic permeation only included

occasionally [53]. The crossover of other free intermediate species, such as acetaldehyde or acetic acid,

or even the crossover of oxygen from cathode to anode, have only been modeled in a limited number of

works [54, 65, 66].

A common feature of most DEFC models published to date is that they are limited to one-dimensional

(1D) across-the-channel formulations [47, 48, 49, 50, 52, 53, 54, 57]. In this case, species transport across

the MEA is driven by molecular diffusion [54, 57], or by the combined action of molecular diffusion and

water drag [47, 48, 49, 50, 52, 53]. Due to the key role played by the electrochemical reactions, the

catalyst layers are often represented as porous media of finite thickness with non-uniform species con-

centrations [47, 48, 49, 50, 52, 53, 54]. Two-dimensional (2D) along-the-channel models are more scarce

[51, 61, 65] and typically treat the electrochemical reactions at the catalyst layers as boundary, or jump,

conditions. Fully three-dimensional (3D) studies have also been reported, but are still limited to very

simple geometries [62, 63, 64] or to CFD analyses of realistic flow fields that ignore all electrochemical

phenomena [69]. It is worth noting that all modeling studies except one [56] have considered isothermal

conditions. This is because the reported temperature differences across the MEA are of the order of

tenths of a degree [56], which is consistent with the low electrochemical activity of passive DEFCs [70].

A particularly illuminating investigation for the development of this work has been the model of

Meyer et al. [54], who proposed a branched reaction mechanism for the EOR that involved different

electron transfers depending on the pathway. Despite its good agreement in terms of polarization curves,

the composition of the product mixture predicted by Meyer’s model was far from satisfactory [71]. To

overcome this problem, an improved kinetic model was recently proposed by the authors [66], including

a new chemical pathway for ethanol oxidation that had not been previously considered by Meyer et

al. [54]. The improved model showed greater adaptability, via genetic algorithm optimization, to different

binary Pt-based catalyst compositions, and was able to reproduce both anode overpotential and product

selectivity data in a wide range of operation conditions. Considering different free intermediate species

also enabled an improved modeling of the crossover fluxes and the resulting cathode mixed potential.

The above review of currently available DEFC models clearly shows that there is still room for more

innovative models in order to address the critical issues that stand in the way of this technology. This

will surely help to bridge the gap between fundamental research and implementation of future generation

DAFCs. In particular, to the best of our knowledge, there is still no DEFC model able to predict the effect
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of design and operational parameters both on the voltage efficiency, the faradaic efficiency and the fuel

utilization, for both high and low ethanol stoichiometry conditions. To achieve this goal, the proposed

model should demonstrate its ability to reproduce experimental results corresponding to anode, cathode

and cell polarization data separately, as well as to predict the product selectivity of the cell, thereby

enabling the computation of the faradaic efficiency, and from it the overall fuel cell efficiency. The aim

of this paper is to report a first attempt aiming to fulfill these requirements. To the authors knowledge,

the mathematical model to be presented below is one of the most advanced DEFCs models currently

available in the literature. It presents a comprehensive description of electrochemistry and transport

processes in this type of fuel cells, and could be very useful to interpret experimental data and to identify

critical issues in the design and operation of next generation DEFCs.

2. Model assumptions and physical domain

This paper presents an isothermal single-phase 1D+1D model for liquid-feed DEFCs involving free

and adsorbed intermediate species. Figure 1 shows a schematic representation of the modeling domain,

showing the coordinate system and the different regions of the cell. The assumptions adopted in the

development of the mathematical model are: i) the cell operates in steady-state; ii) the cell temperature

(T ) is uniform; iii) the concentrations of the free species (ethanol, acethaldehyde, acetic acid, and CO2)

are sufficiently small for the liquid phase to be considered a diluted aqueous solution; iv) the membrane

(Nafionr 117) is fully hydrated and is impermeable to gases; v) the overpotentials, coverage factors,

and concentrations of the free species are uniform across the catalyst layers; vi) the anode catalyst layer

consists of a Pt-based binary catalyst that allows the absorption of hydroxyl groups at lower potentials on

the secondary metal according to the bifunctional mechanism described in [12, 72, 73]; and vii) the only

species that permeate trough the membrane are ethanol and acetaldehyde, which are completely oxidized

to acetic acid at the cathode catalyst layer.

The model incorporates two adjustable parameters: i) an effective electronic/contact resistance, Rcont,

which contributes to the cell ohmic resistance in addition to the protonic resistance of the membrane,

and ii) an effective volume-specific cathodic exchange current density, (ai0)c,eff , which should take into

account the blockage of the active catalyst surface area due to the presence of adsorbates originated by

the parasitic oxidation of ethanol and acetaldehyde at the cathode electrode, and to the presence of liquid

water.

As shown in Fig. 1, the cell is divided into seven regions: anode channel (ac); anode gas diffusion

layer (agdl); anode catalyst layer (acl); polymeric membrane (mem); cathode catalyst layer (ccl); cathode
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Figure 1: Schematic representation of the physical domains covered by the one-dimensional across- and along-the-channel

models, showing the inlet conditions, the channel and rib dimensions (length, L, channel width, wac, and rib width, wrib), and

the thickness of the different layers of the MEA (δ`, ` = agdl, acl, mem, ccl, cgdl). Left: side view; right: cross-sectional view.

gas diffusion layer (cgdl); and cathode channel (cc). The figure also shows the domains covered by the

1D across-the-channel model, dominated by transverse diffusive fluxes and electro-osmotic drag through

the MEA (agdl, acl, mem, ccl and cgdl), and the 1D along-the-channel model, dominated by longitudinal

convective fluxes along the flow channels. It also shows the notation for the inlet conditions at the anode

and cathode channels, and the thickness of the different layers of the MEA.

3. 1D across-the-channel model

The 1D across-the-channel model presented below is based on the DEFC anode model developed in

[66], which is here extended to include also the cathode electrode.

3.1. Anode electrode

The anode electrode is modeled using the detailed kinetic model recently presented by the authors [66].

As shown schematically in Fig. 2, the reaction mechanism includes eleven elementary reaction, five of

them reversible, which involve five adsorbates (CH3CHOHads, CH3COads, COads, CH3 ads, and OH) and

six free species, including two reactants (water (W) and ethanol (E)) and four products (acetaldehyde

(A), acetic acid (AA), CO2 and CH4). The stoichiometries of the elementary reactions and the values

of the kinetic constants are summarized in Table 1. The resulting mathematical problem, outlined in

the Appendix for reference purposes, provides the coverage factors of the adsorbates, Θ j, the rate of the

elementary reactions, qr, the net production (+) or consumption (−) rates of the free species, ωk, the cell
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Figure 2: Reaction mechanism for the ethanol oxidation reaction on binary Pt-based catalysts considered in this work. The

exact stoichiometries and the values of the kinetic constants are indicated in Table 1.

current density, i, the product selectivities

sk =
ωk

ωA + ωAA + ωCO2 + ωCH4

k = A,AA,CO2,CH4 (2)

and the average number of electrons transferred per ethanol molecule [66]

neff =
2sA + 4sAA + 6sCO2 − 2sCH4

1 − 1
2
(
sCO2 + sCH4

) (3)

The inputs required by the model are the anode overpotential, the local concentrations of ethanol

and acetaldehyde at the anode channel, the cell temperature, and the full set of kinetic constants shown

in Table 1. This set was optimized using a multi-objective genetic algorithm so as to fit the anode

polarization and product selectivity data reported by Li & Pickup [74] for all the current densities under

study. This work introduces only one minor change, which is to ignore the production of methane via

Reaction 8. This is achieved simply by setting k8 = 0 in the reaction mechanism shown in Table 1, an

approach that is well justified given the exceedingly small quantities of methane predicted by the full

reaction mechanism [66].

3.2. Cathode electrode

Unlike the detailed kinetic description used in the anode electrode, the ORR is modeled as a single

reversible reaction with Butler-Volmer kinetics. Species mass transport across the cathode gas diffusion

layer is assumed to take place purely by gaseous diffusion. No attempt has been made to account for

8



Table 1: The 11-step reaction mechanism used in this work [66].

Reaction nα

I. CH3CH2OH
 CH3CHOHads + H+ + e− kIf [s−1] = 0.3306 αI = 0.325 1

kIb [mol m−3 s−1] = 1.8 × 10−3 1

II. CH3CHOHads → CH3COads + 2H+ + 2e− kII [mol m−3 s−1] = 1.34 × 102 αII = 0.473 2

III. CH3CHOHads 
 CH3CHO + H+ + e− kIIIf [mol m−3 s−1] = 1.01 × 103 αIII = 0.362 1

kIIIb [s−1] = 22.67 1

1. CH3CH2OH
 CH3CHO + 2H+ + 2e− k1f [s−1] = 3.49 × 10−5 α1 = 0.499 2

k1b [s−1] = 13.784 2

2. CH3CHO
 CH3COads + H+ + e− k2f [s−1] = 6.4 × 10−2 α2 = 0.359 1

k2b [mol m−3 s−1] = 10−4 1

3. H2O
 OHads + H+ + e− k3f [mol m−3 s−1] = 0.9619 α3 = 0.355 1

k3b [mol m−3 s−1] = 1.01 × 102 1

4. CH3COads + OHads −→ CH3COOH k4 [mol m−3 s−1] = 2.77 × 102

5. CH3COads −→ COads + CH3 ads k5 [mol m−3 s−1] = 5.67

6. COads + OHads −→ CO2 + H+ + e− k6 [mol m−3 s−1] = 0.1391 α6 = 0.319 1

7. CH3 ads + 2OHads −→ CO2 + 5H+ + 5e− k7 [mol m−3 s−1] = 9.2 α7 = 0.427 5

8. CH3 ads + H+ + e− −→ CH4 k8 [mol m−3 s−1] = 0 α8 = 0.423 1

multiphase flow effects, neither in the anode (CO2 evolution) nor in the cathode (production and crossover

of liquid water), as DEFC performance is known to be limited mainly by the sluggish kinetics of the EOR.

3.2.1. Cathode catalyst layer (ccl)

The ORR is be modeled as a single reversible global reaction

O2 + 4H+ + 4e− 
 2H2O (4)

with the corresponding oxygen consumption rate given by Butler-Volmer kinetics

qO2 = (1 − sc)(1 − Θc)
(ai0)c

4F
CO2,ccl

CO2,ref

[
exp

(
2αFηc

RT

)
− exp

(
−

2(1 − α)Fηc

RT

)]
(5)

where CO2,ref is the reference molar concentration of oxygen in air at standard conditions, ac is the

effective catalyst surface area per unit volume, and i0,c is the exchange current density of the cathodic

reaction. The overall cathode coverage factor Θc accounts for the blockage of the active catalyst sites by

the adsorbed species generated in the parasitic electro-oxidation of ethanol and acetaldehyde (e.g., CO

poisoning), and by the OH-groups adsorbed at high cathode overpotentials. The presence of liquid water
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at the cathode, which also contributes to the blockage of the catalyst surface area, is accounted for by the

factor (1 − sc), where sc represents the overall saturation of liquid water at the cathode catalyst layer.

The net reaction rate qO2 given above stands for the number of moles of oxygen consumed by the

ORR per unit volume and unit time. According to the stoichiometry of the global reaction (4), the

overall current density generated at the cathode is thus given by

ic = 4FδcclqO2 (6)

which must be equal to the sum of the current produced by the anodic reaction, i, plus the parasitic

current density, ip, generated by the electro-oxidation of the free species that cross the membrane from

anode to cathode

ic = i + ip (7)

It is important to note that the factor δccl appearing in (6) represents the thickness of the cathode catalyst

layer, where the reaction rate qO2 is considered to be spatially uniform according to assumption v).

The transfer coefficient α appearing in (5) is taken here to be equal to 0.5. In this case, the Butler-

Volmer equation (5) can be rewritten as

qO2 =
(ai0)c,eff

2F
CO2,ccl

CO2,ref
sinh

(Fηc

RT

)
(8)

which, together with Eq. (6), leads to the following closed-form analytical expression for the cathode

overpotential

ηc =
RT
F

sinh−1
(

1
2δccl

ic
(ai0)c,eff

CO2,ref

CO2,ccl

)
(9)

in terms of the cathode current density, ic, and the concentration of oxygen at the cathode catalyst layer,

CO2,ccl.

To abbreviate the notation, the last two equations have been written in terms of the lumped parameter

(ai0)c,eff = (1 − sc)(1 − Θc)(ai0)c (10)

which can be viewed as an effective volume-specific cathodic exchange current density. This parameter

takes into account the detrimental effect caused by the blockage of the active catalyst sites due to the

presence of liquid water and of the strongly adsorbed species produced by the parasitic electro-oxidation

reactions, and is one of the two adjustable parameters that will be fitted using experimental results.

10



3.2.2. Cathode gas diffusion layer (cgdl)

The molar flux of species k, transported by convection and diffusion from the bulk fluid in the cathode

channel (cc) to the cathode channel/gas diffusion layer interface, and from there only by diffusion across

the cathode gas diffusion layer (cgdl) to the cathode catalyst layer (ccl), is computed using an overall

mass transport coefficient hc such that

Nk = hc
(
Ck,cc −Ck,ccl

)
k = O2, W, AA (11)

where Ck,cc is the bulk concentration of species k in the cathode channel, and Ck,ccl is the effective

concentration of species k at the cathode catalyst layer. Like in Chapter 3, the sign of Nk indicates

whether the molar flux of species k is directed in the positive or negative y-direction. However, due to

the different relative positions of the channel and the catalyst layer, in the cathode the net flux of species

k is directed towards the catalyst layer for Nk > 0 and towards the channel for Nk < 0.

The effect of convective drag in the cathode gas diffusion layer is anticipated to be small, just like

in the anode electrode, so it will be neglected. The global transport coefficient of oxygen can then be

written as

hc =

1
h

+
δcgdl

Deff
O2,cgdl

−1

(12)

which combines the effect of convective and diffusive transport in the cathode flow channel, characterized

by the overall convective coefficient h, and Fickian diffusion in the cathode gas diffusion layer through

the diffusive transport coefficient Deff
O2,cgdl/δcgdl. Like in the anode model presented in Chapter 3, the

Bruggeman correction is used to calculate the effective diffusivity, DO2,cgdl = ε3/2DO2,air, in terms of the

porosity ε of the cathode gas diffusion layer and of the bulk diffusivity DO2,air of oxygen in air.

Species conservation dictates that, in the absence of oxygen crossover, whose effect is neglected here

for simplicity [66], the molar flux of oxygen that reaches the cathode catalyst layer from the cathode flow

channel must be equal to the rate of oxygen consumption by the electrochemical reactions

NO2 =
ic

4F
(13)

Combining Eqs. (11) and (13) leads to the following expression for the concentration of oxygen at the

cathode catalyst layer

CO2,ccl = CO2,cc −
1
hc

ic
4F

(14)

which can be used in (9) to determine the cathode overpotential ηc for given values of CO2,cc and ic.
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The water produced by the ORR plus the flux water that crosses the membrane by electro-osmotic

drag must both be evacuated through the cathode gas diffusion layer to the cathode channel. Assuming

that all water is transported in the form of water vapor, the total flux of water (W) that emerges from the

cathode catalyst layer towards the cathode gas diffusion layer can be written as

NW = NW,cross −

( i
2F

+ nW
d

i
F

)
(15)

where the first term represents the molar flux of water generated by the oxidation of the crossover species,

to be evaluated next, the second term is the water produced by the ORR due to the output current density,

and the last term is the electroosmotic drag of water that crosses the membrane from anode to cathode.

3.3. Species crossover

As already discussed, the permeation of ethanol and other species through the polymeric membrane

constitutes a severe problem for DEFC performance, which is accentuated at low current densities [75].

The reason is that the reactive species that cross the membrane are prone to react electrochemically with

oxygen at the cathode catalyst layer, which results in a parasitic current that increases the cathode over-

potential [49]. Oxygen crossover may also result in the parasitic oxidation of ethanol at the anode [76],

but the quantitative effect is anticipated to be small and can be neglected in first approximation [66].

For the sake of simplicity, the present model will only consider the effects of ethanol and acetaldehyde

crossover, as in low-temperature DEFCs they represent the two major reacting species generating elec-

trons during the electro-oxidation process. Additionally, because the cathode potential is always higher

than the anode potential, the overpotential ηc of the cathodic parasitic reactions is higher than that of the

anodic oxidation reactions. Thus, the parasitic oxidation of ethanol and acetaldehyde will be assumed to

proceed to completion, yielding acetic acid as final product through the overall reactions

CH3CH2OH + O2 → CH3COOH + H2O (16)

CH3CHO +
1
2

O2 → CH3COOH (17)

involving the transfer of 4 and 2 electrons, respectively. Introducing further complexity in the crossover

model would not be reasonable at this point given the difficulty of measuring the product distributions

accurately from a DEFC, as would be required for the validation of a more complex model [32].

The parasitic current density induced at the cathode catalyst layer by crossover can be obtained as the

sum of the ethanol and acetaldehyde parasitic current densities

ip = iE,p + iA,p (18)

12



According to the global stoichiometries of reactions (16) and (17), the ethanol and acetaldehyde parasitic

current densities can be expressed as

iE,p = −4FNE,cross and iA,p = −2FNA,cross (19)

in terms of the corresponding crossover fluxes, given by (A.26) in the Appendix. The assumption that

both ethanol and acetaldehyde are completely oxidized to acetic acid is in agreement with the values

neff ' 4 reported in [66] under the same conditions considered in this work. According to Figure 1,

the crossover fluxes NE,cross and NA,cross must be negative, because ethanol and acetaldehyde cross the

membrane from anode to cathode in the negative y-direction, which motivates the minus signs in (19).

According to reaction (16), the electro-oxidation of ethanol to acetic acid produces one mole of acetic

acid and one mole of water per mole of ethanol. In consequence, the molar production rates due to the

parasitic oxidation of ethanol (E) in the cathode catalyst are given by

ω(E)
W,c = ω(E)

AA,c = −NE,cross =
iE,p
4F

(20)

By contrast, the electro-oxidation of acetaldehyde to acetic acid through reaction (17) does not produce

water. In this case, the molar production rate of acetic acid due to the parasitic oxidation of acetaldehyde

(A) at the cathode catalyst layer is given by

ω(A)
AA,c = −NA,cross =

iA,p
2F

(21)

The molar flux of water induced by the electrooxidation of the crossover species at the cathode catalyst

layer is thus limited to the contribution of the parasitic oxidation of ethanol

NW,cross = −ω(E)
W,c = −

iE,p
4F

(22)

Substituting the last expression in Eq. (15), the net molar flux of water leaving the cathode catalyst

layer can be written as

NW = −

(
iE,p
4F

+
i

2F
+ nW

d
i
F

)
(23)

in terms of the parasitic current density induced by ethanol crossover, iE,p, and the net current density, i,

generated by the cell. Similarly, the net molar production rate of acetic acid at the cathode catalyst layer

is obtained adding the contributions due to ethanol and acetaldehyde crossover

ωAA,c = ω(E)
AA,c + ω(A)

AA,c (24)
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3.4. Solution procedure

This section summarizes the procedure used to solve the mathematical problem stated in the previous

sections. The cornerstone that closes the problem is the equation for the cell voltage, V , which is given

by

V = Ecell − ηa − ηc − ηohm (25)

in terms of the cell reversible potential, Ecell, the anode overpotential, ηa, the cathode overpotential, ηc,

and the ohmic overpotentital

ηohm = i (Rmem + Rcont) (26)

written here in terms of the protonic resistance of the membrane, Rmem = δmem/σmem, and the effective

electronic/contact resistance, Rcont, which accounts for the ohmic losses due to all cell elements other

than the polymeric membrane along with their interfaces. The ionic conductivity of the membrane is

evaluated as [77]

σmem = σ0
mem exp

[
1268

(
1

298
−

1
T

)]
(27)

in terms of the temperature of operation, T , and the reference conductivity at 298 K, σ0
mem = 7.3 S m−1.

At a particular channel section, the solution procedure starts with the concentrations of ethanol and

acetaldehyde in the anode channel, CE,ac and CA,ac, and the concentration of oxygen in the cathode

channel, CO2,cc, which are considered to be known. As a result, for the cell voltage under consideration,

V , Eq. (25) can be rewritten as follows

f
(
ηa; CE,ac,CA,ac,CO2,cc,V

)
≡ Ecell − V − ηa − ηc

(
CO2,cc, ic

(
CE,ac,CA,ac, ηa

))
− i

(
CE,ac,CA,ac, ηa

)
(Rmem + Rcont) = 0 (28)

where the variation of the cathode overpotential with CO2,cc and ic is given analytically by Eq. (9), while

the explicit dependencies of the current densities i and ic as a function of CE,ac, CA,ac and ηa result from

the solution of the 1D anode model (see Appendix for details), which provides the output current density

i and enables the computation of ic through Eqs (7), (18) and (19).

For fixed values of CE,ac, CA,ac, CO2,cc and V, the nonlinear algebraic equation (28) can be solved for

the anode overpotential ηa using, for instance, a Newton-Raphson method. This method requires the

evaluation of the derivative of f with respect to ηa, which can be written by applying the chain rule as

d f
dηa

= −1 −
dηc

dic

dic
dηa
−

di
dηa

(Rmem + Rcont) (29)
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From Eq. (9), the derivative of ηc with respect to ic can be written analytically as

dηc

dic
=

(RT/F)
2δccl

CO2,ref

(ai0)c,eff

{
1 +

[
1

2δccl

ic
(ai0)c,eff

CO2,ref

CO2,ccl

]2}−1/2 CO2,ccl + ic/ (4Fhc)
C2

O2,ccl

 (30)

whereas the derivatives of the current densities i and ic with respect to ηa have to be evaluated numerically

by solving the anode problem formulated in the Appendix for two neighboring values of ηa and applying

the definition of partial derivative, namely

di
dηa
≈

i
(
CE,ac,CA,ac, ηa + ∆ηa

)
− i

(
CE,ac,CA,ac, ηa

)
∆ηa

with ∆ηa � ηa (31)

4. 1D-along the channel model

The electrochemical consumption and production of free species, combined with the redistribution

effect of water and species crossover, makes the bulk fluid velocities and species concentrations to vary

significatively along the flow channels, particularly for low anode and cathode stoichiometries. Such

spatial variations can be determined, in first approximation, using a simplified one-dimensional advection

model. The model is based on the discretization of the flow channels in a large number of elements,

N � 1, such that the length of a single element, ∆x = L/N, is much smaller than the full channel

length, L. Applying the continuity and species mass conservation equations to the n-th channel element,

x ∈ (xn, xn+1), xn = (n − 1)∆x, shown in Fig. 3, provides the recursive laws that govern the variation of

the flow velocities and species concentrations along the flow channels, to be discussed below separately

for the anode and cathode compartments.

These recursive laws involve the local transverse molar fluxes and water/gas velocities established in

the anode and cathode gas diffusion layers, which are determined as part of the solution of the 1D across-

the-channel model presented previously. Thus, given the local concentrations of ethanol, acetaldehyde

and oxygen at their corresponding channel elements, Cn
E,ac, Cn

AA,ac and Cn
O2,cc, and the cell voltage, V , the

procedure outlined in Section 3 yields the local overpotentials of the electrodes, which in turn determines

the molar consumption/production rates of the differen species. Appropriate mass balances applied to

the anode catalyst layers similar to those presented in the Appendix for ethanol and acetaldehyde, (A.27)

and (A.28), provide the transverse molar fluxes of all the anodic active species, Nn
k , k = E, A, AA, CO2,

while the transverse molar fluxes of O2 and W are given by Eqs. (13) and (23).

4.1. Anode channels

For the typical operating conditions of a DEFC, the Peclet number of the flow in the channels is of

order 104 to 105 in the anode and 102 in the cathode. As a result, longitudinal diffusion can be safely
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Figure 3: Schematic representation of the continuity equation and mass conservation equation of species k applied to the n-th

channel element. The water velocity vn
W must be used at the anode and the gas velocity vn

g at the cathode.

neglected in both cases. Under these conditions, and considering steady state operation, the discretized

continuity and species conservation equations for the channel element take the form

Un
achch + vn

W∆x = Un+1
ac hch (32)

Cn
k,acUn

achch + Nn
k ∆x = Cn+1

k,acUn+1
ac hch (33)

where Uac = Qac/(wchhch) and Ck,ac are the average water velocity and bulk molar concentration of

species k in the anode channel, hch is the channel height, and vW and Nk are the average transverse water

velocity and molar flux of species k at the anode channel/gas diffusion layer interface. As previously

discussed, the last two values are provided by the solution of the 1D across-the-channel model presented

in Section 3. It should be noted that in the above equations the convective terms involve magnitudes

that are averaged over the inlet and outlet of the channel element, x = xn or xn+1, while the transverse

transport terms involve magnitudes that are averaged over the n-th channel element/gas diffusion layer

interface, as is sketched in Fig. 3.

Under the assumption of convectively dominated flow in the channels leading to Eqs. (32) and (33),

the discrete channel elements can be solved successively from channel inlet to channel outlet. First, from

Eq. (32) the average fluid velocity at x = xn+1 can be expressed as

Un+1
ac = Un

ac +
∆x
hch

vn
W (34)

in terms of the average fluid velocity at the previous channel section, Un
ac, and the average transverse

water velocity at the n-th channel element, vn
W. Substituting this expression into Eq. (33) provides the
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concentration of species k at x = xn+1

Cn+1
k,ac =

(
Cn

k,ac +
∆x
hch

Nn
k

Un
ac

) (
1 +

∆x
hch

vn
W

Un
ac

)−1

(35)

in terms of the concentration at x = xn, Cn
k,ac, and the average transverse molar flux of species k at the

n-th channel element, Nn
k .

4.2. Cathode channels

The cathode flow channels can be treated similarly, except that in this case the working fluid is a

mixture of ideal gases. Assuming that oxygen, water vapor and acetic acid are the only active species

(i.e., electrochemically consumed or produced) that emerge from the cathode catalyst layer to the gas

diffusion layer, the recursive laws that provide the flow velocity and species concentrations at x = xn+1

from those at x = xn can be written as

Un+1
cc = Un

cc −
∆x
hch

vn
g (36)

and

Cn+1
k,cc =

(
Cn

k,cc −
∆x
hch

Nn
k

Un
cc

) (
1 −

∆x
hch

vn
g

Un
cc

)−1

(37)

Note that the role played in the anode by the water flux velocity vW is assumed in the cathode by the

average gas velocity

vg =
RT
pc

(
NO2 + NW + NAA

)
=

RT
pc

[
ic

4F
−

(
iE,p
4F

+
i

2F
+ nW

d
i
F

)
−

(
iE,p
4F

+
iA,p
2F

)]
= −

RT
pc

(
i + iE,p + iA,p

4F
+ nW

d
i
F

)
(38)

expressed here in terms of the output and parasitic current densities i, iE,p and iA,p with use made of

Eqs. (13), (18), (23) and (24).

It is important to note that according to (38) the transverse gas velocity vg is always negative, meaning

that it will contribute to accelerate the gas flow along the cathode channel. This is true even under open

circuit conditions (i = 0), when there is still a net source of gas due to the production of water and

acetic acid by the parasitic electrooxidation of ethanol and acetaldehyde. For non-zero current densities

the water crossover term soon becomes dominant due to the high water permeation rates typical of fully

humidified Nafion membranes (nw ∼ 2.5 − 3). This leads to increasingly large gas production rates

along the cathode channels, which may result in the emergence of a certain amount of liquid water under

appropriate conditions.
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5. Model fitting procedure

A simulation campaign was performed to optimize the predictive capabilities of the model using

selected experimental data reported in the literature. To be consistent with the optimization of the anode

reaction mechanism carried out previously [66], which used the experimental anode polarization data by

Li & Pickup [74], the cell polarization curve obtained in those same experiments was used here as target

data. All the simulations were carried out with a fixed set of physical constants, mass transport properties

and design parameters, indicated in Tables 2 and 3.

A genetic optimization algorithm was used to determine the values of the volume-specific effective

cathode exchange current density, (ai0)c,eff , and the overall cell electronic/contact resistance, Rcont. The

objective function used was the root-mean-square error of the computed current density corresponding

to a set of cell voltages reported experimentally

err =

√√∑
i

(
xi,LP − xi

xi,LP

)2

(39)

where xi,LP denotes the experimental current density measurements reported by Li & Pickup [74]. To

avoid spurious results, only the data corresponding to cell voltages equal or smaller than 0.4 V were

considered in the model fitting process. The values of (ai0)c,eff and Rcont thus obtained are also included

in Table 2.

Figure 4 shows the polarization curve, along with the anode overpotential and cathode potential vs.

Table 2: Physical constants, convective mass transport coefficient and geometrical parameters used in the 1D across-the-channel

model. The fitted parameters (ai0)c,eff and Rcont provided by the optimization algorithm are also shown for reference purposes.

Property Value Reference

α 0.50 [78]

CO2,ref 8.73 mol/m3 Assumed

DO2,air 2.5 ×10−5
(

T
298

)3/2 (
pamb

p

)
m2s−1 [79]

h 10−2 m s−1 Assumed

ε 0.78 [54]

δagdl 280 µm [54]

δacl 20 µm [54]

δmem 178 µm [54]

(ai0)c,eff 6.816 A/m3 Fitted

Rcont 1.5056 ×10−4 Ωm2 Fitted

18



Table 3: Geometrical and operational parameters used in the 1D along-the-channel model.

Property Value

Rib width, wrib 1 mm

Channel width, wch 1 mm

Channel height, hch 0.7 mm

Cell surface area, S 5 cm2

Effective channel length, L S/(wrib + wch) = 0.25 m

Anode volume flow rate, Qac,in 5 ml min−1

Cathode volume flow rate, Qcc,in 60 ml min−1

Ethanol feed concentration, CE,in 1 M

Oxygen feed concentration, CO2,in 10.22 mol/m3

Cathode pressure, pc 1.5 bar

Cell Temperature, T 80°C
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Figure 4: Left: cell voltage (×), cathode potential (O) and anode overpotential (�) reported by [74] and computed with the

present model (solid, dashed and dash-dotted lines, respectively) at different sections along the flow channels as indicated in

the legends. Right: computed (solid lines) and experimental (×) power density curves corresponding to the polarization data

shown on the left.

current density curves, computed at different sections along the flow channels using the optimized 1D +

1D model and measured experimentally. The corresponding power density curves are also shown for

comparison. The model results show that with the operational conditions considered in the experimental

setup of Li & Pickup [74] the variation of performance along the flow channels is almost negligible. In

general, the model correctly predicts the cell current density in the whole range of cell voltages, and there
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is also satisfactory agreement both with the anode and cathode overpotentials. The anode overpotential

was already optimized in Chapter 3, so the good agreement was to be expected. The optimization of

the effective cathode exchange current density, (ai0)c,eff , and overall electronic/contact resistance, Rcont,

carried out in this work result also in an excellent agreement in the cathode potential and cell polarization

curves.

Before proceeding further, it is instructive to comment on the values obtained for the fitted parameters

and extract some preliminary conclusions from them. First, the electronic/contact resistance reported

in Table 2 is about ten times larger than the ionic resistance of the membrane, Rcont/Rmem = 10.75,

meaning that in the experimental setup of Li & Pickup [74] the contact resistances were not sufficiently

minimized. Second, the fitted effective cathode exchange current density is much smaller than expected

in the absence of poisoning and/or cathode flooding effects. Considering, for instance, typical values of

ac = 6 × 104 m−1 and i0,c = 0.04222 A m−2 [80], the volume specific cathode exchange current density

would be of order (ai0)c ∼ 2.5 × 103 A m−3, meaning that

(ai0)c,eff

(ai0)c
= (1 − sc)(1 − Θc) ∼ 2.7 × 10−3 (40)

Assuming that the presence of liquid water reduces only the catalyst active area by a factor of order

unity, (1 − sc) ∼ 1, the above estimation shows that (1 − Θc) . 10−2, indicating that the overall cathode

coverage factor Θc would be 0.99 or larger. Briefly speaking, one could expect that in an operating

DEFC such as the one employed by Li & Pickup [74] more than 99% of the active catalyst sites of the

cathode electrode would be unavailable for the ORR. Such a reduced active area could be attributed to

a high occupation of the cathode catalyst sites by intermediate adsorbates of the parasitic oxidation of

ethanol and acetaldehyde. The negative impact of crossover is therefore twofold, as it not only creates

the parasitic current density that increases the cathode overpotential, but also reduces the cathode activity

towards the ORR raising the cathode overpotential even further.

To emphasize the validity of the model fitting procedure, a second validation campaign was carried

out using in this case the experimental results of Meyer et al. [54]. Figure 5 shows polarization curves and

electrode potentials obtained experimentally (symbols) [54] and simulated with the current model (line

plots) for different ethanol feed concentrations and a cell temperature of 70◦C. The operating and design

parameters of the cell were conveniently adapted to the experimental conditions: Qac,in = 5.7 ml/min,

Qcc,in = 250 ml/min, pc = 1 bar, S = 23.79 cm2, δacl = 12 µm, (ai0)c,eff = 1.363 A/m3, Rcont =

3.0112×10−4 Ωm2. Compared to the set of parameters indicated in Tables 2 and 3, these values include a

lower effective cathode exchange current density, thinner catalyst layers, and a higher contact resistance,

resulting in a poorer cell performance. This is most likely due to the lower catalyst loading ca. 1.14
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Figure 5: Left: cell voltage (×), cathode potential (O) and anode overpotential (�) reported by [54] (symbols) and computed

with the present model (lines) for different ethanol feed concentrations.

mg/cm2 used in the experimental setup of Meyer et al. [54] compared to the ca. 4.5 mg/cm2 employed

by Li & Pickup [74], and to the slightly lower cell temperature, 70◦C vs. 80◦C. The results confirm the

capability of the model to reproduce experimental data for different cell set-ups and operating conditions.

6. Results and discussion

Once the model has been optimized to fit the experimental results, a parametric study will be carried

out to asses the effect of two of the main operational parameters that influence cell performance: the

anode flow rate and ethanol feed concentration. If either of them decreases sufficiently, cell performance

starts to be affected by ethanol depletion, an effect that becomes more serious at low cell voltages.

As ethanol becomes scarce downstream the channels, the cell starts to use the acetaldehyde produced

upstream, which results in an interesting evolution of species concentrations as will be shown below.

6.1. Downstream evolution along the flow channel

To accentuate the effect of ethanol depletion, a cell with larger active surface area and lower anode

feed flow rate than the cell used for model fitting will be considered. Table 4 summarizes the modified

design and operational parameters considered in the following study, the other parameters being taken

from Tables 2 and 3. Compared to the initial values used in the model fitting procedure there is a

fivefold increase in the cell surface area. This in turn translates into a fivefold growth in the effective

channel length, under the assumption of a single serpentine flow field with equal channel cross-section.

In addition, the anode feed flow rate is reduced by a factor 5/0.3 ' 16.7. The significantly smaller anode
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stoichiometry (reduced by a factor of ca. 83 compared to that of Li & Pickup [74]) results in a more

pronounced reduction of ethanol concentration along the flow channels, which induces an interesting

evolution of the concentrations of other species, such as acetaldehyde or acetic acid, but also of the local

cell and parasitic current densities.

Figure 6 shows the polarization curve, along with the anode overpotential and cathode potential vs.

current density curves, computed at different sections along the flow channels. The differences between

channel inlet and outlet become significant at mid-to-low voltages (i.e., mid-to-high currents), when

ethanol depletion starts to affect the cell performance. For instance, at 0.1 V the current density drops

about 17 mA/cm2 from channel inlet to channel outlet. The maximum power density is obtained at the

channel inlet corresponding to a cell voltage of 0.19 V. Note that the cathode potential is hardly affected

by ethanol depletion in these conditions. It should be noted that the polarization curves calculated in

different sections of the channel are not independent of each other, because an increased consumption of

ethanol upstream translates into less ethanol available downstream. As a result, while at the channel inlet

the local current density increases monotonically as the cell voltage is decreased, in later sections the

polarization and power curves behave differently, and below a certain threshold voltage the local current

density starts to decrease as well.

Figure 7 shows the evolution of the cell current density along the flow channels. It can be seen that

at low cell potentials the reduction in the cell current density is sharper towards the end of the channel.

The blue marks indicate the channel section that generates the average current density. At cell voltages

lower than ca. 0.1 V its position is sightly displaced downstream the mid channel section as a result of the

nonlinear reduction of the current density along the channel length. Figure 7 shows also the ratio between

the current density and the average current density for different cell voltages. The relative variation is

between ca. 10% for high cell voltages (including the voltage at maximum power density) to over 20%

at lower cell voltages. For instance, at 0.05 V the current density at the channel inlet is 19% larger than

the average current density, while at the channel exit it is 26% lower than the average value.

Table 4: Design and operational parameters used for model fitting and for the parametric study.

Property Model fitting [74] Parametric study

Cell surface area, S 5 cm2 25 cm2

Effective channel length, L 0.25 m S/(wrib + wch) =1.25 m

Anode volume flow rate 5 ml min−1 0.3 ml min−1
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Figure 6: Polarization and power density curves for the 25 cm2 cell. Left: cell voltage (solid lines), cathode potential (dashed

lines) and anode overpotential (dash-dotted lines) computed with the present model at different sections along the flow channels.

Right: power density curves corresponding to the polarization curves shown on the left.
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Figure 7: Evolution of the cell current density along the flow channels for different cell voltages. The blue marks indicate

the average value of the current density at each cell voltage and the position where it is obtained along the cell. Left: current

density. Right: current density measured with the average current density, iavg.
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Figure 8: Evolution of the parasitic current density along the flow channels for different cell voltages (left) and variation of

the parasitic current density with the cell current density at different sections along the flow channels (right). The dashed lines

labeled by arrows correspond to each of the cell voltages represented on the left panel.

Figure 8 shows the variation of the parasitic current density along the flow channel for different cell

voltages. In general, the parasitic current density is seen to decay along the channel length due to the

reduced availability of ethanol. The variation is steeper at low cell voltages, when reactant consumption

is larger. As can be seen, the parasitic current is drastically reduced at very low cell voltages due to

reactant starvation. The right panel of Fig. 8 shows the variation of the parasitic current density with

the cell current density at different sections along the flow channel. The figure shows that the parasitic

current decreases almost linearly with the cell current density, with a slope that becomes more and more

negative towards the end of the cell.

As previously discussed, in DEFCs the classical fuel utilization frequently used to characterize DMFC

performance should be conveniently replaced by an energy utilization factor εU that includes both the

energy content of ethanol and of acetaldehyde, a product of the partial oxidation of ethanol that is still

able to be further oxidized releasing additional energy. The energy utilization factor can be defined as

follows

εU =
∆H

∆H + ∆Hloss
(41)

where ∆H = −(ωE∆h̄E + ωA∆h̄A) is the available enthalpy used per unit time to produce current and

∆Hloss = −(NE,cross∆h̄E + NA,cross∆h̄A) is the enthalpy loss per unit time due to crossover. Here ∆h̄E

and ∆h̄A are the reaction enthalpies (higher heating values) for the complete oxidation of ethanol and
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acetaldehyde at the reference temperature and pressure

C2H5OH (L) + 3O2 → 2CO2 + 3H2O (L), ∆h̄E = 1367 kJ/mol (42)

CH3CHO (L) +
5
2

O2 → 2CO2 + 2H2O (L), ∆h̄A = 1167 kJ/mol (43)

Introducing the above expressions for ∆H and ∆Hloss in Eq. (41), using Eqs. (A.27) and (A.28) to write

Nk = ωk + Nk,cross in the denominator, with k = {E,A}, and introducing the ratio β = ∆h̄A/∆h̄E ' 0.853,

the energy utilization factor can be rewritten as

εU =
ωE + βωA

NE + βNA
(44)

which enables a rapid evaluation of εU from the local net production (+) or consumption (−) rates of

ethanol and acetaldehyde, ωk, k = {E,A}, and the net molar fluxes of these species that emerge from

(+) or arrive to (−) the anode catalyst layer to/from the anode gas diffusion layer, Nk. Further details on

the definition of these variables can be found in the nomenclature, in the Appendix, or elsewhere [66].

It is worth noting that in the absence of acetaldehyde (i.e., under the assumption of complete oxidation

of ethanol to CO2) the above equation reduces to the classical expression for the fuel utilization used in

DMFCs in terms of the output and parasitic current densities, εU = ωE/(ωE + NE,cross) = i/(i + ip).

Figure 9 shows the variation of εU along the anode channel for different cell voltages. It can be seen

that εU grows along the cell as a result of the reduction of the parasitic current observed in Fig. 8. The

right panel of Fig. 9 shows the variation of εU with the cell current density at different sections along the

flow channel. It is seen that εU grows almost linearly from 0% at open circuit conditions to almost 100%

at the highest current densities reached at each channel station. Note that at maximum power density

conditions (0.19 V at the channel inlet) the fuel utilization reaches only a moderate 50%.

The variation of the cell current density along the flow channel induces changes in the net chemical

production or consumption rates of the different species. Figure 10 shows the spatial evolution of the

molar production rates of ethanol, acetaldehyde, acetic acid and carbon dioxide for different cell voltages.

As the primary reacting species, ethanol is consumed along the whole channel length, but its consumption

rate is seen to decrease along the channel due to ethanol depletion. Acetaldehyde is the only other

free reactive species accounted for in the model, but this species can be either produced or consumed

depending on the local flow conditions. For medium-to-high voltages (about 0.15 V or higher) there

is net acetaldehyde production along the whole channel. However, for lower voltages acetaldehyde is

first produced and then consumed, with higher consumption rates reached near the channel exit. The

cell consumes acetaldehyde as a means to compensate the low ethanol concentrations existing near the
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Figure 9: Evolution of the energy utilization along the flow channels for different cell voltages (left) and variation of the fuel

utilization with the cell current density at different sections along the flow channel (right). The dashed lines labeled by arrows

correspond to each of the cell voltages represented on the left panel.

channel exit as the current density grows more and more. By contrast, the production of acetic acid and

CO2 remains almost constant along the flow channel. Only at very low voltages (ca. 0.1 − 0.05 V) there

is a noticeable reduction of the net production rates of these species. This reduction is associated with

the lower availability of ethanol, which can not be fully compensated by acetaldehyde conversion.

Figure 11 shows the variation of the concentrations of ethanol and O2 at the flow channels and catalyst

layers. For the operating conditions under study, corresponding to moderately low anode stoichiometries,

a significant reduction of ethanol concentration is observed both at the channel and the catalyst layer

except perhaps at the highest voltages, when the cell hardly consumes any ethanol. At maximum power

density (V = 0.19 V) the ethanol concentration is reduced by a factor of ca. 35% along the flow channel.

At the catalyst layer, ethanol starvation is observed at low cell voltages (V < 0.1 V) in the downstream

part of the channel, coinciding with the conditions leading to the consumption of acetaldehyde.

According to the numerical results, the concentration of oxygen at the cathode catalyst layer does not

differ from that at the cathode channel by more than 0.05 mol/m3. This is a small concentration jump

compared to the typical values of CO2 along the cathode channel, ranging between 5 and 10 mol/m3,

which indicates that mass transport looses are small and oxygen is in excess throughout the channel

length. Fig. 11b) shows the variation of the oxygen consumption rate along the cathode channel. Note

that at the cathode electrode a positive molar flux represents net oxygen consumption. Note also that

the oxygen consumption rate varies only slightly in the whole cell voltage range, which results from the

large contribution of the parasitic reactions at high voltages. As a result, the oxygen distributions along
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Figure 10: Evolution of the molar production and consumption rates of free species along the anode channel for different cell

voltages: a) ethanol (consumption), b) acetaldehyde (first production and later consumption), c) acetic acid (production) and d)

CO2 (production).

the anode channel, shown on the right panel, differ less between high and low voltages than the ethanol

distributions shown in Fig. 11a. Note that for the conditions under study the concentration of oxygen at

the channel exit decreases to, roughly, half of its initial value for cell voltages below 0.19 V.

The main products of the EOR at the anode electrode are acetaldehyde, acetic acid and CO2. The

concentration of these species along the channel and catalyst layer is shown in Figure 12. As already

discussed, acetaldehyde is not strictly a final product, as it can be either produced or consumed to give

further products at different points in the cell. As previously discussed, for cell voltages lower than

0.19 V the concentration of acetaldehyde first increases due to the net production rates induced by the
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Figure 11: Evolution of a) the molar concentration of ethanol along the anode channel (left) and catalyst layer (right) and b) the

molar consumption rate of O2 along the cathode channel (left) and of the molar concentration of O2 at the catalyst layer (right).

availability of ethanol, then reaches a peak, and finally decreases towards the channel exit due to the net

consumption rates induced by ethanol starvation (see Fig. 10b). However, the consumption of acetalde-

hyde cannot fully compensate the lack of ethanol, particularly at very low voltages, when acetaldehyde

is also starved at the very end of the channel. This, in turn, has a negative impact on CO2 production,

whose concentration at the catalyst layer is also reduced, as can be seen in Fig. 12c.

Fig. 13 shows the evolution of the product selectivities along the channel. To avoid the negative values

of the selectivity of acetaldehyde that would result from the application of Eq. (2) under the net acetalde-

hyde consumption conditions (ωA < 0) prevailing near the channel exit at low cell voltages (ωA < 0),

an alternative definition of the product selectivity is used here based in the product concentrations in the
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Figure 12: Evolution of the molar concentration of a) acetaldehyde, b) acetic acid and c) CO2 along the anode channel (left)

and at the catalyst layer (right) for different cell voltages.
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Figure 13: Evolution of the product selectivities of the anode products species along the channel for different cell voltages:

a) acetaldehyde, b) acetic acid and c) CO2. d) shows the evolution of the average number of electrons transferred per ethanol

molecule.

anode channel, namely

sk =
Ck,ac

CA,ac + CAA,ac + CCO2,ac
k = A,AA,CO2 (45)

where the small effect of methane production has been neglected, as previously discussed. With this def-

inition, the product selectivities do not truly show local effects, but result from the integrated production

of a given species from the cell inlet up to a certain downstream location along the channel. Similarly, the

average number of electrons per ethanol molecule computed from the channel concentration selectivities

neff =
2sA + 4sAA + 6sCO2

1 − 1
2 sCO2

(46)
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represents not a local value but one resulting from the integrated effect of ethanol electro-oxidation from

the channel inlet to the specified channel section.

According to Fig. 13 the consumption of acetaldehyde at low cell voltages reduces the selectivity of

acetaldehyde in favor of acetic acid towards the end of the channel. COD selectivity remains close to

10% in the whole cell voltage range, remaining roughly constant along the channel. And the average

number of electrons transferred per ethanol molecule varies between 3.5 an 4 in agreement with the val-

ues reported in [66], with the reduction of ethanol concentration along the flow channel being responsible

of the increased number of electrons released per ethanol molecule as a result of the increased selectivity

of acetic acid under ethanol starvation conditions.

6.2. Effect of anode flow rate and ethanol feed concentration

This section presents a parametric study that aims to investigate the effect of the anode flow rate

and ethanol feed concentration on DEFC performance. The same 25 cm2 cell used in the previous

section was simulated here with different anode flow rates Qac,in = {5, 1, 0.5, 0.1}ml/min and ethanol feed

concentrations CE,in = {2, 1, 0.5, 0.2}M. Tables 4 and 3 summarize the remaining design and operational

parameters, which are kept unchanged in this study.

Figure 14 shows cell voltage, power density, parasitic current and fuel utilization vs. current density

curves for the whole range of operational parameters under study. High ethanol feed concentrations

induce increased crossover rates and therefore higher parasitic current densities. Consequently, when the

cell is operated at 2M ethanol feed concentration fuel utilization barely reaches 50%. This effect reduces

the cell performance in the whole operational range, although it also lessens ethanol starvation at low

cell potentials thus increasing the limiting current density. Maximum power density is reached with

0.5M ethanol feed concentration, but 1M reaches almost the same peak but with a much larger limiting

current density, which guarantees a more stable cell operation. This value is similar to other optimum

feed concentrations reported in the literature [50, 55, 70, 75, 81] what makes us gain confidence in the

results of the model. It is also seen that reduced ethanol feed concentrations lead to high fuel utilizations,

ca. 100%, due to the reduced crossover rates.

Figure 15 shows the concentrations of ethanol, acetaldehyde, acetic acid and CO2 at the anode outlet.

The concentration of ethanol decreases almost linearly with the cell current density, the slope of the curve

being steeper as the anode flow rate is reduced. The concentration of acetaldehyde increases with the cell

current density until ethanol starvation is reached, when it starts to decline. For low ethanol feed molarity

(below, say, 0.5M) the concentration of acetaldehyde at the outlet vanishes at low cell potentials, meaning

that it is completely depleted before leaving the cell. Figure 16 shows this same effect in terms of the
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Figure 14: Overall cell performance computed with the present model for the different anode flow rates and ethanol feed

concentrations indicated in the legend: a) cell voltage, b) power density, c) average parasitic current density and d) average fuel

utilization as a function of the average cell current density. Other design and operational parameters as specified in Tables 4

and 3.

average molar production rates. It is seen that acetaldehyde production peaks and ethanol consumption

declines as the cell current density is increased, particularly when ethanol starvation starts to affect EOR

kinetics.

In the case of acetic acid, both the outlet concentration (Fig. 15c) and the molar production rate (Fig.

16c) increase steadily with the current density, exhibiting a sharper growth rate under ethanol starvation
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conditions. The outlet concentration of CO2 grows with the current density but remains significantly

lower than those of acetaldehyde and acetic acid due to its lower selectivity. Figures 15 and 16 also

show that at low ethanol feed concentrations (below 0.5M) the outlet concentration and net production

rate of CO2 are sharply reduced. This is a result of the enhanced production of acetic acid discussed

before under ethanol starvation conditions. The reduction of CO2 production in this regime is due to the

presence of oxidants such OHads [11], which favors the production of acetic acid at the expense of the

C-C bond breaking steps (Reactions 4 and 5, respectively, in Table 1). A closer analysis of the values of

the reaction constants shown in Table 1 reveals that k4 is almost two orders of magnitude larger than k5.

Thus, as soon as the coverage factor of the adsorbed hydroxyl group becomes significant, which occurs at

high anode overpotentials, Reaction 4 becomes dominant thus hindering the further production of CO2.

Figure 17 shows the product selectivities at the anode outlet as a function of the cell current density.

The overall behavior resembles that discussed in our previous work [66], but appropriately rescaled

here with the limiting current density, which depends both on the anode flow rate and the ethanol feed

concentration. Acetaldehyde selectivity decreases as the limiting current is reduced, until it vanishes

under severe starvation conditions. Under these conditions, acetic acid selectivity grows sharply beyond

0.8, reaching 0.95 for the lowest ethanol molarities. Simultaneously, CO2 selectivity drops to roughly

0.05. The reduction in acetaldehyde selectivity increases the average number of electrons transferred per

ethanol molecule, which grows beyond 4 under severe starvation conditions due to the importance of

acetic acid production. Note again that the highest values of neff are reached for the lowest acetaldehyde

selectivities, indicating a better utilization of the ethanol consumed. Thus, for 1M ethanol feed the value

of neff is about 0.5 larger than for 2M at high current densities (> 70 mA/cm2), implying a more efficient

cell operation.

As previously discussed, the results presented so far enable the calculation of the overall efficiency

of the cell using Eq. (1). The computed cell efficiency is shown in Figure 18 as a function of the output

current density. The curves were obtained by computing separately the theoretical, voltage, faradaic

and energy utilization efficiencies and multiplying them to get the value of εT. In general trends, DEFC

efficiency increases for decreasing ethanol mass flow rate, with ethanol molarity having a greater impact

than the anode flow rate. As can be seen, the cell efficiency ranges from 1% for the highest molarity

(2M) to 8-10% for the lowest ethanol molarity (0.25M), indicating that the fuel conversion efficiency

of the cell under study is quite poor. Clearly, the fuel cell fixture used by Li & Pickup [74] was not

optimized for cell efficiency, but to demonstrate the ability to separate the cell performance losses into

the cathode and anode electrodes. This in turn was crucial for the setup of the detailed EOR kinetic
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Figure 15: Species concentrations at the anode channel outlet for the different anode flow rates and ethanol feed concentrations

indicated in the legend: a) ethanol, b) acetaldehyde, c) acetic acid and d) CO2 obtained with the model presented in this thesis.

Other design and operational parameters as specified in Tables 4 and 3.

model used in this work [66]. The combination of advanced experimental diagnostic tools with next-

generation mathematical models such as the one proposed here would surely provide further insight in

the performance and efficiency losses of state-of-the-art and future DEFCs, which should reach much

higher overall efficiencies than the ones reported here for the commercial success of this technology.

34



a) b)

� �� �� �� �� ��� ���
�

��	

�

��	

�

��	





�	

� ���


� �� �� �� �� ��� ���
�

��	

�

��	

�

��	 ���


c) d)

� �� �� �� �� ��� ���
�

��	

�

��	

�

��	 ���


� �� �� �� �� ��� ���
�

��	

�

��	 ����

Figure 16: Average molar consumptions/production rates at the anode for the different flow rates and ethanol feed concen-

trations indicated in the legend: a) ethanol (consumption), b) acetaldehyde (production), c) acetic acid (production) and d)

CO2 (production). Other design and operational parameters as specified in Tables 4 and 3.

7. Conclusions

A 1D+1D model for direct ethanol fuel cells that includes a detailed kinetic description of the anodic

ethanol oxidation reaction has been presented and discussed. Following our recent work [66], the rates

of the elementary reactions are described by Butler-Volmer kinetics and are coupled to a 1D across-

the-channel mass transport model that incorporates the effect of ethanol and acetaldehyde crossover. A

simple diffusive model with overall Butler-Volmer kinetics for the oxygen reduction reaction has been
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Figure 17: Variation with the current density of a) acetaldehyde, b) acetic acid, and c) CO2 selectivity, and d) the average

number of electrons transferred per ethanol molecule for the different flow rates and ethanol feed concentrations indicated in

the legend. Other design and operational parameters as specified in Tables 4 and 3.

added in this work to describe the cathode electrode. The resulting 1D across-the-channel model has been

coupled to a 1D along-the-channel advection model to describe the evolution of the different variables

of interest along the flow channels, including reactant concentrations at the channels and catalyst layers,

molar consumption/production rates, cell overpotentials, output current and parasitic current density. A

genetic optimization strategy has been used to determine the effective cathodic exchange current density

and the cell electronic/contact resistance that provide a better fit to experimental results taken from the
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Figure 18: Variation with the current density of the overall cell efficiency for the different anode flow rates and ethanol feed

concentrations considered in the parametric study. Other design and operational parameters as specified in Tables 4 and 3.

literature. The effective cathodic exchange current density, which includes here the blocking effect due

to poisoning by adsorbates and the presence of liquid water, is much smaller than the typical values

reported in the polymer electrolyte membrane fuel cell literature. This results in a severe performance

drop in direct ethanol fuel cells due to the reduction of the active catalyst area and the resulting growth

of the cathode mixed-overpotential. An extension of the current analysis employing a detailed kinetic

mechanism also for the cathode electrode may shed further light on this interesting topic [82].

The analysis shows that ethanol and acetaldehyde are the main species involved in the generation of

current at the anode electrode. The evolution of their concentrations along the anode channel affects

the ethanol oxidation reaction by changing the local conditions at each channel section. The role of

acetaldehyde as the main free intermediate is particularly interesting. Acetaldehyde produced upstream

is transported by diffusion to the anode channel and then convected downstream. The acetaldehyde

accumulated in the channel can be consumed downstream under ethanol starvation conditions, leading to

the existence of a peak acetaldehyde concentration inside the cell that may not be detected at the outlet.

Indeed, numerical simulations have shown that under extreme starvation conditions acetaldehyde may

be completely depleted before leaving the cell. Under these conditions the cell reaches a high faradaic

efficiency for ethanol conversion, although catalysts with enhanced CO2 selectivity could boost the cell

efficiency even further.

After analyzing the downstream evolution along the cell, a parametric study was carried out to asses

the effect of different ethanol feed concentrations and anode flow rates on the overall cell performance.

37



For the conditions under study, the results show the existence of an optimum ethanol feed concentration

around 1M for various reasons: 1M exhibits a high maximum power density, a much larger limiting

current density that 0.5M, a fuel utilization ca. 70% for high current densities and an average number

of electrons transferred per ethanol molecule ca. 4. In terms of cell efficiency, however, lower cell

molarity seems to be preferable, although it would limit the output performance. The detailed kinetic

description of the ethanol oxidation reaction has enabled the computation of the theoretical, voltage,

faradaic end energy utilization efficiencies characterizing the operation of direct ethanol fuel cells, which

once combined have led to curves of overall fuel efficiency vs. cell current density that could not have

been computed with any other previous DEFC model.

It must be emphasized that the main contribution of this work is not to present a closed model that

serves for all DEFCs, but to introduce a fundamental modeling methodology. Trying to adjust a sin-

gle model to results obtained in DEFCs with different catalysts is simply impossible, due to the large

differences in catalytic activities and product selectivities shown by different catalyst compositions, as

emphasized in the literature review. As a result, the proposed model (and in fact any other well estab-

lished DEFC model) should preferably be used in general scenarios in order to identify critical factors

that affect the performance of DEFCs, complementing the research carried out experimentally. This is

a valuable information for complex systems such as DEFCs, and may contribute to shed light on the

different factors limiting the performance of particular cell set-ups.
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Nomenclature

Symbols

Ck,` molar concentration of species k in layer ` [mol m−3]

Dk,` molecular diffusivity of species k in layer ` [m2 s−1]

F Faraday’s constant, 96487 [C mol−1]

h mass transport coefficient ac/agdl [m s−1]

i current density [A m−2]

kr rate constant of Reaction r [mol m−3 s−1] or [s−1]

neff average number of electrons transferred per ethanol molecule

nk
d electroosmotic drag coefficient of species k

Nk molar flux of species k [mol m−2 s−1]

qr net reaction rate of Reaction r [mol m−3 s−1]

R ideal-gas constant, 8.3143 [J mol−1 K−1]

sk selectivity of product species k

sGRj selectivity of global reaction GR j

T Temperature [K]

vW drag velocity of water in the anode gdl [m s−1]

W molar mass [kg mol−1]

y coordinate across the membrane

Greek letters

αr charge transfer coefficient of Reaction r [-]

δ` thickness of layer ` [µm]

ε gdl porosity [-]

η overpotential [V]

Θk coverage factor of adsorbed species k [-]

ρ fluid density [kg m−3]

ωk net molar production rate of free species k [mol m−2 s−1]

Subscripts

a anode

ac anode channel
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acl anode catalyst layer

agdl anode gas diffusion layer

ads adsorbed

A acetaldehyde (CH3CHO)

AA acetic acid (CH3COOH)

ccl cathode catalyst layer

cross crossover flux

E ethanol (CH3CH2OH)

k species k

` generic layer

r reaction r

W water (H2O)

Superscripts

eff effective property
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Appendix A. 1D Anode model

This section summarizes the 1D across-the-channel model used for the anode electrode. For further

details the reader is referred to [66].

Appendix A.1. Kinetic model

The net reaction rate for the 11 reaction steps, expressed in moles per unit time and per unit volume

of anode catalyst layer, are given by

qI =
(
1 − ΘCH3CHOHads − ΘCH3COads − ΘCOads − ΘCH3 ads

)
CE,aclkIf exp

(
αIF
RT

ηa

)
− ΘCH3CHOHadskIb exp

(
−

(1 − αI)F
RT

ηa

)
(A.1)

qII = ΘCH3CHOHadskII exp
(
αII2F

RT
ηa

)
(A.2)

qIII = ΘCH3CHOHadskIIIf exp
(
αIIIF
RT

ηa

)
−

(
1 − ΘCH3CHOHads − ΘCH3COads − ΘCOads − ΘCH3 ads

)
CA,aclkIIIb exp

(
−

(1 − αIII)2F
RT

ηa

)
(A.3)

q1 =
(
1 − ΘCH3CHOHads − ΘCH3COads − ΘCOads − ΘCH3 ads

) [
CE,aclk1f exp

(
α12F
RT

ηa

)
−CA,aclk1b exp

(
−

(1 − α1)2F
RT

ηa

)]
(A.4)

q2 =
(
1 − ΘCH3COads − ΘCOads − ΘCH3 ads

)
CA,aclk2f exp

(
α2F
RT

ηa

)
− ΘCH3COadsk2b exp

(
−

(1 − α2)F
RT

ηa

)
(A.5)

q3 = k3f
(
1 − ΘOHads

)
exp

(
α3F
RT

ηa

)
− k3bΘOHads exp

(
−

(1 − α3)F
RT

ηa

)
(A.6)

q4 = k4ΘCH3COadsΘOHads (A.7)

q5 = k5ΘCH3COads (A.8)

q6 = k6ΘCOadsΘOHads exp
(
α6F
RT

ηa

)
(A.9)

q7 = k7ΘCH3 adsΘ
2
OHads

exp
(
α75F
RT

ηa

)
(A.10)
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q8 = k8ΘCH3 ads exp
(
−
α8F
RT

ηa

)
(A.11)

where ηa is the anode overpotential, Ck,acl is the concentration of the free species k in the anode catalyst

layer, Θ j is the coverage factor of the adsorbed species j, and kr and αr are the rate constant and charge

transfer coefficient of reaction r, with the values given in Table 1.

Applying the steady-state approximation (SSA) to the adsorbed species results in the following set of

nonlinear algebraic equations

CH3CHOHads : qI − qII − qIII = 0 (A.12)

CH3COads : q2 + qII − q5 − q4 = 0 (A.13)

OHads : q3 − q4 − q6 − 2q7 = 0 (A.14)

COads : q5 − q6 = 0 (A.15)

CH3 ads : q5 − q8 − q7 = 0 (A.16)

which provides the coverage factors of the five adsorbates (CH3CHOHads, CH3COads, COads, CH3 ads,

and OHads) for specified values of CE,acl, CA,acl, and ηa.

Once the coverage factors are known, the area-specific net production rates of free species, expressed

in moles per unit time and per unit surface area of anode catalyst layer, can be written as

ωE = − (qI + q1) δacl (A.17)

ωA = (q1 + qIII − q2) δacl (A.18)

ωAA = q4δacl (A.19)

ωCO2 = (q6 + q7) δacl (A.20)

ωCH4 = q8δacl (A.21)

ωW = −q3δacl (A.22)

with positive (negative) values of ωk indicating net production (consumption) of species k.

Multiplying the area specific reaction rates, qrδacl, by the number of electrons transferred in each

reaction, nr, summing up all electron generation rates, and multiplying the result by Faraday’s constant,

gives the current density generated at the anode catalyst layer

i = F (qI + 2qII + qIII + 2q1 + q2 + q3 + q6 + 5q7 − q8) δacl (A.23)
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Appendix A.2. Anode gas diffusion layer

The molar flux of species k transported by convection and diffusion between the bulk fluid in the

anode channel (ac) and the anode catalyst layer (acl) is given by

Nk
(
Ck,ac; CE,acl,CA,acl, ηa

)
= −

Ck,acevW/kk,gdl −Ck,acl

evW/kk,gdl (1 + vW/h) − 1
vW k = E,A (A.24)

where kk,agdl = Deff
k,agdl/δacl is the diffusive mass transfer coefficient of the gas diffusion layer, h is an

overall mass transport coefficient in the anode channel, and

vW =
WW

ρW

(
ωW − nW

d
i
F

)
(A.25)

is the drag velocity of water at the anode gas diffusion layer, induced by water consumption at the anodic

reaction and the electro-osmotic flux of water across the membrane. Note that the sign of Nk indicates

whether the flux is directed in the positive or negative y-direction, whereas the drag velocity of water is

always negative, indicating that the flux of water is always in the negative y- direction, i.e., towards the

catalyst layer.

Appendix A.3. Ethanol and acetaldehyde crossover

The present model considers the effects of ethanol and acetaldehyde crossover, which are driven by

Fickian diffusion and electro-osmotic drag

Nk,cross
(
CE,acl,CA,acl, ηa

)
= −

Deff
k,mem

δmem
+

WW

ρw
nW

d
i
F

Ck,acl k = E,A (A.26)

where WW is the molecular weight of water, ρW is the density of water, and nW
d is the electroosmotic drag

coefficient of water.

Appendix A.4. Determination of the free species concentrations

Mass conservation of ethanol and acetaldehyde establishes that, if the cell operates in steady state,

the molar flux of these two species reaching the acl from the agdl must be equal to the net consumption

rate plus the corresponding crossover flux

NE
(
CE,ac; CE,acl,CA,acl, ηa

)
= ωE

(
CE,acl,CA,acl, ηa

)
+ NE,cross

(
CE,acl,CA,acl, ηa

)
(A.27)

NA
(
CA,ac; CE,acl,CA,acl, ηa

)
= ωA

(
CE,acl,CA,acl, ηa

)
+ NA,cross

(
CE,acl,CA,acl, ηa

)
(A.28)

It should be noted that in [66] the + signs in front of the crossover terms were erroneously written as

− signs, although all the results were correctly computed because they where obtained from the proper

form of the equations given above.
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The molar fluxes of the remaining non-adsorbed species (i.e., acetic acid, CO2, and CH4) , which do

not influence the electro-oxidation rate of ethanol and acetaldehyde, can be obtained a posteriori from

the corresponding mass balances

Nk
(
Ck,ac,Ck,acl; CE,acl,CA,acl, ηa

)
= ωk

(
CE,acl,CA,acl, ηa

)
k = AA,CO2,CH4 (A.29)

These are all product species (ωk > 0) which are not supposed to cross the membrane. As a result, their

net molar fluxes are also positive (Nk > 0), which indicates a net contribution of these species to the flow

in the anode channel.

Appendix A.5. Solution procedure

Given the channel concentrations, CE,ac and CA,ac, and the anode overpotential, ηa, Eqs. (A.27) and

(A.28) constitute a system of two non-linear algebraic equations for the two unknowns CE,acl and CA,acl.

The solution can be obtained numerically using, for instance, the fsolve function in Matlab. This results

in an iterative process that involves the repeated solution of the problem (A.12)–(A.16) for the coverage

factors for tentative values of CE,acl and CA,acl. The converged solution provides the local current density,

i, the molar fluxes Nk, k = E,A,AA,CO2,CH4, and the drag velocity of water, vW, required as inputs for

the downstream evolution of the 1D along-the-channel model.
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List of captions for the figures

Figure 1: Schematic representation of the physical domains covered by the one-dimensional across-

and along-the-channel models, showing the inlet conditions, the channel and rib dimensions (length, L,

channel width, wac, and rib width, wrib), and the thickness of the different layers of the MEA (δ`, ` =

agdl, acl, mem, ccl, cgdl). Left: side view; right: cross-sectional view.

Figure 2: Reaction mechanism for the ethanol oxidation reaction on binary Pt-based catalysts considered

in this work. The exact stoichiometries and the values of the kinetic constants are indicated in Table 1.

Figure 3: Schematic representation of the continuity equation and mass conservation equation of species

k applied to the n-th channel element. The water velocity vn
W must be used at the anode and the gas

velocity vn
g at the cathode.

Figure 4: Left: cell voltage (×), cathode potential (O) and anode overpotential (�) reported by [74] and

computed with the present model (solid, dashed and dash-dotted lines, respectively) at different sections

along the flow channels as indicated in the legends. Right: computed (solid lines) and experimental (×)

power density curves corresponding to the polarization data shown on the left.

Figure 5: Left: cell voltage (×), cathode potential (O) and anode overpotential (�) reported by [54]

(symbols) and computed with the present model (lines) for different ethanol feed concentrations.

Figure 6: Polarization and power density curves for the 25 cm2 cell. Left: cell voltage (solid lines),

cathode potential (dashed lines) and anode overpotential (dash-dotted lines) computed with the present

model at different sections along the flow channels. Right: power density curves corresponding to the

polarization curves shown on the left.

Figure 7: Evolution of the cell current density along the flow channels for different cell voltages. The

blue marks indicate the average value of the current density at each cell voltage and the position where

it is obtained along the cell. Left: current density. Right: current density measured with the average

current density, iavg.

Figure 8: Evolution of the parasitic current density along the flow channels for different cell voltages

(left) and variation of the parasitic current density with the cell current density at different sections along

the flow channels (right). The dashed lines labeled by arrows correspond to each of the cell voltages

represented on the left panel.



Figure 9: Evolution of the energy utilization along the flow channels for different cell voltages (left) and

variation of the fuel utilization with the cell current density at different sections along the flow channel

(right). The dashed lines labeled by arrows correspond to each of the cell voltages represented on the left

panel.

Figure 10: Evolution of the molar production and consumption rates of free species along the anode

channel for different cell voltages: a) ethanol (consumption), b) acetaldehyde (first production and later

consumption), c) acetic acid (production) and d) CO2 (production).

Figure 11: Evolution of a) the molar concentration of ethanol along the anode channel (left) and catalyst

layer (right) and b) the molar consumption rate of O2 along the cathode channel (left) and of the molar

concentration of O2 at the catalyst layer (right).

Figure 12: Evolution of the molar concentration of a) acetaldehyde, b) acetic acid and c) CO2 along the

anode channel (left) and at the catalyst layer (right) for different cell voltages.

Figure 13: Evolution of the product selectivities of the anode products species along the channel for

different cell voltages: a) acetaldehyde, b) acetic acid and c) CO2. d) shows the evolution of the average

number of electrons transferred per ethanol molecule.

Figure 14: Overall cell performance computed with the present model for the different anode flow rates

and ethanol feed concentrations indicated in the legend: a) cell voltage, b) power density, c) average

parasitic current density and d) average fuel utilization as a function of the average cell current density.

Other design and operational parameters as specified in Tables 4 and 3.

Figure 15: Species concentrations at the anode channel outlet for the different anode flow rates and

ethanol feed concentrations indicated in the legend: a) ethanol, b) acetaldehyde, c) acetic acid and d)

CO2 obtained with the model presented in this thesis. Other design and operational parameters as speci-

fied in Tables 4 and 3.

Figure 16: Average molar consumptions/production rates at the anode for the different flow rates and

ethanol feed concentrations indicated in the legend: a) ethanol (consumption), b) acetaldehyde (produc-

tion), c) acetic acid (production) and d) CO2 (production). Other design and operational parameters as

specified in Tables 4 and 3.

Figure 17: Variation with the current density of a) acetaldehyde, b) acetic acid, and c) CO2 selectivity,

and d) the average number of electrons transferred per ethanol molecule for the different flow rates and



ethanol feed concentrations indicated in the legend. Other design and operational parameters as specified

in Tables 4 and 3.

Figure 18: Variation with the current density of the overall cell efficiency for the different anode flow

rates and ethanol feed concentrations considered in the parametric study. Other design and operational

parameters as specified in Tables 4 and 3.



List of captions for the tables

Table 1: The 11-step reaction mechanism used in this work [66].

Table 2: Physical constants, convective mass transport coefficient and geometrical parameters used in

the 1D across-the-channel model. The fitted parameters (ai0)c,eff and Rcont provided by the optimization

algorithm are also shown for reference purposes.

Table 3: Geometrical and operational parameters used in the 1D along-the-channel model.

Table 4: Design and operational parameters used for model fitting and for the parametric study.
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