elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Kontakt | English
Schriftgröße: [-] Text [+]

ACCURACY OF COMBINED 3D SURFACE DEFORMATION MESUREMENT AND 3D POSITION TRACKING IN A WIND TUNNEL

Michaelis , Dirk und Frahnert, Holger und Stasicki, Boleslaw (2004) ACCURACY OF COMBINED 3D SURFACE DEFORMATION MESUREMENT AND 3D POSITION TRACKING IN A WIND TUNNEL. ICEM12- 12th International Conference on Experimental Mechanics, 29 August - 2 September 2004 , Politecnico di Bari, Italy. ISBN 88 386 6273 - 8.

Dieses Archiv kann nicht den gesamten Text zur Verfügung stellen.

Kurzfassung

In this study the accuracy of a combined measurement of 3D surface deformation and the 3D position of an object in a wind tunnel is investigated. The aim of this study is the development of a system for the high accuracy measurement of an objects 3D position and deformation under wind load during simulated rapid maneuvers. In this situation, the 3D position and orientation of the model are considered to be unknown. The point tracking package PointTracker of the DaVis image processing software was used for the automatic detection of the 3D position and orientation of the model. The PointTracker calculates the 3D position from reflective markers placed on the model. The deformation is detected by the StrainMaster3D module of the DaVis software. In this software module a random structure on the model surface is used to calculate the 3D surface with a stereo camera setup. In a first experiment, the two measuring systems are compared by a combined measurement of marker positions and 3D surface from a random structure on a wing model. Deformations are simulated by small rotations of the wing in the wind tunnel. In a second experiment the position of an aircraft model with and without wind load and the deformation of the flaps were measured. The first experiment revealed that the results of the two measuring systems were consistent with an accuracy of about 20µm on a measuring area of 200 x 300 mm measuring deformations ranging from 0 mm to 1.7 mm. In the second experiment, a deformation of about 3.8 mm within the flaps was detected for changing wind load resulting form a change of the attack angle in the range of –10 degree to 10 degree (flaps angle 4 degree). With no wind load, the measured deformation was below 0.4 mm. As a result, the combination of the two measuring systems yields a ready to use system for the pure optical detection of the position, orientation and deformation of models in a wind tunnel with arbitrary movements or accelerations.

Dokumentart:Konferenzbeitrag (Vortrag, Paper)
Zusätzliche Informationen: LIDO-Berichtsjahr=2004, monograph_id=234,
Titel:ACCURACY OF COMBINED 3D SURFACE DEFORMATION MESUREMENT AND 3D POSITION TRACKING IN A WIND TUNNEL
Autoren:
AutorenInstitution oder E-Mail-Adresse der Autoren
Michaelis , DirkLaVision, Göttingen, Germany
Frahnert, HolgerNICHT SPEZIFIZIERT
Stasicki, BoleslawNICHT SPEZIFIZIERT
Datum:2004
Seitenbereich:Seiten 1-8
Name der Reihe:CD-ROM Proceedings
ISBN:88 386 6273 - 8
Status:veröffentlicht
Stichwörter:Position detection, deformation analysis, surface shape, optical, non-intrusive, low speed, high speed, flap angle, flap deformation
Veranstaltungstitel:ICEM12- 12th International Conference on Experimental Mechanics
Veranstaltungsort:Politecnico di Bari, Italy
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:29 August - 2 September 2004
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Luftfahrt
HGF - Programmthema:Starrflügler
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Starrflüglerforschung
DLR - Teilgebiet (Projekt, Vorhaben):L - Flugphysik
Standort: Göttingen
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Experimentelle Verfahren
Hinterlegt von: Ilka Micknaus
Hinterlegt am:31 Jan 2006
Letzte Änderung:09 Feb 2010 10:19

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Copyright © 2008-2013 Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.