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Abstract

Energy conservation is an essential property of conservative mechanical systems that should be car
to the numerical solution. Betsch and Steinmann proposed recently perturbed potentials to achieve ene
servation in the time integration ofN -body problems by Galerkin methods. In the present paper this app
is generalised to Nyström methods for Hamiltonian systems. A detailed analysis shows that energy cons
by perturbed potential functions does not affect the feasibility and (high) order of convergence of Nyström
ods. Symmetry and reversibility properties are left unchanged as well. The theoretical results are illustr
numerical tests indicating clearly the benefits of energy conserving methods in long-term simulations.
 2004 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The time integration of ordinary differential equations is a classical topic of numerical mathema
the traditional approach one-step methods like Runge–Kutta methods and multistep methods like
methods or BDF are constructed that combine a high order of convergence with small numerica
per time step and favourable stability properties for linear problems [9].
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Long-term simulations of nonlinear problems and the time discretisation of partial differential
tions have, however, shown that the highly developed classical time integration methods are of
robust and less efficient than rather simple nonstandard methods that consider explicitly structur
erties of the analytical solution like symmetry and invariants [8].

The present paper contributes to a deeper understanding of such a new class of methods
presented recently in the engineering literature. We show that the new approach may be combi
cessfully with classical high-order collocation and Nyström methods. As one result we get sym
and reversible integration methods of arbitrary high order which conserve energy and linear and
momentum in the time integration of Hamiltonian systems.

The paper goes back to the work of Betsch and Steinmann [5] who modify the distance potenti
N -body problem such that the system’s total energy is preserved under time discretisation by a c
Galerkin type method.

After this short introduction the paper is organised as follows. In Section 2 we recall some
properties of Hamiltonian systems and illustrate by an example from celestial mechanics that c
time integration methods often fail to preserve structural properties of Hamiltonian systems like
conservation or conservation of linear and angular momentum.

In Section 3 perturbed potential functions are used as general construction principle for ener
serving Galerkin and collocation methods that may both be considered as special cases of the n
of generalised Nyström methods. Energy conservation in the numerical solution defines implic
perturbation of the potential.

Under mild assumptions we show in Section 4 that the perturbation parameterκ and the numerica
solution are uniquely determined by the condition for energy conservation. Furthermore, the pertu
does not affect the order of convergence. That means that energy conservation is achieved with
of accuracy.

Other structural properties of the numerical solution are studied in Section 5. Conditions for the
vation of linear and quadratic invariants are given. The symmetry and the reversibility of a mo
Nyström method are equivalent to a set of conditions that is always satisfied if the corresponding
cal Nyström method is symmetric and reversible.

The paper is completed by the presentation of numerical test results in Section 6 and a sum
Section 7. The numerical tests illustrate the order results of Section 4. Perturbed potentials are c
with classical projection techniques showing clearly that the novel approach is superior, espec
long-term simulations.

2. Hamiltonian systems

Many technical or physical models are represented by Hamiltonian systems. The motion of a m
calN -body problem may be considered as a typical example of a Hamiltonian system that is descr
a classical system of ordinary differential equations. Furthermore, many Hamiltonian systems res
space discretisation of time dependent partial differential equations in the field of elastodynamics

In both cases the solution trajectories have some geometrical properties such as energy con
and often also conservation of linear and angular momentum. The flow produced by the solution
is symmetric and reversible. Reversibility means, that a reversed initial velocity does not chan
solution trajectory, but only its direction.
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In classical mechanics the Hamiltonian principle is used as a variational principle to descr
dynamics of the mechanical system. The corresponding system of ordinary differential equation
special structure resulting from the Hamiltonian function. Often the Hamiltonian function is the su
potentialV (x) and the kinetic energyK(x,p) = 1

2p
TM(x)−1p with a mass matrixM(x) [2, Chapter 3.4].

Here,x is the generalised coordinate,p stands for the generalised momentum.

Definition 2.1 (Hamiltonian system). We assume thatV :Ω → R andM :Ω → R
d×d are smooth map

on an open setΩ ⊂ R
d . Furthermore,M(x) is symmetric positive definite forx ∈ Ω . Then we call the

functionH :S → R,

H(x,p) := V (x) + K(x,p) := V (x) + 1

2
pTM(x)−1p

Hamiltonian functiononS := Ω × R
d with the associatedHamiltonian system(

ẋ

ṗ

)
=

(
H T

p (x,p)

−H T
x (x,p)

)
.

With y := M(x)−1p the Hamiltonian system gets the following Lagrangian form:(
ẋ

ẏ

)
=

(
y

g(x, y)

)
, (1)

with g(x, y) := M(x)−1(−∇V (x) + g2(x, y) − g1(x, y)),

g1(x, y) :=
 yTM ′

1(x)y
...

yTM ′
d(x)y

 and g2(x, y) := 1

2

 yTMx1(x)y
...

yTMxd
(x)y

 .

M ′
i represents the matrix of derivatives of theith column ofM , andMxi

is the partial derivative ofM
w.r.t. xi . We define theenergy functionE as the HamiltonianH in the new coordinatesx, y:

E(x, y) := H
(
x,M(x)y

) = V (x) + 1

2
yTM(x)y.

It is well known, that the HamiltonianH is a first integral of the associated Hamiltonian syst
Therefore the energyE is constant along the solution trajectories. The special case, that the k
energyK depends onp only, motivates the following definition.

Definition 2.2 (Separable Hamiltonian system). The Hamiltonian functionH(x,p) = V (x) + K(p) =
V (x) + 1

2p
TM−1p with constant mass matrixM is calledseparable Hamiltonian functionwith thesep-

arable Hamiltonian system(
ẋ

ṗ

)
=

(
M−1p

−∇V (x)

)
. (2)

TheN -body problem is a typical example of a separable Hamiltonian system that is character
potential forces which depend only on the distances between the bodies [5,8].
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Definition 2.3 (Distance potential). We partitionx = (x1T
, . . . , xN T

)T by xi ∈ R
m (m := d/N ∈ N) and

assume thatVij (i > j ) are smooth functions on open sets inR. Then the potentialV :Ω → R,

V (x) :=
N∑

i=2

i−1∑
j=1

Vij

(∥∥xi − xj
∥∥

2

)
,

is calleddistance potential.

Theorem 2.4 (First integrals for distance potentials). For distance potentials the following functions a
first integrals of the separable Hamiltonian system in its Lagrangian form(1):

(a) F(x, y) := cTMy with cT := (c̄T, . . . , c̄T), c̄ ∈ R
m,

(b) F(x, y) := xTCMy with C := blockdiag(�C, . . . , �C ), �C = −�C T ∈ R
m×m, if CM is skew symmetric:

(CM)T = −CM .

Proof. For separable Hamiltonian systems we haveg(x, y) = −M−1∇V (x) and obtainFx(x, y)y −
Fy(x, y)M−1∇V (x) = 0 for (x, y) ∈ S. �

As a consequence separable Hamiltonian systems (2) with distance potentials(m = 3) and a diagona
mass matrixM have the following first integrals: linear momentum

∑N
i=1 pi and angular momentum∑N

i=1 xi × pi [8, Example IV.1.3].
Important structural properties of Hamiltonian systems can be characterised by theflow, which is

symmetric and reversible. It is well known, that the preservation of these structural properties a
preservation of invariants in Hamiltonian systems yield good results in long-term simulations, s
Chapters V, XI].

In the following we consider one-step methods(x1, y1) = Φ(h, (x0, y0)) that define thenumerical
flow Φ : I × Q → S on an open intervalI ⊂ R with 0 ∈ I and an open setQ ⊂ S. It turns out that
numerical integration methods do in general not fulfil the following identities:

symmetry:Φ(−h,Φ(h, (x, y))) = (x, y) and

reversibility:Φ(h,ρ(Φ(h, (x, y)))) = ρ(x, y) with ρ(x, y) := (x,−y).

Furthermore, invariants of Hamiltonian systems are in general not preserved by numerical m
For the purpose of illustration we integrate a model for the motion of the outer planets in our
System [8, Section I.2.3]. As integration method we choose the Radau IIA method withs = 3 stages
and a constant step size ofh = 100 days. The corresponding Hamiltonian system is separable an
the invariants energy, linear and angular momentum. Fig. 1 shows that only the linear momen
conserved up to machine precision. Angular momentum and energy have considerable deflectio

A classical way to enforce the conservation of an invariant is to project in each integration s
numerical solution(x̃1, ỹ1) onto the manifold being defined by the invariantF . The solution(x1, y1) is
chosen as a solution of the following minimisation problem:

min
(x1,y1)∈S

∥∥(x1, y1) − (x̃1, ỹ1)
∥∥

2, with F(x1, y1) = F(x0, y0).

(x0, y0) denotes the solution of the previous integration step. Hairer et al. [8, Chapter IV.4] show th
projection does not decrease the order of convergence, but in general a symmetric method is
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Fig. 1. Simulation of the outer solar system over 200 000 days with a Radau IIA method.

to an unsymmetric one [8, Section V.4.1]. On the other hand, some integration methods preserve
invariants, which are not conserved after a projection on an additional invariant [1]. Therefore,
next section we try to keep favorable properties of well-known methods, if they are modified to gua
energy conservation.

3. Modified Nyström methods

Numerical methods for ordinary differential equations provide in general only approximations
solution trajectories. It is therefore natural to look for numerical solutions that share all essential str
properties of the analytical solution. In the present section a class of one-step methods for Ham
systems is introduced that guarantees conservation of the total energy.

The integration interval[0, T ] is discretised by a time grid{t0, . . . , tN } with 0= t0 < t1 < · · · < tN = T

and time step sizeshn := tn+1 − tn for n = 0,1, . . . ,N − 1. It is sufficient to consider only the step fro
t0 := 0 to t1 = h1 =: h and to use as initial value(x0, y0) the numerical solution from the previous ste
We approximate the solution on[0, h] by polynomials(x̄, ȳ) up to degrees ∈ N and set(x1, y1) :=
(x̄(h), ȳ(h)). At t = 0 the polynomials̄x, ȳ shall satisfy(x̄(0), ȳ(0)) = (x0, y0).

Finite element methods for solving ordinary differential equations are frequently considered
engineering literature [5], because the ordinary differential equations have often its origin in part
ferential equations that are semi-discretised in space by finite elements [6]. We follow the idea o
elements for ordinary differential equations and rewrite the resulting methods in a generalised
Kutta form.

The starting point of the Galerkin approach is the weak formulation of the Hamiltonian system
test functionsv:

h∫
0

( ˙̄x(t) − ȳ(t)
)
v(t)dt = 0, (3a)

h∫ ( ˙̄y(t) − g
(
x̄(t), ȳ(t)

))
v(t)dt = 0. (3b)
0
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We choose test functionsv ∈ Ps−1, this means polynomials up to degrees −1. The integrals in (3) ma
be solved exactly except

h∫
0

g
(
x̄(t), ȳ(t)

)
v(t)dt. (4)

Betsch and Steinmann [5] suggest to use quadrature formulas to solve this integral. For separabl
tonian systems they present modifications of the quadrature formulas in order to preserve energ
and angular momentum. The results are illustrated by numerical examples with low order metho

In the following we generalise one of these modified methods of Betsch and Steinmann and s
Sections 4 and 5, that this approach yields a class of energy conserving methods including me
arbitrary high order and methods that preserve additionally a number of other structural propertie

To approximate (4) we use a quadrature formula with nodesc1, . . . , cs �= 0 and weightsw1, . . . ,ws �= 0
that has the minimum orders. Additionally, we insert a scalarκ ∈ R as a perturbation of the vector fieldg:

h∫
0

g
(
x̄(t), ȳ(t)

)
v(t)dt ≈ h

s∑
k=1

wkκg
(
x̄(hck), ȳ(hck)

)
v(hck).

For test functionsv ∈ Ps−1 a quadrature formula withs nodes is chosen to allow a transformation of
methods into Nyström form, which is forκ := 1 well known in the field of numerical solution metho
for second order differential equations.

Modified Galerkin approach

For a quadrature formula with nodesc1, . . . , cs ∈ (0,1] and corresponding weightsw1, . . . ,ws �= 0 the
polynomials(x̄, ȳ) ∈ P

2d
s with (x̄(0), ȳ(0)) = (x0, y0) have to satisfy

h∫
0

( ˙̄x(t) − ȳ(t)
)
v(t)dt = 0, (5a)

h∫
0

˙̄y(t)v(t)dt − h

s∑
k=1

wkκg
(
x̄(hck), ȳ(hck)

)
v(hck) = 0, (5b)

for all v ∈ Ps−1 and a fixedκ ∈ R.
Existence and uniqueness of these polynomialsx̄ and ȳ will be considered in Section 4. Condition

will be given to guaranteēx(hck) ∈ Ω for k = 1, . . . , s.
In the field of Runge–Kutta methods collocation approaches play a fundamental role in con

ing new methods [9, Chapter II.7]. Now we will show, that a modified collocation idea yields e
conserving methods for Hamiltonian systems, which are very closely related to the modified G
method (5).
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Modified collocation approach

Consider a quadrature formula with minimum orders, nodesc1, . . . , cs ∈ [0,1] and weightsw1, . . . ,

ws �= 0. We consider polynomials(x̄, ȳ) that satisfy the modified collocation conditions

˙̄x(hci) = ȳ(hci), (6a)
˙̄y(hci) = κg

(
x̄(hci), ȳ(hci)

)
, (6b)

for i = 1, . . . , s and a givenκ ∈ R.
Betsch and Steinmann [4] point out that the Galerkin approach (5) and the collocation appro

are equivalent fors = 2, 3 and Gauss quadrature. This result may be generalised to all modified m
with Gauss nodesci :

Theorem 3.1 (Equivalence for Gauss methods). For a fixedκ ∈ R and the Gauss nodesc1, . . . , cs with
the corresponding weightsw1, . . . ,ws the modified Galerkin approach(5) and the modified collocatio
approach(6) are equivalent.

Proof. The proof is based on the high order 2s of Gauss quadrature [7, Chapter 9.3]. Therefore
polynomialsu ∈ P

d
2s−1 fulfil the equation

h∫
0

u(t)dt = h

s∑
k=1

wku(hck). (∗)

(a) We assume, that the collocation conditions (6) hold. Then all test polynomialsv ∈ Ps−1 satisfy:

h∫
0

( ˙̄x(t) − ȳ(t)
)
v(t)dt

(∗)= h

s∑
k=1

wk

( ˙̄x(hck) − ȳ(hck)
)︸ ︷︷ ︸

=0

v(hck) = 0,

h∫
0

˙̄y(t)v(t)dt
(∗)= h

s∑
k=1

wk
˙̄y(hck)v(hck)

(6b)= hκ

s∑
k=1

wkg
(
x̄(hck), ȳ(hck)

)
v(hck).

Thus(x̄, ȳ) fulfil the Galerkin conditions (5).
(b) Suppose that the polynomials(x̄,ȳ) satisfy (5). We choose test polynomialsv := l̄i ∈ Ps−1 with

l̄i (hτ ) := li(τ ) := ∏s
j=1,j �=i

τ−cj

ci−cj
(for τ ∈ R) and obtain:

0
(5a)=

h∫
0

( ˙̄x(t) − ȳ(t)
)
l̄i (t)dt

(∗)= h

s∑
k=1

wk

( ˙̄x(hck) − ȳ(hck)
)
δik = hwi

( ˙̄x(hci) − ȳ(hci)
)
,

hκwig
(
x̄(hci), ȳ(hci)

) = hκ

s∑
k=1

wkg
(
x̄(hck), ȳ(hck)

)
l̄i (hck)

(5b)=
h∫

˙̄y(t) l̄i(t)dt
(∗)= h

s∑
wk

˙̄y(hck)δik = hwi
˙̄y(hci).
0 k=1
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Because ofhwi �= 0 Eq. (6) is obtained. �
Modified Galerkin methods (5) and modified collocation methods (6) are applied to a system

very special right-hand side that allows to eliminate the node valuesx̄(hci) analytically. The resulting
Runge–Kutta like representation of (5) and (6) may be considered as a generalisation of the wel
Nyström methods for second order ordinary differential equations.

Theorem 3.2 (Nyström representation). We define

X :=
 X1

...

Xs

 , Y :=
 Y1

...

Ys

 , X0 := 1 ⊗ x0, Y 0 := 1 ⊗ y0,

with 1 := (1, . . . ,1)T ∈ R
s and

G(X,Y ) :=
 g(X1, Y1)

...

g(Xs,Ys)

 , Υ :=
 Υ1

...

Υs

 ∈ R
ds, Xi ∈ Ω, Yi, Υi ∈ R

d .

Then, both the modified Galerkin approach(5) and the modified collocation approach(6) can be trans-
formed into the following Nyström form:

Υ = G
(
X0 + hCY 0 + h2κAΥ,Y 0 + hκ �AΥ

)
, (7a)

x1 = x0 + hy0 + h2κ

s∑
i=1

biΥi, (7b)

y1 = y0 + hκ

s∑
i=1

wiΥi. (7c)

This representation contains the coefficient matricesC := c ⊗ Id , A := a ⊗ Id , �A := ā ⊗ Id and
c := diag(c1, . . . , cs), a, ā ∈ R

s×s . The matricesa, ā and the coefficientsbi ∈ R are determined by th
nodesc1, . . . , cs and the weightsw1, . . . ,ws :

(a)Galerkin approach.

a := âā, ā := γ −1w, bi :=
s∑

j=1

Lj(1)aji,

with w := diag(w1, . . . ,ws), â := γ −1θ and

γ := (γij )
s
i,j=1 =

( 1∫
0

L̇j (τ )li(τ )dτ

)
, θ := (θij )

s
i,j=1 =

( 1∫
0

Lj(τ)li(τ )dτ

)
,

li(τ ) :=
s∏

j=1

τ − cj

ci − cj

, Li(τ ) :=
s∏

j=0

τ − cj

ci − cj

, c0 := 0.
j �=i j �=i
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(b) Collocation approach.

a := ā2, bT := (w1, . . . ,ws)ā, ā := (āij )
s
i,j=1 :=

( ci∫
0

lj (τ )dτ

)
,

with li(τ ) := ∏s
j=1,j �=i

τ−cj

ci−cj
.

Proof. (a) In the Galerkin approach we use a representation of(x̄, ȳ) by means of the Lagrangian bas
polynomialsLi and use in (5) test polynomialsv := li . The resulting system of linear equations may
solved w.r.t.(x̄(hci), ȳ(hci)) by some straightforward computations, see also [10, Theorem 3.14].

(b) follows directly from classical results for collocation, Runge–Kutta and Nyström methods
e.g., [8, Theorem II.1.4]. �

The Nyström representation (7) of the constructed methods motivates to modify standard N
methods by introducing the scalarκ . In the following we will use this generalised Nyström form witho
paying attention to any specific way for obtaining the coefficientsa, ā, b.

In the engineering literature methods that conserve energy [5,6] and methods with a prescribed
decay [3] found special interest. Energy conservation or energy decay define implicitly the scalaκ . In
the following we will consider in more detail energy conserving methods. They are characterized

E(x1, y1) = E(x0, y0). (8)

Inserting the right-hand sides of Eqs. (7b) and (7c) into (8) leads to an implicit and coupled sys
nonlinear equations (7a), (8) for the unknownsΥ andκ , which has dimensionds + 1.

4. Properties of the numerical solution

After defining the modified Nyström methods in Section 3 we investigate now existence and u
ness of the numerical solution and its structural properties.

Definition 4.1 (Regular initial value). The initial value(x0, y0) ∈ S for a Hamiltonian system is calle
regular, if

yT
0

(∇V (x0) + g2(x0, y0)
) �= 0,

andsingularotherwise.

Theorem 4.2 (Existence and uniqueness of the numerical solution). We consider a consistent generalis
Nyström method(7) for Hamiltonian systems that satisfies the energy equation(8).

For each regular initial value(x0, y0) ∈ S there is a neighbourhoodQ ⊂ S of (x0, y0) and a constan
h̄ > 0 such that Eqs.(7), (8)with |h| � h̄ and initial values(x̂, ŷ) ∈ Q have a unique solution inQ that
depends continuously differentiable onh and(x̂, ŷ).

Proof. We write the system of Eqs. (7), (8) asR(Υ,h, κ, x̂, ŷ) = 0 with the map

R(Υ,h, κ, x̂, ŷ) :=
(

Υ − G(X̂0 + hCŶ 0 + h2κAΥ, Ŷ 0 + h�AΥ )
)

, X̂0 := 1 ⊗ x̂, Ŷ 0 := 1 ⊗ ŷ,

r(Υ,h, κ, x̂, ŷ)
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r(Υ,h, κ, x̂, ŷ) := 1

h

[
E

(
x̂ + hŷ + h2κ

s∑
i=1

biΥi, ŷ + hκ

s∑
i=1

wiΥi

)
− E(x̂, ŷ)

]

= 1

h

[
E

(
z(1)

) − E
(
z(0)

)]
,

with z(θ) := (x̂ + θhŷ + θh2κ
∑s

i=1 biΥi, ŷ + θhκ
∑s

i=1 wiΥi) (θ ∈ [0,1]). We get

r = 1

h

1∫
0

dE(z(θ))

dθ
dθ =

1∫
0

[
Ex

(
z(θ)

)(
ŷ + hκ

s∑
i=1

biΥi

)
+ Ey

(
z(θ)

)
κ

s∑
i=1

wiΥi

]
dθ.

Therefore the functionr is continuously differentiable in a neighbourhood of(G(X̂0, Ŷ 0),0,1, x0, y0)

and has the partial derivative

rκ

(
G

(
X̂0, Ŷ 0

)
,0,1, x0, y0

) = −yT
0

(∇V (x0) + g2(x0, y0)
) =: α.

For regular initial values(x0, y0) we haveα �= 0 and the Jacobian matrix

RΥ,κ

(
G

(
X̂0, Ŷ 0

)
,0,1, x0, y0

) =
(

Ids 0
∗ α

)
is nonsingular. The Implicit function theorem guarantees, that there exist smooth functionsΥ (h, x̂, ŷ),

κ(h, x̂, ŷ) with R(Υ (h, x̂, ŷ), h, κ(h, x̂, ŷ), x̂, ŷ) = 0, if |h| is sufficiently small. �
In [10] singular initial values withy0 = 0,∇V (x0) �= 0 are investigated in more detail and the existe

of a continuously differentiable solution(x(h), y(h)) of (7) and (8) is shown for sufficiently small|h|.
Standard collocation methods have the same order of convergence as the underlying quadra

mula [8, Section II.1.2]. In the following we consider the question if a similarsuperconvergenceresult
can be achieved by the Galerkin methods (5) at least withκ := 1. Furthermore we study the influen
of the energy equation (8) on the order of convergence of the modified Galerkin methods and
modified general Nyström methods.

First, we investigate the Galerkin approach (5) with quadrature formulas of high order and with
κ := 1. Similar to the proof of the convergence theorem [9, Theorem II.7.9] for collocation me
we show that the local error has at least orders + 1 (s . . . number of quadrature nodes). Further,
derivatives of the polynomials(x̄, ȳ) approximate the derivatives of the analytical solution. The orders +
1 is decreased by the order of the derivative (Lemma 4.4). Both results are valid for collocation m
too. Finally, this is sufficient to prove the superconvergence for the Galerkin methods (Theorem 4

Lemma 4.3 (Orders for the Galerkin approach). We consider a problem

ż :=
(

ẋ

ẏ

)
=

(
y

g(x, y)

)
=: f (z),

with a smooth vector fieldg and a quadrature formula withs nodes, which has the orderp � 2s − 1. For
an initial valuez0 = (x0, y0) ∈ S and sufficiently small|h| the numerical approximation of the Galerk
approach withκ := 1 is denoted bȳz = (x̄, ȳ) and the analytical solution byz = (x, y) with z̄(0) =
z(0) = z .
0
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,

eorem

the

i-
Then the local error is bounded by:

max
t∈[0,h]

∥∥z̄(t) − z(t)
∥∥ = O

(
hs+1

)
.

Proof. We write (7) asR(x1, y1) = 0 with a suitable mapR and insert the analytical solutionz = (x, y)

into this system. Then we conclude:R
(
z(h)

) = O(hp−s+2)+O(hs+1) = O(hs+1), becausep � 2s − 1 is
assumed. This estimate implies the proposition since the derivatives of the inverse mapR−1 are bounded
see [10, Lemma 3.26] for more details.�
Lemma 4.4 (Convergence of the derivatives). Under the assumptions of Lemma4.3 the following esti-
mates hold fork = 0, . . . , s:

max
t∈[0,h]

∥∥z̄(k)(t) − z(k)(t)
∥∥ = O

(
hs+1−k

)
.

Proof. The lemma can be proven like the same proposition for collocation methods [9, Th
II.7.10]. �
Theorem 4.5 (Superconvergence for Galerkin methods). The assumptions of Lemma4.3shall be fulfilled.
Then the Galerkin method has the same orderp as the underlying quadrature formula.

Proof. With the Galerkin polynomial̄z we define the defectδ(t, z̃) := ˙̄z(t) − f (z̃) for t ∈ [0, h] and
z̃ ∈ S. Thenz̄ is the solution of the following perturbed initial value problem fort ∈ [0, h]:

˙̃z(t) = f (z̃) + δ(t, z̃), z̃(0) = z(0) = z0.

The theorem of Gröbner and Alekseev [9, Theorem I.14.5] states

z̄(h) − z(h) =
h∫

0

Ψ (t)dt (∗)

with Ψ (t) := D(t)δ(t, z̄(t)) and the mapD(t) := ∂z/∂z̃(h, t, z̄(t)). Here the analytical solutionz is
considered as a functionz(h, t, z̃) depending on the final time pointh, initial time pointt and the initial
value z̃ at time t (!). Because the derivatives̄z(k) are bounded (Lemma 4.4), we can conclude with
Taylor polynomialTsD(t) := ∑s

k=0 D(k)(0)tk/k!:
D(t) = Ts−1D(t) +O

(
hs

)
for t ∈ [0, h].

Applying Lemma 4.4 we get the estimateδ(t, z̄(t)) = O(hs) and

Ψ (t) = Ts−1D(t)δ
(
t, z̄(t)

) +O
(
h2s

)
.

Now we can write(∗) as

z̄(h) − z(h) =
h∫

0

Ts−1D(t)δ
(
t, z̄(t)

)
dt +O

(
h2s+1

)
.

To estimate this integral, we consider an arbitrary polynomialv ∈ Ps−1. Because of the Galerkin cond
tions (5), the orderp of the quadrature formula and the boundedness of the derivatives ofz̄ we get the
following equations:
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t holds
h∫
0

( ˙̄x(t) − ȳ(t)
)
v(t)dt = 0,

h∫
0

( ˙̄y(t) − g
(
z̄(t)

))
v(t)dt =

h∫
0

˙̄y(t)v(t)dt − h

s∑
k=1

wkg
(
z̄(hck)

)
v(hck) +O

(
hp+1

) = O
(
hp+1

)
.

We obtain
h∫

0

vh(t)δ
(
t, z̄(t)

)
dt = O

(
hp+1

)
,

for polynomialsvh ∈ Ps−1, which depend onh, but have bounded derivatives forh → 0. Each row
of Ts−1D consists of such polynomials (due to the definition ofD and the boundedness of the der
atives ofz̄), therefore we conclude

h∫
0

Ts−1D(t)δ
(
t, z̄(t)

)
dt = O

(
hp+1

)
,

and finally

z̄(h) − z(h) = O
(
hp+1

) +O
(
h2s+1

) = O
(
hp+1

)
, sincep � 2s. �

There remains the open question, which order of convergence we can achieve, if the orde
quadrature formula is less than 2s − 1. If one can prove the statement of Lemma 4.3 for quadra
formulas with order less than 2s − 1, then Theorem 4.5 is proved as well for the corresponding Gale
methods. The assumptionp � 2s − 1 is only used for the proof of Lemma 4.3.

For classical projection methods [8, Chapter IV.4] the order of convergence is identical to the
of the underlying method without projection. In Theorem 4.6 we obtain the same result for the m
Nyström methods (7) with the energy equation (8).

Theorem 4.6 (Convergence with energy equation). We suppose that a generalised Nyström method(7)
with κ := 1 has orderp of convergence. Then the modified Nyström method withκ being determined
implicitly by the energy equation(8) has the same orderp, if the solution remains inside a set witho
singular initial values.

Proof. For a regular initial valuez0 := (x0, y0) with z(0) = z1(0, κ) = z0 the analytical solution shall b
denoted byz and the unique, continuous solution of the Nyström equations (7) in the neighbourh
(0,1) ⊂ R

2 by z1(h, κ), see Theorem 4.2. Due to the assumption on the general Nyström method i

z1(h,1) = z(h) +O
(
hp+1

)
. (∗)

As in the proof of Theorem 4.2 we formulate the energy condition as

r(h, κ) := 1[
E

(
z (h, κ)

) − E(z )
] = 0.
h
1 0
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SinceE(z(h)) = E(z0) and(∗) we estimate

r(h,1) = h−1O
(
hp+1

) = O
(
hp

)
.

Because ofrκ(0,1) = −yT
0(∇V (x0) + g2(x0, y0)) �= 0 we have|rκ(h, κ)| > 0 in a neighbourhood o

(0,1), therefore|κ(h) − 1| = O(hp). From (7b) and (7c) we obtain the final estimate:∥∥z̄(h) − z(h)
∥∥ �

∥∥z1
(
h,κ(h)

) − z1(h,1)
∥∥ + ∥∥z1(h,1) − z(h)

∥∥ = O
(
hp+1

)
. �

5. Preservation of structural properties

The above constructed modified Nyström methods are energy conserving for Hamiltonian s
Additional invariants like linear and angular momentum can be preserved under conditions on
efficients (Theorem 5.1). We want to transfer symmetry and reversibility of the analytical flow
numerical solution because of the advantages in long-term simulations, see Section 2. Neces
sufficient criteria for the symmetry of Runge–Kutta methods can be found in [8, Chapter V.2] a
Chapter II.8]. We extend these investigations to Nyström methods and get in Theorem 5.3 simil
ditions on the coefficients. With these conditions we are able to prove symmetry and reversibility
energy conserving methods in Theorem 5.4.

Theorem 5.1 (Preservation of linear and quadratic invariants).

(a) The modified Nyström method(7) preserves linear invariants depending only ony.
(b) If the coefficients fulfil fori, j = 1, . . . , s the conditions

bi = wi(1− ci),

wi(bj − aij ) = wj(bi − aji),

then quadratic first integrals of the formF(x, y) = xTCy with a skew symmetric matrixC = −CT ∈
R

d×d are preserved.

Proof. (a) LetF(x, y) := cTy denote the linear invariant withc ∈ R
d . Then for all(x, y) ∈ S the equation

cTg(x, y) = 0

holds and we get from (7c):

cTy1 = cTy0 + hκ

s∑
i=1

wi c
TΥi︸︷︷︸
=0

= cTy0.

(b) The proof for the quadratic invariants follows the proof of Theorem IV.2.5 in [8].�
Corollary 5.2 (Preservation of linear and angular momentum). Under the assumptions of Theorem5.1
the modified Nyström method preserves the linear and angular momentum.

The definition of symmetry in Section 2 uses properties of the numerical flow. To investiga
symmetry of the modified Nyström method we look for conditions on the coefficients and exte
corresponding Theorem II.8.8 from [9], see also [10, Theorem 3.47].
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Theorem 5.3 (Conditions for symmetry). We consider a consistent generalised Nyström method(7) with
κ := 1, wi �= 0 for i = 1, . . . , s and pairwise different nodesci := ∑s

j=1 āij that satisfyc1 < c2 < · · · < cs .
Then the method is symmetric, if and only if the coefficients fulfil the following conditions fori, j =

1, . . . , s:

ci = 1− cs+1−i ,

wi = ws+1−i ,

bi = wi − bs+1−i ,

āij = wj − ās+1−i,s+1−j ,

aij = bj − cs+1−iwj + as+1−i,s+1−j .

Theorem 5.4 (Symmetry and reversibility). If the coefficients fulfil the conditions of Theorem5.3, then the
modified Nyström method(7) with the energy equation(8) is symmetric and reversible for Hamiltonia
systems.

Proof. To prove the symmetry we use Theorem 5.3 and the fact, that the energy equationE(x1, y1) =
E(x0, y0) ⇐⇒ E(x0, y0) = E(x1, y1) is symmetric.

A simple calculation for the modified Nyström methods with energy equation shows the identit

ρ
(
Φ

(
h, (x0, y0)

)) = (x1,−y1) = Φ
( − h,ρ(x0, y0)

)
.

Theorem V.1.5 in [8] proves then the equivalence between symmetry and reversibility.�
The Galerkin and collocation methods are symmetric and reversible, if the nodes of the qua

formula are symmetric in terms ofci = 1− cs+1−i for i = 1, . . . , s [10, Theorems 3.46, 3.49].
This result completes the theoretical analysis of generalised Nyström methods that started in S

with the construction of energy conserving Nyström methods for the numerical solution of Hamil
systems in their Lagrangian form. The Galerkin approach (5) and the collocation approach (6) r
modified general Nyström methods. Conditions for the initial values guarantee a locally unique num
solution and the convergence of the method, see Section 4. Finally, in Section 5 we transfer ad
geometrical structures to the numerical solution. Criteria for preserving linear and angular mom
symmetry and reversibility are given.

The results that have been obtained in Section 4 for the energy conserving time integration
servative systems may in principle be extended to methods with prescribed energy decay for dis
systems [3]. In comparison with classical fixed step size symplectic integrators [8, Chapters VI a
a potential drawback of the proposed generalised Nyström methods is the loss of symplecticity foκ �= 1.
However, variable step size implementations and the extension to energy decaying schemes g
tional flexibility that makes the approach attractive for technical simulations in industrial applicatio

6. Simulation results

In this section we present numerical results of the modified Nyström methods applied to the out
system described in Section 2. For all investigated Nyström methods we use the three variants “st
“projected” and “modified”. The “standard” variant is the original Nyström method, the “projec
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method denotes the projection onto the manifold of constant energy, see Section 2. The “modified”
stands for the modified Nyström method (7) with the energy equation (8).

All simulations are performed using an experimental MATLAB code that is tailored to nonstiff p
lems. The numerical solutions of the “standard” and “projected” methods are calculated by fixed
iterations (for the implicit methods) except the projection step itself that is solved by simplified N
iterations. The solution of the implicit system (7a), (8) is obtained by a staggered algorithm wit
plified Newton iterations as outer loop for determination ofκ from Eq. (8). The inner loop computesΥ
from Eq. (7a) for a givenκ by fixed-point iterations (for the implicit methods).

The outer solar system is a nontrivial nonstiff example of moderate size and was selected
an efficient implementation of the new methods for larger systems is not yet available. The num
tests with our experimental code show, however, the favourablequalitativebehaviour of the methods i
comparison to the well-known Runge–Kutta/Nyström methods and projection methods.

In Fig. 2 some results for the Galerkin and collocation approach with Radau IIA-quadrature illu
the superconvergence Theorem 4.5 and the convergence for methods with the energy equatio
rem 4.6). For the symplectic standard Lobatto IIIA–IIIB pair and the symplectic Gauss methods
the results of Fig. 3. It is clearly visible, that the global error is neither reduced by the modificatio
by the projection. For the Radau IIA methods the projected variant has the smallest error in the s
for this example.

Fig. 2. Outer solar system integrated for 10 400 days by Galerkin and collocation approach with Radau IIA-quadra

Fig. 3. Outer solar system integrated for 10 400 days by Lobatto and Gauss methods.
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Fig. 4. Outer solar system integrated from 0 to 200 000 days with Gauss method ands = 4 stages.

Fig. 5. Outer solar system integrated with Radau IIA collocation methods.

Now we consider the conservation of the invariants for the Gauss method withs = 4 stages in more
detail. The coefficients of the Gauss methods fulfil the conditions in Theorem 5.1 as can be se
from the results in Fig. 4. The standard Gauss method preserves linear and angular momentum
the energy is not conserved but the energy error is bounded, which is typical for symplectic integra
Chapter X]. Projection onto constant energy causes the effect mentioned in Section 2: linear and
momentum are not longer preserved. The modified Gauss method combines the positive properti
standard and the projected method, shown in the lower plot of Fig. 4.

In Figs. 2 and 3 the errors of the modified integration methods are often larger than the error
standard methods. But these results are only characteristic for short simulation horizons. In com
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Fig. 6. Outer solar system integrated with method of Dormand and Prince.

we look at the simulation with the Radau IIA method (Fig. 5) and the explicit method from Dorm
Prince of order 5 (Fig. 6). We tested short (10 400 days) and long (200 000 days) simulation tim
came to the conclusion, that the errors of the modified variants—especially for large step sizes—
smallest ones. Just for large step sizes the modified energy conserving methods are interesting
for standard methods the energy error converges likeO(hp) anyway, ifh tends to 0.

7. Summary

It is well known, that geometric time integration is suitable to solve Hamiltonian systems nu
cally [8]. Considering the analytical properties of a Hamiltonian system, we try to construct num
integration methods for Hamiltonian systems in their Lagrangian form. As a starting point we de
the preservation of the total energy (the Hamiltonian) of the numerical solution. A modified Ga
approach yields modified Nyström methods. In addition a modified collocation approach results
generalised Nyström form.

We prove the existence of a unique numerical solution and the preservation of linear and qu
invariants (linear and angular momentum) without projection techniques. Important are the conve
results, which show that the modified methods converge without order reduction. Superconverge
the Galerkin approach and quadrature formulas with high order is proved. The flow properties sym
and reversibility can be transferred from the standard Nyström methods to the modified ones.

Finally, numerical experiments with a nonstiff problem and several different methods validate th
retical statements regarding structure preservation and convergence. For symplectic methods the
variants do not achieve more accurate results, but long-term simulations point out that certain c
Nyström methods may have large errors that are reduced substantially using the modified metho
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