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Abstract

Energy conservation is an essential property of conservative mechanical systems that should be carried over
to the numerical solution. Betsch and Steinmann proposed recently perturbed potentials to achieve energy con-
servation in the time integration @¥-body problems by Galerkin methods. In the present paper this approach
is generalised to Nystrém methods for Hamiltonian systems. A detailed analysis shows that energy conservation
by perturbed potential functions does not affect the feasibility and (high) order of convergence of Nystrém meth-
ods. Symmetry and reversibility properties are left unchanged as well. The theoretical results are illustrated by
numerical tests indicating clearly the benefits of energy conserving methods in long-term simulations.
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1. Introduction

The time integration of ordinary differential equations is a classical topic of numerical mathematics. In
the traditional approach one-step methods like Runge—Kutta methods and multistep methods like Adams
methods or BDF are constructed that combine a high order of convergence with small numerical effort
per time step and favourable stability properties for linear problems [9].
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Long-term simulations of nonlinear problems and the time discretisation of partial differential equa-
tions have, however, shown that the highly developed classical time integration methods are often less
robust and less efficient than rather simple nonstandard methods that consider explicitly structural prop-
erties of the analytical solution like symmetry and invariants [8].

The present paper contributes to a deeper understanding of such a new class of methods that wa:
presented recently in the engineering literature. We show that the new approach may be combined suc-
cessfully with classical high-order collocation and Nystrom methods. As one result we get symmetric
and reversible integration methods of arbitrary high order which conserve energy and linear and angular
momentum in the time integration of Hamiltonian systems.

The paper goes back to the work of Betsch and Steinmann [5] who modify the distance potential in an
N-body problem such that the system’s total energy is preserved under time discretisation by a classical
Galerkin type method.

After this short introduction the paper is organised as follows. In Section 2 we recall some basic
properties of Hamiltonian systems and illustrate by an example from celestial mechanics that classical
time integration methods often fail to preserve structural properties of Hamiltonian systems like energy
conservation or conservation of linear and angular momentum.

In Section 3 perturbed potential functions are used as general construction principle for energy con-
serving Galerkin and collocation methods that may both be considered as special cases of the new clas:
of generalised Nystrém methods. Energy conservation in the numerical solution defines implicitly the
perturbation of the potential.

Under mild assumptions we show in Section 4 that the perturbation parametet the numerical
solution are uniquely determined by the condition for energy conservation. Furthermore, the perturbation
does not affect the order of convergence. That means that energy conservation is achieved without loss
of accuracy.

Other structural properties of the numerical solution are studied in Section 5. Conditions for the preser-
vation of linear and quadratic invariants are given. The symmetry and the reversibility of a modified
Nystrém method are equivalent to a set of conditions that is always satisfied if the corresponding classi-
cal Nystrém method is symmetric and reversible.

The paper is completed by the presentation of numerical test results in Section 6 and a summary in
Section 7. The numerical tests illustrate the order results of Section 4. Perturbed potentials are comparec
with classical projection techniques showing clearly that the novel approach is superior, especially in
long-term simulations.

2. Hamiltonian systems

Many technical or physical models are represented by Hamiltonian systems. The motion of a mechani-
cal N-body problem may be considered as a typical example of a Hamiltonian system that is described by
a classical system of ordinary differential equations. Furthermore, many Hamiltonian systems result from
space discretisation of time dependent partial differential equations in the field of elastodynamics [6].

In both cases the solution trajectories have some geometrical properties such as energy conservatiol
and often also conservation of linear and angular momentum. The flow produced by the solution curves
is symmetric and reversible. Reversibility means, that a reversed initial velocity does not change the
solution trajectory, but only its direction.
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In classical mechanics the Hamiltonian principle is used as a variational principle to describe the
dynamics of the mechanical system. The corresponding system of ordinary differential equations has a
special structure resulting from the Hamiltonian function. Often the Hamiltonian function is the sum of a
potentialV (x) and the kinetic energl{ (x, p) = %pTM(x)*lp with a mass matri/ (x) [2, Chapter 3.4].

Here,x is the generalised coordinate stands for the generalised momentum.

Definition 2.1 (Hamiltonian systein We assume thalt : 2 — R and M : 2 — R?*¢ are smooth maps
on an open seR C R¢. FurthermoreM (x) is symmetric positive definite for € £2. Then we call the
functionH : S — R,

1
Humwzwm+Kumw=wm+§fM@rv

Hamiltonian functioron § := £ x R? with the associateHlamiltonian system
(3)= ()
P —H!(x,p) )"
With y := M (x)~1p the Hamiltonian system gets the following Lagrangian form:

(é)z(aﬁw)’ @

with g(x, y) := M(x)"H(=VV(x) + g2(x, y) — g1(x, ¥)),
yTMi(X)y yTMxl(x)y
gi(x,y) = : and gx(x,y):= > :
yTM(x)y Y M., (x)y

M; represents the matrix of derivatives of tita column of M, and M,, is the partial derivative o/
w.r.t. x;. We define theenergy functiorE as the Hamiltoniar# in the new coordinates, y:

1.
E(x,y):=H(x, M(x)y) =V (x)+ 5y M(x)y.

It is well known, that the Hamiltoniari is a first integral of the associated Hamiltonian system.
Therefore the energy¥ is constant along the solution trajectories. The special case, that the kinetic
energyK depends omp only, motivates the following definition.

Definition 2.2 (Separable Hamiltonian syst@nThe Hamiltonian functiorH (x, p) = V(x) + K(p) =
Vix)+ %pTM‘lp with constant mass matrix is calledseparable Hamiltonian functiowith the sep-
arable Hamiltonian system

x\ _ M 1p
(3)=(%vin) ?
The N-body problem is a typical example of a separable Hamiltonian system that is characterised by
potential forces which depend only on the distances between the bodies [5,8].
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Definition 2.3 (Distance potentidl We partitionx = (x1', ..., x¥")T by x' € R" (m :=d/N e N) and
assume thav;; (i > j) are smooth functions on open set®inThen the potentiaV : 2 — R,

N i-1
Ve =Y V([ =+ ],),
i=2 j=1

is calleddistance potential

Theorem 2.4 (First integrals for distance potential§pr distance potentials the following functions are
first integrals of the separable Hamiltonian system in its Lagrangian fdim

(@) F(x,y):=c"Mywithc":=(c",...,c"),ceR", _
(b) F(x,y):=x"CMy with C :=blockdiagC, ...,C), C =—-CT e R™"™ if CM is skew symmetric
(CM)"=—-CM.

Proof. For separable Hamiltonian systems we hgve, y) = —M~1VV(x) and obtainF, (x, y)y —
Fy(x,y)YM™'VV(x)=0for(x,y)€S. O

As a consequence separable Hamiltonian systems (2) with distance potemtial®) and a diagonal
mass matrixM have the following first integrals: linear momentuﬁjf\’:1 p' and angular momentum
SN, x' x p'[8, Example IV.1.3].

Important structural properties of Hamiltonian systems can be characterised Bgwheavhich is
symmetric and reversible. It is well known, that the preservation of these structural properties and the
preservation of invariants in Hamiltonian systems yield good results in long-term simulations, see [8,
Chapters V, XI].

In the following we consider one-step methods, y;) = @ (h, (xg, yo)) that define thenumerical
flow @:1 x Q — § on an open interval C R with 0 € I and an open sef C S. It turns out that
numerical integration methods do in general not fulfil the following identities:

symmetry:®(—h, @ (h, (x,y)))=(x,y) and
reversibility: @ (h, p(® (h, (x,y)))) = p(x,y) with p(x, y) := (x, —y).

Furthermore, invariants of Hamiltonian systems are in general not preserved by numerical methods.
For the purpose of illustration we integrate a model for the motion of the outer planets in our Solar
System [8, Section 1.2.3]. As integration method we choose the Radau IlA method with stages
and a constant step size b= 100 days. The corresponding Hamiltonian system is separable and has
the invariants energy, linear and angular momentum. Fig. 1 shows that only the linear momentum is
conserved up to machine precision. Angular momentum and energy have considerable deflections.

A classical way to enforce the conservation of an invariant is to project in each integration step the
numerical solution(x;, y1) onto the manifold being defined by the invarignt The solution(xy, y1) is
chosen as a solution of the following minimisation problem:

min | (x1, y1) — (&1, 1) with F(x1, y1) = F (xo, yo)-

(x1,y1)€S

(xo0, yo) denotes the solution of the previous integration step. Hairer et al. [8, Chapter I1V.4] show that the
projection does not decrease the order of convergence, but in general a symmetric method is changec

27
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Fig. 1. Simulation of the outer solar system over 200 000 days with a Radau IIA method.

to an unsymmetric one [8, Section V.4.1]. On the other hand, some integration methods preserve certain
invariants, which are not conserved after a projection on an additional invariant [1]. Therefore, in the
next section we try to keep favorable properties of well-known methods, if they are modified to guarantee
energy conservation.

3. Modified Nystrom methods

Numerical methods for ordinary differential equations provide in general only approximations to the
solution trajectories. Itis therefore natural to look for numerical solutions that share all essential structural
properties of the analytical solution. In the present section a class of one-step methods for Hamiltonian
systems is introduced that guarantees conservation of the total energy.

The integration intervdl0, T'] is discretised by atime grif, ..., ty}WithO=t9<t1 <--- <ty =T
and time step sizes, :=1,.1 —t, forn=0,1,..., N — 1. Itis sufficient to consider only the step from
to:=0tot, = hy =: h and to use as initial valuéxp, yo) the numerical solution from the previous step.

We approximate the solution d®, 4] by polynomials(x, y) up to degrees € N and set(x1, y1) :=
(x(h), y(h)). At t =0 the polynomialsc, y shall satisfy(x(0), ¥(0)) = (xq, yo).

Finite element methods for solving ordinary differential equations are frequently considered in the
engineering literature [5], because the ordinary differential equations have often its origin in partial dif-
ferential equations that are semi-discretised in space by finite elements [6]. We follow the idea of finite
elements for ordinary differential equations and rewrite the resulting methods in a generalised Runge—
Kutta form.

The starting point of the Galerkin approach is the weak formulation of the Hamiltonian system with
test function:

h

/ (x(t) — §(®))v(t) dr =0, (3a)

h
/ y(0) —g(x@), y(®)))v(r)dr =0. (3b)
0
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We choose test functionse P,_;, this means polynomials up to degree 1. The integrals in (3) may
be solved exactly except

h
/ g(x@), y®)v(@) dr. 4)
0

Betsch and Steinmann [5] suggest to use quadrature formulas to solve this integral. For separable Hamil-
tonian systems they present modifications of the quadrature formulas in order to preserve energy, linear
and angular momentum. The results are illustrated by numerical examples with low order methods.

In the following we generalise one of these modified methods of Betsch and Steinmann and show in
Sections 4 and 5, that this approach yields a class of energy conserving methods including methods of
arbitrary high order and methods that preserve additionally a number of other structural properties.

To approximate (4) we use a quadrature formula with neges. , ¢, # 0 and weightsv,, ..., w, #0
that has the minimum order Additionally, we insert a scalar € R as a perturbation of the vector figjd

h \)
/ (X, D) dr ~ h Y weeg (R (her). 3 (he)v(hey).
0

k=1

For test function® € P;_; a quadrature formula with nodes is chosen to allow a transformation of the
methods into Nystrom form, which is far:= 1 well known in the field of numerical solution methods
for second order differential equations.

Modified Galerkin approach

For a quadrature formula with nodes . .., ¢, € (0, 1] and corresponding weights, ..., w; # 0 the
polynomials(x, y) € P2 with (x(0), y(0)) = (xo, yo) have to satisfy

h
/ X(1) — (1)) dt = (5a)
0
/ Y@y di — by wiweg(E(hey), (hey))v(hey) =0, (5b)
0 k=1

for all v € P,_; and a fixedc € R.

Existence and uniqueness of these polynoniadsd y will be considered in Section 4. Conditions
will be given to guarante@(hc,) e 2 fork=1,...,s

In the field of Runge—Kutta methods collocation approaches play a fundamental role in construct-
ing new methods [9, Chapter 11.7]. Now we will show, that a modified collocation idea yields energy
conserving methods for Hamiltonian systems, which are very closely related to the modified Galerkin
method (5).
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Modified collocation approach

Consider a quadrature formula with minimum ordenodescy, ..., ¢, € [0, 1] and weightswy, .. .,
w; # 0. We consider polynomialg, y) that satisfy the modified collocation conditions

X(hei) =¥ (hey), (6a)
y(her) = kg (% (hey), y(hey)), (6b)
fori =1,...,s and a giverk € R.
Betsch and Steinmann [4] point out that the Galerkin approach (5) and the collocation approach (6)

are equivalent for = 2, 3 and Gauss quadrature. This result may be generalised to all modified methods
with Gauss nodes;:

Theorem 3.1 (Equivalence for Gauss methodBdr a fixedxk € R and the Gauss nodes, ..., ¢; with
the corresponding weights,, ..., w, the modified Galerkin approadh) and the modified collocation
approach(6) are equivalent.

Proof. The proof is based on the high order @ Gauss quadrature [7, Chapter 9.3]. Therefore all
polynomialsu € P4 _, fulfil the equation

u(t) d =thku(hck). (%)

k=1

o"\:r

(a) We assume, that the collocation conditions (6) hold. Then all test polynowmidfs_; satisfy:

h
/x(t)— 5(0))v(r) dr 2 thk X(hey) — ¥(hey)) v(hey) =0,
0

k=1 -0

/ YOvn d ErY i thevhe) € heY wig (Fhen). (hen))vihey).

0 k=1 k=1
Thus(x, y) fulfil the Galerkin conditions (5).

(b) Suppose that the polynomia(lﬁ y) satisfy (5). We choose test polynomials= I; € P,_1 with
Li(ht) =1 (1) := [Ty Z — (for € R) and obtain:

h
0 f ORI z(z)dz—thk F(her) — §(hew))Si = hw; (% (hey) — §(hey),
0

k=1

hicw; g (X (he;), (hey)) = hic Y wig(%(hey), F(hew) )i (hey)
k=1
h

@ / FOL@O dr E 0y wiihe) s =hwi§he).

0 k=1
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Because ofiw; #£ 0 Eq. (6) is obtained. O

Modified Galerkin methods (5) and modified collocation methods (6) are applied to a system with
very special right-hand side that allows to eliminate the node val(les) analytically. The resulting
Runge—Kutta like representation of (5) and (6) may be considered as a generalisation of the well-known
Nystrom methods for second order ordinary differential equations.

Theorem 3.2 (Nystrom representationyVe define

X1 "

x=|: |1, v=|:1], X°:=1®nx, r%:=1® yo,

X Y,

with1:=(1,...,1)T e R® and

g(Xls Yl) T]_

G(X,Y):= : , Y=| : |eR¥, X, e, Y, T R
8(Xs, Yy) 15

Then, both the modified Galerkin approa@) and the modified collocation approa¢f) can be trans-
formed into the following Nystrom form

T =G(X°+hCY°+h’k AT, Y° + he AY), (7a)

x1=1xo+hyo+h* Y b7, (7b)
i=1

y1=yo+h/c2wi7}. (7c)

i=1

This representation contains the coefficient matrices= ¢ ® I;, A :=a ® I;, A:=a ® I; and
c:=diag(ci,...,c), a, a € R***. The matrices:, a and the coefficients; € R are determined by the
nodescy, ..., ¢, and the weightsuy, ..., w;:

(a) Galerkin approach.

N
a:=aa, a:=y tw, b; :=2Lj(1)aj,»,
j=1

with w :=diag(ws, ..., wy), d := y 10 and

1 1

Y= WWij)i jo1= (/ L;(0)li(7) dT>, 0 :=(0i); j=1= (f Lj(f)li(f)df),
0 0

- . u ‘L'—Cj . . : ‘L'—Cj .

l,(t)._nq_ " Ll(r)._ﬂq_cj, co:=0.

J# J#
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(b) Collocation approach.

2 b= (w1, ..., w,)a, a:=(a;)} j_y = (/lj(r)dt>,

0

IS
Il
Qi

H ) T—Cj
with [; (1) := ]—[jzl’#i ﬁ
Proof. (a) In the Galerkin approach we use a representatiqi,of) by means of the Lagrangian basis
polynomialsZ; and use in (5) test polynomiais:=/;. The resulting system of linear equations may be
solved w.r.t.(x (hc;), y(hc;)) by some straightforward computations, see also [10, Theorem 3.14].

(b) follows directly from classical results for collocation, Runge—Kutta and Nystrém methods, see,
e.g., [8, Theorem 11.1.4]. O

The Nystrém representation (7) of the constructed methods motivates to modify standard Nystrém
methods by introducing the scalarIn the following we will use this generalised Nystrém form without
paying attention to any specific way for obtaining the coefficiants, b.

In the engineering literature methods that conserve energy [5,6] and methods with a prescribed energy
decay [3] found special interest. Energy conservation or energy decay define implicitly thexsdalar
the following we will consider in more detail energy conserving methods. They are characterized by:

E(x1, y1) = E(x0, o). (8)

Inserting the right-hand sides of Egs. (7b) and (7c) into (8) leads to an implicit and coupled system of
nonlinear equations (7a), (8) for the unknowinendx, which has dimensiods + 1.

4. Propertiesof the numerical solution

After defining the modified Nystrém methods in Section 3 we investigate now existence and unique-
ness of the numerical solution and its structural properties.

Definition 4.1 (Regular initial valug. The initial value(xo, yo) € S for a Hamiltonian system is called
regular, if

Y5 (VV (x0) + g2(x0, y0)) #0,
andsingularotherwise.

Theorem 4.2 (Existence and uniqueness of the numerical solutdfe) consider a consistent generalised
Nystrom methog7) for Hamiltonian systems that satisfies the energy equd8pn

For each regular initial valugxg, yo) € S there is a neighbourhoo@ c S of (xg, yo) and a constant
h > 0 such that Eqs(7), (8)with |k| < & and initial values(x, §) € Q have a unique solution i that
depends continuously differentiable brand (x, 3).

Proof. We write the system of Egs. (7), (8) &7, &, «, x, y) = 0 with the map

(X0 y0 2 y0 A ~
T — G(X°+hCY°+ h*c AT, Y +hAT))’ .— 1o 79 .

R(T,h,/(,)?,)?)::( (YK, 5. 9) X, =1Q®Yy,
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and

1 N N
r(Yoh,i %, 9) = E{E(x +hy +h2x2bm,&+hx2wm) - E(M)}

i=1 i=1
1
= 3 [EW) - E:O)]
With z(0) := (£ + 0hy + Oh?c Y ;1 b; Y, 9 +60he Y i, w;Y;) (6 € [0, 1]). We get

1

1
1 [ dE(z(0)) R g -
= E/Tde :/|:Ex(z(9)) <y+h/< ;21 bﬂﬂ) +Ey(z(9))lc E wiTii| do.

0 0 i i=1
Therefore the functiom is continuously differentiable in a neighbourhood(of()?o, ?0), 0, 1, xq, yo)
and has the partial derivative

T (G(jf\o, ?0), 0, 1, xo0, yo) = —y¢ (VV (x0) + g2(x0, y0)) =: c.
For regular initial valuegxo, yo) we havex # 0 and the Jacobian matrix

$0 70 lis O
Ry (G(X®,Y"),0,1,x0, yo) = < *S oe)
is nonsingular. The Implicit function theorem guarantees, that there exist smooth furictibns, y),
k(h,x,y) with R(Y'(h, %, 9),h,k(h,x,9),%,9) =0, if || is sufficiently small. O

In [10] singular initial values withyg = 0, VV (xg) # 0 are investigated in more detail and the existence
of a continuously differentiable solutian (), y(h)) of (7) and (8) is shown for sufficiently smah|.

Standard collocation methods have the same order of convergence as the underlying quadrature for-
mula [8, Section 11.1.2]. In the following we consider the question if a sinslggerconvergenceesult
can be achieved by the Galerkin methods (5) at least with 1. Furthermore we study the influence
of the energy equation (8) on the order of convergence of the modified Galerkin methods and of the
modified general Nystrém methods.

First, we investigate the Galerkin approach (5) with quadrature formulas of high order and with fixed
x := 1. Similar to the proof of the convergence theorem [9, Theorem I1.7.9] for collocation methods
we show that the local error has at least orgler 1 (s... number of quadrature nodes). Further, the
derivatives of the polynomials, y) approximate the derivatives of the analytical solution. The arder
1 is decreased by the order of the derivative (Lemma 4.4). Both results are valid for collocation methods,
too. Finally, this is sufficient to prove the superconvergence for the Galerkin methods (Theorem 4.5).

Lemma 4.3 (Orders for the Galerkin approachyVe consider a problem

(Y= Y )
= (1) = (4 ) = 1@,

with a smooth vector field and a quadrature formula with nodes, which has the order> 25 — 1. For
an initial valuezgp = (xg, y0) € S and sufficiently smallz| the numerical approximation of the Galerkin
approach withx := 1 is denoted by = (x, y) and the analytical solution by = (x, y) with z(0) =
z(0) = zo.
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Then the local error is bounded by
= _ _ s+1
trerg%nz(z) 2| = o).

Proof. We write (7) asR(x1, y1) = 0 with a suitable magR and insert the analytical solutian= (x, y)
into this system. Then we conclude(z(h)) = O(h?~**2) + O(h*t1) = O(h* 1), becausg > 25 — 1is
assumed. This estimate implies the proposition since the derivatives of the inver& fae bounded,
see [10, Lemma 3.26] for more detailsO

Lemma 4.4 (Convergence of the derivatives)nder the assumptions of Lemaa the following esti-
mates hold fok =0, ..., s:

(k) _ k) — s+1-k
L‘E&%”Z ) — 20 0| = Oo(n ).

Proof. The lemma can be proven like the same proposition for collocation methods [9, Theorem
[1.7.10]. O

Theorem 4.5 (Superconvergence for Galerkin method®)e assumptions of Lemmashall be fulfilled.
Then the Galerkin method has the same ordas the underlying quadrature formula.

Proof. With the Galerkin polynomiak we define the defedt(s, 7) := z(r) — f(Z) for ¢ € [0, h] and
z € S. Thenz is the solution of the following perturbed initial value problem far [0, A]:
I=f@+8t3, 0 =z(0)=z0.

The theorem of Grobner and Alekseev [9, Theorem 1.14.5] states
h

z(h) — z(h) = / ¥ () dr (%)
0

with ¥ (r) := D(t)8(¢, z(¢)) and the mapD(¢) := dz/9z(h, t,z(¢t)). Here the analytical solution is
considered as a functiafnh, ¢, ) depending on the final time point initial time pointz and the initial
value? at timer (!). Because the derivative$® are bounded (Lemma 4.4), we can conclude with the
Taylor polynomialZ, D(t) := Y _,_o, D® (0)¢*/ k!:

D(t)=T,_1D(t) + O(h*) forte[0,h].
Applying Lemma 4.4 we get the estimalé, z(¢)) = O(h*) and

W (1) =T,_aD®)S(t, 2(1)) + O(h*).

Now we can write(x) as
h

Z(h) — z(h) = / Ti_1D()8(t,Z(1)) dt + O (K> *H).
0

To estimate this integral, we consider an arbitrary polynomialP;_;. Because of the Galerkin condi-
tions (5), the ordep of the quadrature formula and the boundedness of the derivativesefget the
following equations:
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h
/ x(®) —y(t) v()dr =
0

h N
/(y(t) —g(z®))v(@)dr = / YO dt —h Y " wig(Z(he))vhey) + O (R = O(hPHY).
0

0 k=1

We obtain
h

/ u()8(, 2(1)) dt = O(h"*1),
0

for polynomialsv, € P;_;, which depend ork, but have bounded derivatives far— 0. Each row
of T,_1 D consists of such polynomials (due to the definition/mfand the boundedness of the deriv-
atives ofz), therefore we conclude

h
[ D@ zm)ar = o,
0

and finally

Z2(h) — z(h) = O(h**) + O(W* ) = O(h"*h),  sincep<2s. O

There remains the open question, which order of convergence we can achieve, if the order of the
gquadrature formula is less thar 2 1. If one can prove the statement of Lemma 4.3 for quadrature
formulas with order less thars 2- 1, then Theorem 4.5 is proved as well for the corresponding Galerkin
methods. The assumptign> 2s — 1 is only used for the proof of Lemma 4.3.

For classical projection methods [8, Chapter 1V.4] the order of convergence is identical to the order
of the underlying method without projection. In Theorem 4.6 we obtain the same result for the modified
Nystrém methods (7) with the energy equation (8).

Theorem 4.6 (Convergence with energy equatioliyfe suppose that a generalised Nystrom me{fipd
with « := 1 has orderp of convergence. Then the modified Nystrom method avltking determined
implicitly by the energy equatiof8) has the same ordep, if the solution remains inside a set without
singular initial values.

Proof. For a regular initial valueg := (xq, yo) with z(0) = z1(0, ) = zo the analytical solution shall be
denoted by and the unique, continuous solution of the Nystrém equations (7) in the neighbourhood of
(0,1) c R? by z1(h, k), see Theorem 4.2. Due to the assumption on the general Nystrdm method it holds

z1(h, 1) = z(h) + O(h"™1). (*)

As in the proof of Theorem 4.2 we formulate the energy condition as

1
r(h, k) = Z[E(zl(h, k) — E(z0)] =0.
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SinceE(z(h)) = E(z0) and(x) we estimate

r(h, 1) =h~tO(h"*h) = O(n?).
Because of-, (0, 1) = —y(VV (x0) + g2(x0, Y0)) # O we havelr,(h,«)| > 0 in a neighbourhood of
(0, 1), thereforglx (h) — 1] = O(h?). From (7b) and (7c) we obtain the final estimate:

|20 — 20| < [2a(b () = 22 D] + |22t D — 2| = OB, ©

5. Preservation of structural properties

The above constructed modified Nystrém methods are energy conserving for Hamiltonian systems.
Additional invariants like linear and angular momentum can be preserved under conditions on the co-
efficients (Theorem 5.1). We want to transfer symmetry and reversibility of the analytical flow to the
numerical solution because of the advantages in long-term simulations, see Section 2. Necessary anc
sufficient criteria for the symmetry of Runge—Kutta methods can be found in [8, Chapter V.2] and [9,
Chapter 11.8]. We extend these investigations to Nystrém methods and get in Theorem 5.3 similar con-
ditions on the coefficients. With these conditions we are able to prove symmetry and reversibility of the
energy conserving methods in Theorem 5.4.

Theorem 5.1 (Preservation of linear and quadratic invariants)

(&) The modified Nystrom meth¢d) preserves linear invariants depending only pn
(b) If the coefficients fulfil for, j =1, ..., s the conditions

bi =w;(1-c¢),
w;(bj —a;j) =w;(b; —aj;),

then quadratic first integrals of the forfi(x, y) = x"Cy with a skew symmetric matri = —C"
R*4 are preserved.

Proof. (a) LetF(x, y) := c"y denote the linear invariant withe R?. Then for all(x, y) € S the equation

c'g(x,y)=0
holds and we get from (7c):

N
c'yr=c"yo+hx Z w; 'Y =c'yo.
i=1 5

(b) The proof for the quadratic invariants follows the proof of Theorem IV.2.5 in [8].

Corollary 5.2 (Preservation of linear and angular momentubder the assumptions of Theoréni
the modified Nystrom method preserves the linear and angular momentum.

The definition of symmetry in Section 2 uses properties of the numerical flow. To investigate the
symmetry of the modified Nystrém method we look for conditions on the coefficients and extend the
corresponding Theorem 11.8.8 from [9], see also [10, Theorem 3.47].
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Theorem 5.3 (Conditions for symmetryMWe consider a consistent generalised Nystrom mefhpdith
k:=1w; #0fori =1, ..., s and pairwise different nodes := ijl a;; that satisfye; < ¢ < -+ < cy.

Then the method is symmetric, if and only if the coefficients fulfil the following conditionsjfer
1,...,s:

i =1-cor1,

W; = Wst+1-i,

bi =w; — byy1-4,

Ajj = Wj — ds11-i541—)>

aij=bj — cop1-iWj + As11-j 541

Theorem 5.4 (Symmetry and reversibility)f the coefficients fulfil the conditions of TheorBr8 then the
modified Nystrom methdd@) with the energy equatiof8) is symmetric and reversible for Hamiltonian
systems.

Proof. To prove the symmetry we use Theorem 5.3 and the fact, that the energy eqtiétion;) =
E (x0, yo) <= E(x0, yo) = E(x1, y1) IS symmetric.
A simple calculation for the modified Nystrém methods with energy equation shows the identity

p(@ (h, (x0. y0))) = (x1. —y1) = @( — k., p(x0. Y0)).
Theorem V.1.5 in [8] proves then the equivalence between symmetry and reversihility.

The Galerkin and collocation methods are symmetric and reversible, if the nodes of the quadrature
formula are symmetricinterms of =1—¢,,;_; fori =1,...,s [10, Theorems 3.46, 3.49].

This result completes the theoretical analysis of generalised Nystrom methods that started in Section 3
with the construction of energy conserving Nystrom methods for the numerical solution of Hamiltonian
systems in their Lagrangian form. The Galerkin approach (5) and the collocation approach (6) result in
modified general Nystrom methods. Conditions for the initial values guarantee a locally unique numerical
solution and the convergence of the method, see Section 4. Finally, in Section 5 we transfer additional
geometrical structures to the numerical solution. Criteria for preserving linear and angular momentum,
symmetry and reversibility are given.

The results that have been obtained in Section 4 for the energy conserving time integration of con-
servative systems may in principle be extended to methods with prescribed energy decay for dissipative
systems [3]. In comparison with classical fixed step size symplectic integrators [8, Chapters VI and 1X],
a potential drawback of the proposed generalised Nystrém methods is the loss of symplecticiyfor
However, variable step size implementations and the extension to energy decaying schemes give addi-
tional flexibility that makes the approach attractive for technical simulations in industrial applications.

6. Simulation results
In this section we present numerical results of the modified Nystrdom methods applied to the outer solar

system described in Section 2. For all investigated Nystrom methods we use the three variants “standard”,
“projected” and “modified”. The “standard” variant is the original Nystrom method, the “projected”
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method denotes the projection onto the manifold of constant energy, see Section 2. The “modified” variant
stands for the modified Nystrém method (7) with the energy equation (8).

All simulations are performed using an experimental MATLAB code that is tailored to nonstiff prob-
lems. The numerical solutions of the “standard” and “projected” methods are calculated by fixed-point
iterations (for the implicit methods) except the projection step itself that is solved by simplified Newton
iterations. The solution of the implicit system (7a), (8) is obtained by a staggered algorithm with sim-
plified Newton iterations as outer loop for determinationcdfom Eg. (8). The inner loop computés
from Eq. (7a) for a giver by fixed-point iterations (for the implicit methods).

The outer solar system is a nontrivial nonstiff example of moderate size and was selected because
an efficient implementation of the new methods for larger systems is not yet available. The numerical
tests with our experimental code show, however, the favoug@éitative behaviour of the methods in
comparison to the well-known Runge—Kutta/Nystrom methods and projection methods.

In Fig. 2 some results for the Galerkin and collocation approach with Radau IlIA-quadrature illustrate
the superconvergence Theorem 4.5 and the convergence for methods with the energy equation (Theo
rem 4.6). For the symplectic standard Lobatto 1IA-IIIB pair and the symplectic Gauss methods we get
the results of Fig. 3. It is clearly visible, that the global error is neither reduced by the modification nor
by the projection. For the Radau IIA methods the projected variant has the smallest error in the solution
for this example.

10° Radau IIA-Galerkin; s =2,3; T = 10400 d 10° Radau IIA-Collo.; s =2,3; T = 10400 d
_ 107 _ 1071
o (e}
5107 510™
© -6 © -6
5 10 8 10
[SI:] o 48
o 10 o 10 |
£107° I £ 107 I
S —s— modified 3 modified
=107 -+ standard || =107 -+ standard |
14 -0+ projected 14 -0+ projected
10 0 1 2 3 10 0 1 2 3
10 10 10 10 10 10 10 10
stepsize h stepsize h

Fig. 2. Outer solar system integrated for 10 400 days by Galerkin and collocation approach with Radau IIA-quadrature.

10° _Lobatto IA-IIIB; s = 3.4; p=46; T = 10400 d 10° Gauss; s =3,4,p=6,8T=10400d
_» || —®— modified _» || —#— modified
5 10~ i ..+ standard 1 5 10 " 1| .+ standard
% 1074 Lo projected g 1074 L@ projected
8107 S10°
210° 210°
2 =
®107"° 5107
[0} [9]
107" 1 107"
—14 _14
10 10
10° 10’ 10° 10° 10° 10' 10° 10°
stepsize h stepsize h

Fig. 3. Outer solar system integrated for 10 400 days by Lobatto and Gauss methods.
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Fig. 4. Outer solar system integrated from 0 to 200 000 days with Gauss methed-ahdtages.

10° Radau llA,s=3,p=5,T=10400d 10° Radau llA, s =3, p=5, T =200000d
107 S 107”
(0] — = (0] —
< 107 < 107
.8l o S 6
310 210
o -8 [ -8
£ 10 —— modified || =19 —— modified ||
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Fig. 5. Outer solar system integrated with Radau IlA collocation methods.

Now we consider the conservation of the invariants for the Gauss method with stages in more
detail. The coefficients of the Gauss methods fulfil the conditions in Theorem 5.1 as can be seen also
from the results in Fig. 4. The standard Gauss method preserves linear and angular momentum wherea
the energy is not conserved but the energy error is bounded, which is typical for symplectic integrators [8,
Chapter X]. Projection onto constant energy causes the effect mentioned in Section 2: linear and angular
momentum are not longer preserved. The modified Gauss method combines the positive properties of the
standard and the projected method, shown in the lower plot of Fig. 4.

In Figs. 2 and 3 the errors of the modified integration methods are often larger than the errors of the
standard methods. But these results are only characteristic for short simulation horizons. In comparison
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10° DoPri5,s=6,p=5,T=10400d 10° DoPri5,s=6,p =5, T=200000d
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Fig. 6. Outer solar system integrated with method of Dormand and Prince.

we look at the simulation with the Radau IIA method (Fig. 5) and the explicit method from Dormand—
Prince of order 5 (Fig. 6). We tested short (10400 days) and long (200 000 days) simulation times and
came to the conclusion, that the errors of the modified variants—especially for large step sizes—are the
smallest ones. Just for large step sizes the modified energy conserving methods are interesting, becaus
for standard methods the energy error convergestike’) anyway, ifk tends to 0.

7. Summary

It is well known, that geometric time integration is suitable to solve Hamiltonian systems numeri-
cally [8]. Considering the analytical properties of a Hamiltonian system, we try to construct numerical
integration methods for Hamiltonian systems in their Lagrangian form. As a starting point we demand
the preservation of the total energy (the Hamiltonian) of the numerical solution. A modified Galerkin
approach yields modified Nystrém methods. In addition a modified collocation approach results in the
generalised Nystrém form.

We prove the existence of a unique numerical solution and the preservation of linear and quadratic
invariants (linear and angular momentum) without projection techniques. Important are the convergence
results, which show that the modified methods converge without order reduction. Superconvergence for
the Galerkin approach and quadrature formulas with high order is proved. The flow properties symmetry
and reversibility can be transferred from the standard Nystrém methods to the modified ones.

Finally, numerical experiments with a nonstiff problem and several different methods validate the theo-
retical statements regarding structure preservation and convergence. For symplectic methods the modifiec
variants do not achieve more accurate results, but long-term simulations point out that certain classical
Nystrom methods may have large errors that are reduced substantially using the modified methods.
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