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Abstract: In this paper a steering controller is derived using robust unilateral
decoupling control. By this method automatic car steering can be split into two
subtasks: a) good lane tracking of a point mass for stepwise change of the curvature
of the lane reference and for lateral force disturbances and b) good yaw stabilization
in the presence of yaw torque disturbances. In the design process the track following
controller and the controller stabilizing the yaw rate are designed separately. A
Daimler Benz City Bus O 305 used in the Prometheus program and a Pontiac 6000
STE Sedan used in the PATH program give the practical background. In the latter
case with higher velocities gain scheduling by the velocity is used. Simulations for
these two cars illustrate the advantages of the developed structure.
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1. INTRODUCTION

Various controller structures and design approa-
ches have successfully been applied to automatic
car steering (see e.g. Ackermann and Sienel, 1990,
or Guldner, et al., 1999). These two projects are
used to evaluate the idea of robust unilateral de-
coupling (Ackermann, et al., 2002). By this ap-
proach it is possible to split automatic car steering
into two independent subtasks: lane tracking and
stabilization of the yaw rate which are discussed
in sections 3 and 4, respectively. As the main
focus of this work lies on the development of
the track following controller, rear wheel steering
is assumed for assuring enough damping of the
yaw motion. To be able to judge the capability
of robust decoupling the simulations based on a
Daimler Benz City Bus 0 305 and a 1986 Pontiac
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6000 STE Sedan are compared in sections 5 and
6 with the results presented in (Ackermann and
Sienel, 1990) and (Guldner, et al., 1999). For the
development of the mentioned controller structure
a model for the car is needed first. In this paper
the linearized single track model in combination
with the bar bell model for the mass distribution
is used. Combining these equations with the de-
coupling controller is content of the next section.

2. STEERING DYNAMICS AND ROBUST
UNILATERAL DECOUPLING

The basic idea of robust decoupling is to make
the lateral acceleration of the car independent of
its yaw rate for one single location which is called
decoupling point DP . In this context the term
“robust” implies that varying parameters like the
velocity of the car (v ∈ [v−; v+]), its mass (m ∈
[m−;m+]) or the friction coefficient (µ ∈ [µ−; 1])



do not have any effect on this attribute.
As maneuvers with high lateral acceleration are
avoided in the field of automatic car steering the
assumption of small sideslip and steering angles
and slowly varying velocity is realistic. Under
these assumptions the single track model which
describes the steering dynamics of the vehicle is[
mv

(
β̇ + r

)
Jṙ

]
=

[
1 1
lF −lR

] [
FyF

FyR

]
+

[
FyD

MzD

]
(1)

where β is the sideslip angle at the center of
gravity (CG) and r describes the yaw rate. The
parameter lF (respectively lR) is the distance
between CG and the front (respectively rear) axle
so that l = lF + lR stands for the wheelbase. The
velocity v, the mass m and the moment of inertia
J of the car are uncertain parameters. The lateral
forces FyF (αF ) and FyR(αR) at front and rear
axle (sum of left and right wheel forces) are the
main uncertainties. They are functions of the front
and the rear wheel tire sideslip angles αF and
αR, see figure 2. Transforming the disturbance
force FyD at CG and the disturbance torque MzD

around the z−axis through CG into FyDF and
FyDR (disturbance forces at front and rear axle)
with [

FyD

MzD

]
=

[
1 1
lF −lR

] [
FyDF

FyDR

]
(2)

the single track model becomes[
mv

(
β̇ + r

)
Jṙ

]
=

[
1 1
lF −lR

] [
FF

FR

]
(3)

with

FF := FyF (αF ) + FyDF

FR := FyR(αR) + FyDR

(4)

The so called bar bell model which describes the
mass m and the moment of inertia J of the car by
two rigidly connected point masses mR and mDP

is based on the relation 1 1
lR −lDP

l2R l2DP

[
mR

mDP

]
=

m0
J

 (5)

By fixing mR at the rear axle (see figure 1), the
solution of (5) is made unique and the distance of
DP to CG becomes lDP = J/mlR.
As shown in (Ackermann, et al., 2002) the lateral
acceleration ayDP at the decoupling point is inde-
pendent of the side forces at the rear axle. This
follows from

ayDP = ayCG + lDP ṙ

=
(FF + FR)

m
+
lDP (FF lF − FRlR)

J

(6)

with

J = mlRlDP

ayDP =
l

mlR
FF

(7)
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Fig. 1. Parameters of the single track model,
definition of the decoupling point

The aim is to make αF and thus FF and ayDP

independent of the yaw rate r. It is reached by
the following control law (see Ackermann, et al.,
2002, and figure 2):

δF = δS + δC

˙δC = −r − lDP − lF
v

ṙ
(8)

δS is the input for the lane following feedback.
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Fig. 2. Angles at the front wheel

For the design process it is helpful to transform
the sideslip angle β and the steering angle δC ,
which is formed by the decoupling controller, into
the sideslip angle βR at the rear axle and the angle
γ by the following equations

βR = β − lR
v
r

γ = βF − δC = β +
lF
v
r − δC

(9)

In the following it is assumed that the tire side
forces with their saturation characteristic can be
linearized as follows:

FyF (αF ) = µcFαF , FyR(αR) = µcRαR (10)



The cornering stiffness cF (respectively cR) at
front (respectively rear) axle is known. The fric-
tion coefficient µ is uncertain and varies between
µ− (slippery road) and µ+ = 1 (dry road). To
be able to perform this linearization it must be
assured that αF and αR remain small because in
this case the operating point stays in the linear
part of the characteristic curve. Using αF = δS−γ
(see figure 2) and αR = δR − βR in combination
with (3), (7), (8), (9) and (10) the resulting system
becomes β̇R

ṙ
γ̇

 =

 a11 −1 a13

a21 0 a23

0 0 a33

 βR

r
γ

+

 b11 b12b21 b22
b31 0

[
µcF δS + FyDF

µcRδR + FyDR

] (11)

with

a11 = −µcR(lDP + lR)
mvlDP

; b11 =
lDP − lF
mvlDP

a13 = −µcF (lDP − lF )
mvlDP

; b12 =
lDP + lR
mvlDP

a21 =
µcR
mlDP

; b21 =
lF

mlRlDP

a23 = − µcF lF
mlRlDP

; b22 = − 1
mlDP

a33 = − µcF l

mvlR
; b31 =

l

mvlR

(12)

The last row in (11) shows that γ̇ = ayDP /v
is independent of βR, r, δR (steering angle at
the rear axle) and FyDR. It is only influenced
by δS (part of the front wheel steering angle
δF = δC + δS , which is generated by the track
following controller) and FyDF . This attribute is
emphasized by the characteristic polynomial of
(11) which factorizes into two separate parts –
pdec(s) = plat(s) · pyaw(s) – with

plat(s) = s+
µ̃cF l

vlR

pyaw(s) = s2 +
µ̃cR(lDP + lR)

vlDP
s+

µ̃cR
lDP

(13)

For the design process there are two uncertain pa-
rameters which have to be considered: the velocity
v ∈ [v−; v+] and the friction coefficient normalized
by the mass m ∈ [m−;m+]:

µ̃ =
µ

m
, µ̃ ∈

[
µ−

m+ ;
1
m−

]
(14)

It must be pointed out that an exact robust
decoupling controller can have good yaw damping
only by the use of rear wheel steering. The main
focus of this work lies on the track following con-
troller. Therefore good yaw damping is provided

by the most convenient approach of rear wheel
steering. If no rear wheel steering is available, then
further compromises must be made (Ackermann
et al., 1996). However, in order to achieve realistic
simulation results, r has to be well damped. To
solve this task the yaw rate r (that is measured
for the control law (8) anyway) is fed back to the
steering angle δR. The development of this con-
troller which follows (Ackermann, 2003) is content
of the next section.

3. DAMPING OF THE YAW MOTION

As shown in section 2 the dynamics of the yaw
motion is described by pyaw(s). Written as the
second order standard polynomial

pyaw(s) = s2 + 2Ddecω0decs+ ω2
0dec (15)

natural frequency and damping result in

ω0dec =
√
µ̃cR
lDP

; Ddec =
lDP + lR

2v

√
µ̃cR
lDP

(16)

According to (Ackermann, et al., 2002) Ddec(µ̃, v)
is smaller than the damping of the uncontrolled
car for velocities v > ve where ve is in the ope-
rating domain. In order to enhanceDdec especially
for higher velocities, a proportional controller
with gain scheduling is proposed (see Ackermann,
2003)

δR = −KR(v)r (17)

yielding the characteristic polynomial

pR(s) = s2 +
µ̃cR
lDP

(
lDP + lR

v
−KR

)
s+

µ̃cR
lDP

(18)

with unchanged natural frequency.
By KR = KR(v) a desired velocity damping

Ddes(µ̃−, v) =
1
2

√
µ̃−cR
lDP

[
lDP + lR

v
−KR(v)

]
(19)

can be assigned by

KR(v) =
lDP + lR

v
− 2Ddes(µ̃−, v)

√
lDP

µ̃−cR
(20)

For Ddes a linear characteristic is chosen with
Ddes(v−) = Ddec(v−) and Ddes(v+) = 1.
After the discussion of the controller stabilizing
the yaw rate (which is necessary for the simula-
tions in sections 5 and 6) the main result for the
lane tracking controller design is presented in the
next section.



4. ROBUST TRACK FOLLOWING
CONTROLLER FOR THE CITY BUS

First model (11) is augmented by ∆ψ (angle be-
tween the track tangent and the vehicle longitu-
dinal orientation) and yDP (lateral displacement
at the decoupling point), see (Ackermann, 2003).

∆ψ̇ = r − vρref

ẏDP = v (βR + ∆ψ) + (lR + lDP ) r
(21)

With βR and r from (11) the transfer functions
for the output yDP are

yDP (s) =
aµ̃

s2
(
s+

aµ̃

v

)u(s)+
l/mlR

s

(
s+

aµ̃

v

)FyDF (s)− v2

s2
ρref (s)

(22)

The second integrator of the first term is caused
by a hydraulic cylinder without position feedback
for the front wheel steering of the bus so that only
u = δ̇S can be influenced by the controller. For
simplification the constant parameter a = cF l/lR
is introduced. In the specifications of (Ackermann
and Sienel, 1990) it is required that the steady
state value of yDP is zero after a step input in
FyDF which is already guaranteed by the integral
behaviour of the cylinder. In order to stabilize
the two poles at s = 0 two controller zeros are
necessary. Together with two realization poles the
controller structure is

GR(s) =
K0 +K1s+K2s

2

s2/ω2
0,S + 2DS/ω0,S s+ 1

(23)

where DS = 0.6 and ω0,S = 40 [1/s] are fixed (see
Ackermann and Sienel, 1990). The determination
of the design parameters K0, K1 and K2 was exe-
cuted with the MATLAB toolbox PARADISE 2 .
The theoretical background of this program is
the parameter space approach (see Ackermann, et
al., 2002): all eigenvalues of the closed loop must
be located in a chosen region of the left half of
the s-plane which is surrounded by the so called
Γ−boundary. In this case the Γ−boundary is a
hyperbola with minimal damping Dmin = 0.25
and maximal real part σmax = −0.55:( σ

0.55

)2

−
( ω

2.13

)2

= 1 (24)

The left branch of this hyperbola is mapped now
into one of the three possible controller planes via
the characteristic polynomial for the four vertices

2 http://www.robotic.dlr.de/control/paradise

of the operating domain while the third controller
parameter has to be fixed:

Re p(σ + jω, µ̃, v) = 0
Im p(σ + jω, µ̃, v) = 0 (25)

The intersection of the stable regions leads to a
set of parameters which stabilizes the four cho-
sen points and which is a candidate to achieve
Γ−stability for the whole operating domain. This
has to be checked by mapping the hyperbola into
the (v, µ̃)-plane. ForK0 = 4,K1 = 2 andK2 = 0.3
figure 3 shows that the closed loop is Γ−stable
according to (24) because no line intersects the
interesting area, and the four vertices of the rect-
angle are Γ−stable by construction.
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Fig. 3. Stability check of the operating domain

After the development and the parametrization
of the controller structure the principle of robust
decoupling will be compared to the results of
(Ackermann and Sienel, 1990) in the next section.

5. SIMULATION RESULTS FOR THE CITY
BUS O 305

The vehicle model, which is used in the simula-
tions, has the parameters: cF = 198000 N/rad,
cR = 470000 N/rad, lF = 3.67 m, lR = 1.93 m,
µ ∈ [0.5; 1], v ∈ [3; 20] m/s, mmin = 9950 kg,
mmax = 16000 kg, J(mmin) = 105700 kgm2,
J(mmax) = 171300 kgm2. In order to keep things
simple, only the two most critical of the four
maneuvers described in (Ackermann and Sienel,
1990) are discussed in this paper: driving into a
narrow bus stop bay at v− = 3m/s and transition
from straight line into a circle with curvature
ρref = 0.0025m−1 at v+ = 20m/s.
The constraints for these maneuvers are:

ωn ≤ 7.5 rad/s; |δF | ≤ 40

|ay| ≤ 4m/s2; |δ̇F | ≤ 23s−1

|y| ≤ 15 cm
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Fig. 4. Transition into the curve (µ̃ = µ̃−)
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Fig. 5. Transition into the curve (µ̃ = µ̃+)

Compared to the displacement at the front sensor
of the benchmark bus (dashed line) which is lo-
cated at lS = 6.12m in front of CG, the maximum
of yDP (solid line) at lDP ≈ 5.50 m is smaller
for µ̃− as well as for µ̃+ (see figures 4 and 5).
This conclusion is also true for the displacement
at DP of the benchmark bus (dotted line). The
relatively low damping of the yaw rate in the
results of (Ackermann and Sienel, 1990) in the
case of minimal road adhesion, which is the reason
for the sinusoidal characteristic of the dotted line
(see figure 4), is improved by the use of rear wheel
steering. These improvements can also be noticed
in the results for the bus stop bay which cannot
be displayed in this paper due to limited space.
However, it is not possible for this maneuver to
fulfill the constraint regarding the maximal value
of δ̇F . As tests with an ideal feedforward control
in this project have revealed that the original
requirements can only be met for v smaller than
3 m/s, this fact is no reason against the idea
of robust decoupling. Further simulations have
shown that nonlinear tire side force characteristics
of saturation type (see Pacejka and Bakker, 1991)
have no effect on the stability of the developed
controller structure. Therefore the linearization in
(10) is valid.

In the next section the idea of robust decoupling is
applied to a fast passenger car in order to extend
the operating domain towards higher velocities.

6. EXTENSION OF THE OPERATING
DOMAIN TO HIGHER VELOCITIES

The controller design for the 1986 Pontiac 6000
STE Sedan can be executed in the same way as
for the bus. The actuator for front wheel steering
is a servo motor now with a real pole at 10Hz and
a complex pole pair at 5Hz with 0.4 damping (see
Guldner, et al., 1999). Furthermore it is assumed
that its stationary gain is one.
The values of the parameters which are necessary
for the simulations are: cF = cR = 80000 N/rad,
lF = 1.10 m, lR = 1.58 m, µ ∈ [0.5; 1], v ∈
[4; 40]m/s, m = 1573 kg, J = 2873 kgm2.
Due to the fact that the same requirements with
respect to steady state tracking error after step
inputs in FyDF and ρref are stated as in the last
section, the controller has to include the integrator
which has been the cylinder in the case of the city
bus. With a second realization pole the structure
for the track following controller is:

GR,P (s) =
K0,P +K1,P s+K2,P s

2

s (s/ω0,P + 1)
(26)

with ω0,P = 4π (see Guldner, et al., 1999).
To guarantee Dmin = 0.4 and σmax = −0.5 of
the specified hyperbola in the whole operating
domain, gain scheduling is necessary in which the
velocity v of the car is the parameter. In the
design process with PARADISE tolerance bands
have been determined for K0,P , K1,P and K2,P .
With regard to minimization of steady state track-
ing error for curve riding the upper boundaries
of the mentioned bands have to be the goal for
the gain scheduling (see e.g. figure 6). Due to
the form of these boundaries hyperbolic functions
are convenient to describe the v−characteristic
of the controller parameters particularly for high
velocities. As the boundaries for K2,P are deter-
mined in view of reasonable stability regions in
the (K0,P ,K1,P )−plane the tolerance band can
slightly be exceeded without losing Γ−stability.
For the simulations in this section the following
functions are chosen:

K0,P (K1,P ) = 2 ·K1,P − 0.16
K1,P (v) = 5.60/v + 0.13
K2,P (v) = 0.40/v + 0.08

(27)

The linear dependency between K1,P and K0,P is
helpful to keep the design process more simple.
Approximating the track of the benchmark paper
which consists of a straight section followed by a
right turn, a left turn, another right turn and a
final straight section, the test maneuver is given.
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Fig. 6. Gain scheduling for K2,P (v)

The radius of the curves is Rref = 800 m with
ρref > 0 for left curves and the transition points
are t1 = 18 s, t2 = 25 s, t3 = 39 s and t4 = 46 s for
v = 35 m/s. The developed controller structure
is compared to the ideal state control law of
(Guldner, et al., 1999) in figures 7 and 8 which
show the lateral displacement at the decoupling
point (solid line), the lateral displacement at the
front sensor (dashed line) and at the decoupling
point (dotted line) of the benchmark results. For
µ̃− the maximal values and the steady state errors
are further reduced. As the displacement signal for
µ̃+ is very similar to the results of the ideal state
controller in (Guldner, et al., 1999) (which is not
realizable in this form because the derivatives of
the displacement signals at front and rear bumper
are needed) it can be noticed that the idea of
robust decoupling is also useful for fast passenger
cars.
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Fig. 7. Test track (µ̃ = µ̃−)

7. SUMMARY

Comparing robust decoupling control with diffe-
rent approaches for automatic car steering it can
be seen that the design process is easier due to
splitting into the two subtasks “lane tracking” and
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Fig. 8. Test track (µ̃ = µ̃+)

“damping of the yaw rate” which are independent
if rear wheel steering is assumed. For the city bus
the maximal values of the lateral displacement can
be reduced and the degree of controller numerator
and denominator can be decreased by one. Apply-
ing the idea to fast passenger cars it can be seen
that the accuracy of the track following controller
is enhanced especially for minimal road adhesion.
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