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This paper presents a methodology for the simulation and control of smart structures with
piezoceramic patches by means of multibody dynamics. A theoretical background is men-
tioned adapting a modal multifield approach. Then a methodology for the control design
is proposed. The methodology includes the optimisation of actuator placement, which is
based on modal representation of the elasticity. The methodology is applied for simulation
and control synthesis of an active damping for a railway carbody. The application example
illustrates the implemented process chain. This procedure provides a complex development
environment for the simulation, optimisation and control design of elastic structures with
smart materials.
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1 INTRODUCTION

New generations of ground and air vehicles will
more and more profit from lightweight structures be-
cause of economic and environmental reasons. How-
ever, the lightweight structures require additional
control devices to overcome the drawback of in-
creased structural vibrations. Several approaches
for suppression of the vibration exist. The so-called
smart or adaptive structures can overcome this draw-
back. Thin piezoceramic actuators and sensors inte-
grated into the structure are one of the promising
ways to control the structural vibrations.

The methodology for multibody simulation flex-
ible structures and their control elements has been
recently developed, [1]. It is based on a modal mul-
tifield approach, considering the coupling between
displacement and electrostatic field.

With this theoretical background the multibody
description of the flexible structures is extended to
consider the input of the piezoelectric actuators and
evaluate their sensor output. This representation
enables efficient simulations of smart structures as
a part of whole vehicle models including simulation
scenarios such as typical guideways and manoeuvres.
Thereby the design and evaluation of concepts for
structural control can profit from complex multibody
environment including interfaces to control design
tools. The recent simulations verified the feasibil-
ity on moderately simple models, [1], however, the
goal is to also control more complex systems, such

as railway vehicles.
The increasing operational speeds and passen-

ger demands require focusing on the vibration com-
fort of railway vehicles. Furthermore, it seems that
classical bogie vehicles are being replaced by light-
weight vehicles with one or two axles per vehicle, [2].
Since such future vehicles will not profit from the
mechanical pre-filtration of the railway bogies, the
importance of control of the railway vehicle struc-
tures and its simulation under realistic conditions
will increase. First computational and experimental
proposals for application of piezopatches on railway
vehicles to suppress the carbody vibration have been
studied, [3, 4].

2 SMART STRUCTURES

Adaptive or smart structures are mechatronic
devices which allow vibration properties and re-
sponses of mechanical systems to be modified; they
are particularly used to improve the performance of
lightweight structures. Among the wide range of sup-
posable physical effects and corresponding material
compositions, thin piezoceramic patches integrated
in the structures proved their potential as electrome-
chanical and mechanoelectrical transducers, which
can be simultaneously exploited as actuators and
sensors to control the vibration of the elastic struc-
tures, [5]. The piezoceramic patches apply additional
mechanical forces as actuators and generate electri-
cal charge as sensors. The additional electrical and



mechanical measures should be considered for simu-
lating the behaviour of flexible bodies equipped with
the active structures.

Since the smart structures are mechatronic sys-
tems, their design involves several engineering disci-
plines such as structural mechanics, electronics and
control engineering. The optimisation of such a com-
plex system is a challenging task which may be sup-
ported advantageously by multibody system (MBS)
dynamics as a method of system dynamics. More-
over, the MBS approach enables an efficient simu-
lation of complex systems composed of elastic and
rigid bodies with large overall motion such as vehi-
cles, which can be equipped with the piezopatches.

It is state-of-the-art of industrial MBS tools to
incorporate the results of an appropriate finite ele-
ment analysis to obtain the mechanical data of flex-
ible bodies. This approach may not yet be applied
to the data of smart structures. Although the finite
element modelling of piezoelectric devices on shell
elements is a field of active research, [6, 7], it is not
yet introduced in an industrial finite element tool.
Nevertheless, to enable the simulation of structures
with shell elements, the following technique uses only
purely mechanical data which are readily available.

Further, the multibody codes offer an excel-
lent connection to computer aided control engineer-
ing (CACE) tools. These tools are brought into
action during the controller design and simulation.
The methods originating in control engineering and
modal approach are then used to optimise the place-
ment of the piezoceramic patches.

3 THEORY OUTLINE

Current industrial multibody tools are capable
of describing the displacement field of elastic bodies
based on their modal represenatation. A modal anal-
ysis of an elastic body yields discrete mode matrices
for every node k, located at the position rk ∈ R

3

which specify the displacements Φu,k ∈ R
3,p and ro-

tations Ψu,k ∈ R
3,p for all p observed modes.

In order to simulate elastic structures with piezo-
ceramic transducers, their electromechanical and
mechanoelectrical behaviour have to be considered
additionally. The constitutive equation, needed to
base this multifield formulation, states the linearised
relationship between the mechanical strain S and
stress T and the electric displacement D and electri-
cal field strength E by defining appropriate material
constants c, e and ε, [8]:
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The field equations are formulated by means of Jor-

dain’s principle of virtual power, [9]:

∫
δvT �a + δṠT (cS − eT E)︸ ︷︷ ︸

T

−δĖT (eS + εE)︸ ︷︷ ︸
D

dV

=
∫

δvT fV dV +
∫

δvT fB − δϕ̇Qϕ dB .
(2)

The right hand side of equation (2) represents all
external force and charge loads acting on volumes or
boundaries. The variables v and a denote the abso-
lute velocity and acceleration of a volume element;
Qϕ and ϕ are used to name the applied charges and
their electric potential. Furthermore, the dependent
variables T and D are eliminated, pointing out the
coupling of mechanical and electrical fields by the
material description in (1).

A floating frame of reference formulation, [10],
enables the superimposition of nonlinearly described,
large overall motion, later on denoted by the sub-
script R, with linearised, small elastic deformations
uu. Based on the Ritz approximation, separating
uu(r, t) in only space dependent mode shapes Φ(r)
and time dependent variables q(t), the strain ten-
sor S can be evaluated by applying the differential
displacement-strain-operator L:

uu(r, t) = Φu(r)zu(t) ,
S = (LΦu) zu = Buzu .

(3)

The electric field vector E is evaluated analogously
by an approximation of the scalar electric potential
field ϕ, defining the electric mode shapes Φϕ and the
patch electrode voltages zϕ and the negative gradient
operation:

ϕ(r, t) = Φϕ(r)zϕ(t) ,
E = (−∇Φϕ)zϕ = Bϕzϕ .

(4)

Further, the electromechanical coupling matrix
Kuϕ = KT

ϕu, the electric capacity matrix Kϕϕ and
the mechanical stiffness matrix Kuu are presentable
as only volume dependent integrals:

Kuu =
∫

BT
u cBu dV ,

Kuϕ =
∫

BT
u eT Bϕ dV , (5)

Kϕϕ =
∫

BT
ϕ εBϕ dV .

A comparison of (2) with the classical equation of
motion of unconstrained flexible multibody systems,
e.g. in [10], yields the following:
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and further, the sensor equation can be written as
follows:

Qϕ = KT
uϕzu + Kϕϕzϕ . (7)

The mass matrix M on the left hand side of (6)
is formulated as 3 × 3 block matrix to specify the
inertia coupling between translational, angular and
elastic motion acceleration terms aR, αR and z̈u.
Further, ha, hα and hu summarise all time and state
dependent inertia, damping and external forces. The
added product Kuϕzϕ demonstrates the use of the
piezopatches as structural actuators. The sensor
equation (7) is needed to calculate the electric quan-
tities, e.g. the electric charges Qϕ, if the piezoele-
ments are used as sensors or are parts of arbitrary
electric circuits.

4 CONTROL OF SMART STRUCTURES

The controller design is connected with the selec-
tion of the patches. The proposed controller design
methodology is based on the modal description of
elastic bodies and the placement of the patches re-
sults from the controller gains derived for discretised
elastic body.

The supposed goal for the controller design is to
control vibration of one node of the elastic structure.

4.1 Transformation to the State Space Form
The transformation of the description of the elas-

tic body with piezoelements to a state space form
needed for the controller design results in a multi-
input multi-output (MIMO) system:

ẋ = Ax + Bu ,
y = Cx + Du ,

(8)

where x is the state, u the input and y the out-
put vector and A,B, C, D the system matrices as
follows:

A =
(

O I
−M−1

uu Kuu −M−1
uu Duu

)
,
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(

KT
uϕ O

)
,

B =
(

O
−M−1

uu Kuϕ

)
,

D =
(

KT
ϕϕ

)
.

(9)

The matrices Muu, Kuu, Kuϕ and Kϕϕ are defined
in (5) and (6), matrix Duu represents the structural
damping of the elastic body, matrix I is the identity
matrix and matrix O is the zero matrix.

The number of inputs r and outputs m in (8)
corresponds to the number of piezoelements and the
number of states n is the double of the elastic degrees
of freedom.

4.2 Controller Design
Traditional state feedback LQR control is pro-

posed to be applied for the controller design of the
MIMO system (8). In the first phase it is supposed
that every shell element of the elastic structure is
equipped with one piezopatch on both sides. Ev-
ery piezopatch serves simultaneously as an actuator
and a sensor. The output vector y includes output
charges of the piezopatches instead of states, which
are needed for the LQR design. However, one can
construct a state estimate x̂ such that the control
law retains similar closed-loop properties, [8].

The first step in the control design process is the
selection of parameters of the weighting matrix Q in
the LQR design cost function:

J =
∫ ∞

0

(
xT Qx + uT Ru

)
dt . (10)

Dependent on the design goal, the Q matrix is pro-
posed to have the block structure:

Q = kQ

(
Q11 O
O O

)
, (11)

where kQ is a scalar parameter and Q11 is a diagonal
matrix. The elements ϕu,k,i,j of modal matrix Φu,k

identify the contribution of the eigenmodes on the
motion of the selected node in the direction j. This
information is important for the definition of the Q11

matrix, whitch has diagonal elements, e.g. for the z-
direction:

qii = (ϕu,k,i,zωi)
h

, 1 ≤ i ≤ p , (12)

where p is the number of modelled eigenmodes, ωi

denotes the corresponding eigenfrequency of the i-th
eigenmode and h is the power factor. The expression
xiqiixi from (10) corresponds for h = 2 to the local
potential energy of the eigenmode i, [11].

4.3 Selection of Patches
An important feature is the efficient selection of

the piezoelectric patches, which will be used for the
controller of the flexible body. In the previous paper,
[3], a design-by-simulation method was applied to
select the important patches. Instead of that a new
selection criterion is applied, which is directly based
on the linear feedback gain matrix K of the LQR
design:

u = −Kx . (13)

The matrix K is a r-by-n matrix, where r is
the number of inputs and n is the number of states
of the controlled system. Since the inputs represent
the voltages applied on the piezopatches, the most
important patches should have the largest norm ζi

of the corresponding column vector in the matrix K,
e.g. 2-Norm:

ζi =


 n∑

j=1

|ki,j |2



1/2

, 1 ≤ i ≤ r . (14)



In the last step, after selection of the reduced set
of patches, a new LQR and observer design should
be performed and the parameter kQ from (11) should
be tuned in order to exploit the patches as efficiently
as possible, i.e. the controller should use the whole
linear range of the piezoelement for the expected dis-
turbances.

5 IMPLEMENTATION ISSUES

In order to implement the theory outlined above
in a multibody computational environment a devel-
oper version of the multibody simulation tool SIM-
PACK has been chosen, [12]. The process chain be-
gins with a finite element analysis of the considered
elastic structure. The standard FE-SIMPACK inter-
face FEMBS uses the results of a modal analysis in
order to create the modal multibody representation
of a flexible structure. But because the electric data
are not yet available in industrial finite element tools,
the capacity and coupling matrices were addition-
ally calculated based on the purely mechanical mode
shape information. The developer version of SIM-
PACK is extended to deal with the electromechani-
cal and mechanoelectrical coupling terms, which are
indicated in equations (6) and (7).

The outlined control approach is implemented in
MATLAB/Simulink. The final system is then simu-
lated in two packages; SIMPACK and MATLAB/Si-
mulink are connected via an inter-process communi-
cation interface, [13].

6 SIMPLIFIED BEAM MODEL

In order to get more insight, a simplified model
of a railway vehicle is selected for the first experi-
ments, see Figure 1. The model consists of an elas-
tic beam which has approximately the same proper-
ties (mass and eigenfrequency) as the carbody. The
elastic beam is discretised in 44 beam elements and
its model representation is limited to three eigen-
modes. The beam is supported by linear springs
and dampers which brings three additional degrees
of freedom (pitch and bounce). The linearised pa-
rameters of the secondary suspension of the rail-
way vehicle are used. The springs are excited by
the stochastic railway track based on the real track
Trier Karthaus – Dillingen at a velocity of 160 km/h.
The simulation time is 10 seconds. The goal of the

Fig. 1: Simplified beam modell

controller design is to decrease the vertical acceler-
ation in the center of the beam. Just the first and
third eigenmodes will be controlled according to the

z-coordinates of the matrix Φu,k for the correspond-
ing node. Figure 2 presents the optimal location for
a different number of patches. The first configura-
tion in Figure 2 proposes four patches; the patches
are located on both sides (collocated patches). The
last configuration has 32 patches. The second config-

5 10 15 20 25 30 35 40

Fig. 2: Optimal location for a different number of
patches

uration with eight patches has been selected for the
simulation experiments. The simulation results in-
dicate a reduction of the vertical acceleration in the
center of the beam as presented in Figure 3.

Furthemore the influence of the state estimation
for the controller performance is studied. The com-
parison of two designs, firstly with the estimation of
just three elastic degrees of freedom (six states), sec-
ondly with the estimation of three elastic degrees of
freedom and two large overall body motions (pitch
and bounce) is performed. The contribution of rigid
body states is observed to be neglectable.
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Fig. 3: Acceleration in the center of the beam

7 ACTIVE DAMPING OF A CARBODY

A verified generic model of a bogie railway vehi-
cle is chosen to demonstrate the capabilities of the
methodology presented in the previous sections. The
vehicle model (Figure 4) consists of 26 rigid bodies
and one elastic body, which is the vehicle carbody.
The model of vehicle carbody includes the first seven
eigenmodes between 9 and 20 Hz. The vehicle model



Fig. 4: SIMPACK model

has 130 states and consists of 79 force elements. The
piezopatches are modelled as one user-defined force
element in SIMPACK.

The piezoelements, which are 0.4 mm in width,
are attached on both sides of 1170 finite elements vi-
sualised by the mesh in Figure 4. Such piezoelements
provide approximately linear behaviour up to the
voltage of 400 V. If higher voltages are applied, the
piezoelements behave nonlinearly and expose hys-
teresis effects.

The simulation scenario consists of running on
the same stochastic railway track as the simplified
model at the same velocity of 160 km/h. The simu-
lation time is again 10 seconds.

Originally the structure has 1170 patches, how-
ever, the number results after the reduction in 16
patches. The goal for the controller is to control the
vertical acceleration in the center of the carbody.

The simulation results are presented in Figure 5.
The RMS value of the vertical acceleration is de-
creased by 16 %. The contribution is in this case
smaller as in the previous example, since the patches
are of smaller size.
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Fig. 5: Acceleration in the center of the carbody

8 CONCLUSIONS AND OPEN
PROBLEMS

The presented methodology extends the classical
modal description of elastic bodies in multibody sys-

tems with the effects of piezoelectricity and provides
a tool which enables the development of design con-
cepts with smart structures. In this way, the mecha-
tronic approach may be evaluated from the very be-
ginning of the design phase. Anyway, the perfor-
mance appraisal of adaptive elements and their feasi-
bility must be evaluated taking risks, costs, weights,
complexity etc. into account. This evaluation is a
challenging task which the outlined methodology is
intended to support.

The presented controller design is based on the
modal description of the elasticity; the finite element
discretisation determines the size of the patches. The
selection of the patches depends on the controller
parameters in order to use the patches as efficiently
as possible.

The simulation results indicate a contribution of
the concept to the acceleration reduction of a railway
vehicle. Future work will be focused on the exten-
sion of the methodology to control more than one
node and the control of the structure exposed to the
accelerations in vehicle manoeuvres such as curving.
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