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Abstract

Minimal dimension dynamic covers play an important role in solving the structural synthesis prob-
lems of minimum order functional observers or fault detectors, or in computing minimal order inverses
or minimal degree solutions of rational equations. We propose numerically reliable algorithms to com-
pute two basic types of minimal dimension dynamic covers for a linear system. The proposed ap-
proach is based on a special controllability staircase condensed form of a structured descriptor pair
(A − λE, [B1, B2]), which can be computed using exclusively orthogonal similarity transformations.
Using such a condensed form minimal dimension covers and corresponding feedback/feedforward ma-
trices can be easily computed. The overall algorithm has a low computational complexity and is provably
numerically reliable.

1 Introduction

Our motivation to address the computational aspects of determining minimal dimension dynamic covers
is the following concrete problem encountered in the design of minimal order fault detectors [8]: for a
given linear descriptor system (A − λE, [B1, B2], C, [D1, D2]) with invertible E, one wants to compute a
state feedback matrix F and a feedforward matrix G to achieve the cancellation of a maximum number of
uncontrollable poles of the transfer-function matrix

R(λ) = (C + D1F )(λE −A−B1F )−1(B1G + B2) + (D1G + D2) (1)

Different instances of this problem for the standard case E = I appear in solving various structural synthesis
problems, as for example, the design of minimum order functional observers [3], determining minimal order
inverses [1] or computation of minimal degree solutions of rational equations [4]. The proposed solution
procedures reformulate these problems as minimum dynamic cover problems, which can be solved using the
”standard” method of [12] relying on subspace manipulation techniques employed in the geometric theory
of linear systems [11]. This approach has been turned recently into an efficient and numerically reliable
algorithm [9] and can be also employed in the case of a general invertible E by replacing the matrices E,
A, B1 and B2 by I , E−1A, E−1B1 and E−1B2, respectively.
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From a numerical point of view it is advisable to avoid any matrix inversions in early phases of computa-
tional algorithms, especially if rank decisions follow in a later stage. For our problem the explicit inversion
of an ill-conditioned E can lead to severe loss of accuracy of the computed results. Since rank decisions
are performed later on the transformed data, such an accuracy loss can even lead to a complete failure of
computations. It follows that employing the algorithms of [9] on the transformed matrices is not a satisfac-
tory computational approach to determine minimal dynamic covers in the case of a general E. Therefore,
it is important to develop more general algorithms able to address such computational problems without
inverting E.

In this paper we propose a numerically reliable and computationally efficient approach to compute a
feedback matrix F and a possibly nonzero feedforward matrix G to achieve the desired cancellation of
maximum number of uncontrollable poles in (1). We solve the problems of determining both F and G or
only F which lead to cancellation of maximum number of uncontrollable poles. Solving these problems in-
volves to compute bases for subspaces representing minimal dimension dynamic covers of Type II and Type
I, respectively (see [3]). The main computational ingredient in these computations is bringing the system
matrices in condensed forms which exhibit the structural information necessary to solve the problem. For
the matrices in the resulting condensed forms the computation of appropriate F and G is a simple, almost
trivial task. The algorithm to compute the condensed form has two stages: (1) an orthogonal reduction of the
structured descriptor pair (A− λE, [B1, B2]) to a special controllability staircase form followed by special
row/column block permutations; and (2) a non-orthogonal transformation to zero additionally a minimum
number of elements. The orthogonal reduction part is based on employing techniques similar to that used
in the controllability staircase form algorithms for descriptor systems [5]. This part involves many rank de-
cisions which can be computed by using reliable techniques (e.g., singular values based rank evaluations).
The non-orthogonal part of the reduction does not involve any rank computations and is performed to al-
low an easy computation of appropriate feedback/feedforward matrices. The overall algorithm has a low
computational complexity and is provably numerically reliable.

In the last part we also address shortly the solution of minimum cover problems with stability constraints.
In the case the minimum cover problem with stabilization is solvable, we propose a reliable computational
solution to this problem by exploiting the existing parametric freedom in the cover determination problem.

2 Computation of Type II minimal dynamic covers

The computational problem which we solve is the following: given the descriptor pair (A − λE,B) with
A,E ∈ IRn×n, B ∈ IRn×m, and B partitioned as B = [B1 B2 ] with B1 ∈ IRn×m1 , B2 ∈ IRn×m2 ,
determine the matrices F and G such that the pair (A + B1F − λE,B1G + B2) has maximal number of
uncontrollable eigenvalues. This problem is essentially equivalent [4] to compute a subspace V having least
possible dimension satisfying

(A + B1F )V ⊂ V, span (B1G + B2) ⊂ V (2)

where A = E−1A, B1 = E−1B1, and B2 = E−1B2. If we denote B1 = span B1 and B2 = span B2, then
the above condition can be rewritten also as a condition defining a Type II minimum dynamic cover [2, 3]
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of the form
AV ⊂ V + B1

B2 ⊂ V + B1
(3)

The computation of the minimal dynamic covers relies on the reduction of the descriptor pair (A −
λE, [B1, B2]) to a particular condensed form, for which the solution of the problem is simple. This reduction
is performed in two stages. The first stage is an orthogonal reduction which represents a particular instance
of the descriptor controllability staircase procedure of [5] applied to the descriptor pair (A− λE, [B1, B2]).
This procedure can be seen as a generalized orthogonal variant of the basis selection approach of [3] and
therefore will be useful to construct both Type II and Type I minimal covers. In the second stage, additional
zero blocks are generated in the reduced matrices using non-orthogonal transformations and by applying
appropriate feedback and feedforward matrices. In what follows we present in detail these two stages.

Stage I: Special Controllability Staircase Algorithm

0. Compute an orthogonal matrix Q such that QT E is upper triangular;
compute A← QT A, E ← QT E, B1 ← QTB1, B2 ← QT B2.
Comment. Set Q = In for a standard system.

1. Set j = 1, r = 0, k = 2, ν
(0)
1 = m1, ν

(0)
2 = m2, A(0) = A, E(0) = E, B

(0)
1 = B1, B

(0)
2 = B2,

Z = In.

2. Compute the orthogonal matrix U1 to compress the matrix B
(j−1)
1 ∈ IR(n−r)×ν

(j−1)
1 to a full row rank

matrix

UT
1 B

(j−1)
1 :=

[
Ak−1,k−3

0

]
ν

(j)
1

ρ
(j)
1

ν
(j−1)
1

3. Compute UT
1 B

(j−1)
2 and partition it in the form

UT
1 B

(j−1)
2 :=

[
Ak−1,k−2

X

]
ν

(j)
1

ρ
(j)
1

ν
(j−1)
2

4. Compute the orthogonal matrix U2 to compress the matrix X ∈ IR(n−r−ν
(j)
1 )×ν

(j−1)
2 to a full row rank

matrix

UT
2 X :=

[
Ak,k−2

0

]
ν

(j)
2

ρ
(j)
2

ν
(j−1)
2

and compute the orthogonal matrix W1 such that diag(I, UT
2 )UT

1 E(j−1)W1 is upper triangular.
Comment. Set W1 = U1diag(I, U2) in the standard case.
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5. Compute diag(I, UT
2 )UT

1 A(j−1)W1, diag(I, UT
2 )UT

1 E(j−1)W1 and partition them in the form

[
I O
O UT

2

]
UT

1 A(j−1)W1 :=




Ak−1,k−1 Ak−1,k Ak−1,k+1

Ak,k−1 Ak,k Ak,k+1

B
(j)
1 B

(j)
2 A(j)




ν
(j)
1

ν
(j)
2

ρ
(j)
2

ν
(j)
1 ν

(j)
2 ρ

(j)
2

[
I O
O UT

2

]
UT

1 E(j−1)W1 :=




Ek−1,k−1 Ek−1,k Ek−1,k+1

O Ek,k Ek,k+1

O O E(j)




ν
(j)
1

ν
(j)
2

ρ
(j)
2

ν
(j)
1 ν

(j)
2 ρ

(j)
2

6. Ai,k−1W1 := [Ai,k−1 Ai,k Ai,k+1 ]

ν
(j)
1 ν

(j)
2 ρ

(j)
2

and Ei,k−1W1 := [Ei,k−1 Ei,k Ei,k+1 ]

ν
(j)
1 ν

(j)
2 ρ

(j)
2

,

for i = 1, . . . , k − 2.

7. Q← Q diag(Ir, U1) diag(I
r+ν

(j)
1

, U2), Z ← Z diag(Ir,W1).

8. r ← r + ν
(j)
1 + ν

(j)
1 ; if ρ

(j)
2 = 0 then ` = j and Exit 1.

9. If ν
(j)
1 + ν

(j)
2 = 0 then ` = j − 1, Exit 2; else, j ← j + 1, k ← k + 2, and go to Step 2.

At the end of this algorithm Â− λÊ = QT (A− λE)Z and B̂ = QT B have the following form

Â− λÊ =

[
Ac − λEc ∗

O Ac − λEc

]
r
n− r

r n− r

, B̂ =

[
Bc

O

]
r
n− r

where the pair (Ac−λEc, Bc) has only controllable finite eigenvalues, Ac−λEc contains the uncontrollable
finite eigenvalues of A− λE, and Ê is upper triangular. The pair (Ac, Bc) is in the special staircase form

[
Bc Ac

]
=




A1,−1 A1,0 A11 A12 · · · A1,2`−3 A1,2`−2 A1,2`−1 A1,2`

O A2,0 A21 A22 · · · A2,2`−3 A2,2`−2 A2,2`−1 A2,2`

O O A31 A32 · · · A3,2`−3 A3,2`−2 A3,2`−1 A3,2`

O O O A42 · · · A4,2`−3 A4,2`−2 A4,2`−1 A4,2`

...
...

...
...

. . .
...

...
...

...
O O O O · · · A2`−1,2`−3 A2`−1,2`−2 A2`−1,2`−1 A2`−1,2`

O O O O · · · O A2`,2`−2 A2`,2`−1 A2`,2`




(4)
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where A2j−1,2j−3 ∈ IRν
(j)
1 ×ν

(j−1)
1 and A2j,2j−2 ∈ IRν

(j)
2 ×ν

(j−1)
2 are full row rank matrices for j = 1, . . . , `.

The resulting upper triangular matrix Ec has a similar block partitioned form

Ec =




E11 E12 · · · E1,2`−1 E1,2`

O E22 · · · E2,2`−1 E2,2`

...
...

. . .
...

...
O O · · · E2`−1,2`−1 E2`−1,2`

O O · · · O E2`,2`




Note that in the standard case Q = Z and Ê = I .
To compute a Type II minimal cover, in the second reduction stage we use non-orthogonal upper trian-

gular left and right transformation matrices W = diag (Wc, In−r) and U = diag (Uc, In−r), respectively,
to annihilate a minimum set of blocks in Ac and Ec. Assume Wc and Uc have block structures identical to
Ec. The following procedure performs the second reduction stage by exploiting the full rank of submatrices
A2j−1,2j−3 and E2j,2j to introduce zero matrices in the block row 2j − 1 of Ac and block column 2j of Ec,
respectively.

Stage II: Special reduction for Type II Covers
Set W = I , U = I .

for k = `, `− 1, . . . , 1

Comment. Annihilate blocks E2k−1,2j , for j = k, k + 1, . . . , `.

for j = k, k + 1, . . . , `

Compute W2k−1,2j such that W2k−1,2jE2j,2j + E2k−1,2j = 0.
A2k−1,i ← A2k−1,i + W2k−1,2jA2j,i, i = 2j − 2, 2j − 1, . . . , 2` .
E2k−1,i ← E2k−1,i + W2k−1,2jE2j,i, i = 2j, 2j + 1, . . . , 2` .

end
if k > 1 then

Comment. Annihilate blocks A2k−1,2j , for j = k − 1, k, . . . , `.
for j = k − 1, k, . . . , `

Compute U2k−3,2j such that A2k−1,2k−3U2k−3,2j + A2k−1,2j = 0.
Ai,2j ← Ai,2j + Ai,2k−3U2k−3,2j , i = 1, 2, . . . , 2k − 1 .
Ei,2j ← Ei,2j + Ei,2k−3U2k−3,2j , i = 1, 2, . . . , 2k − 3 .

end
end if

end
At the end of Stage II, the upper triangular matrices W and U contain the accumulated non-orthogonal

transformations performed in the reduction. Let Ã := WÂU , Ẽ := WÊU , and B̃ = [ B̃1 B̃2 ] := WB̂ be
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the system matrices resulted at the end of Stage II. Define also the feedback matrix F̃ ∈ IRm1×n partitioned
column-wise compatibly with Ê

F̃ = [O F2 · · · F2`−2 O F2` O ]

where F2j are such that A1,−1F2j +A1,2j = 0 for j = 1, . . . , `. Choose also G such that A1,−1G+A1,0 = 0.
With these matrices, we achieved that

[
B̃1 B̃1G + B̃2 Ã + B̃1F̃

]
=




A1,−1 O A11 O · · · A1,2`−3 O A1,2`−1 O
O A2,0 A21 A22 · · · A2,2`−3 A2,2`−2 A2,2`−1 A2,2`

O O A31 O · · · A3,2`−3 O A3,2`−1 O
O O O A42 · · · A4,2`−3 A4,2`−2 A4,2`−1 A4,2`

...
...

...
...

. . .
...

...
...

...
O O O O · · · A2`−1,2`−3 O A2`−1,2`−1 O
O O O O · · · O A2`,2`−2 A2`,2`−1 A2`,2`




(5)

E =




E11 O E13 · · · E1,2`−1 O
O E22 E23 · · · E2,2`−1 E2,2`

O O E33 · · · E3,2`−1 O
...

...
...

. . .
...

...
O O O · · · E2`−1,2`−1 O
O O O · · · O E2`,2`




where the elements without bars have not been modified in Stage II.
Consider now the permutation matrix defined by

P T =




O I
ν
(1)
2

O O · · · O O O

O O O I
ν
(2)
2

· · · O O O

...
...

...
...

. . .
...

...
...

O O O O · · · O I
ν
(`)
2

O

I
ν
(1)
1

O O O · · · O O O

O O I
ν
(2)
1

O · · · O O O

...
...

...
...

. . .
...

...
...

O O O O · · · I
ν
(`)
1

O O

O O O O · · · O O In−r




(6)

If we define V = ZUP , L = P T WQT and F = F̃ V −1, then overall we achieved that

L(A + B1F − λE)V =




Ă1 − λĔ1 ∗ ∗

O Ă2 − λĔ2 ∗

O O Ac − λEc


 , L(B2G + B1) =




B̆1

O

O


 (7)
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where

[
B̆1 Ă1 − λĔ1

]
=




A2,0 A2,2 − λE2,2 A2,4 − λE2,4 · · · A2,2` − λE2,2`

O A4,2 A4,4 − λE4,4 . . . A4,2` − λE4,2`

...
...

. . . . . .
...

O O O A2`,2`−2 A2`,2` − λE2`,2`




Ă2 − λĔ2 =




A1,−1 A1,1 − λE1,1 A1,3 − λE1,3 · · · A1,2`−1 − λE1,2`−1

O A3,1 A3,3 − λE3,3 . . . A3,2`−1 − λE1,2`−1
...

...
. . . . . .

...
O O O A2`−1,2`−3 A2`−1,2`−1 − λE2`−1,2`−1




In the standard case we take W = U−1 to ensure WÊU = I . The resulting Ã and B̃ satisfy (5).
It follows by inspection that the pair (Ă1−λĔ1, B̆1) is controllable. Thus, by the above choice of F and

G, we made
∑`

i=1 ν
(i)
1 of eigenvalues of the pair (A + B1F − λE,B2G + B1) uncontrollable, additionally

to the n− r uncontrollable original eigenvalues. The first nc =
∑`

i=1 ν
(i)
2 columns of V1 satisfy

AV1 = V1Ĕ
−1
1 Ă1 −B1FV1, B2G = V1Ĕ

−1
1 B̆1 −B1

and thus, according to (3), span a Type II dynamic cover of dimension nc for the pair (A, [B1 B2 ]). The
following result can be shown using the results of [3]:

Theorem 1 The Type II dynamic cover V = span V1 has minimum dimension.

3 Computation of Type I minimal dynamic covers

The computational problem which we solve in this section is the following: given the descriptor pair (A −
λE,B) with A,E ∈ IRn×n, B ∈ IRn×m, and B partitioned as B = [B1 B2 ] with B1 ∈ IRn×m1 ,
B2 ∈ IRn×m2 , determine the matrix F such that the pair (A + B2F − λE,B1) has maximal number of
uncontrollable eigenvalues. This problem is essentially equivalent [12] to compute a subspace V having
least possible dimension satisfying

(A + B2F )V ⊂ V, span B1 ⊂ V (8)

This condition can be rewritten also as a condition defining a Type I minimum dynamic cover [2, 3] of the
form

AV ⊂ V + B2

B1 ⊂ V
(9)

To compute Type I covers, we perform first the Stage I orthogonal reduction on the pair (A−λE, [B1, B2]),
as done in the previous section. However, at Stage II the non-orthogonal reduction annihilates a different
set of blocks in Ac and Ec. The following procedure performs the second reduction stage by exploiting the
full rank of submatrices A2j,2j−2 and E2j−1,2j−1 to introduce zero matrices in the block row 2j of Ac and
block column 2j − 1 of Ec, respectively.
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Stage II: Special reduction for Type I Covers
Set W = I , U = I .

for k = `, `− 1, . . . , 2

Comment. Annihilate blocks A2k,2j−1, for j = k, k + 1, . . . , `.
for j = k, k + 1, . . . , `

Compute U2k−2,2j−1 such that A2k,2k−2U2k−2,2j−1 + A2k,2j−1 = 0.
Ai,2j−1 ← Ai,2j−1 + Ai,2k−2U2k−2,2j−1, i = 1, 2, . . . , 2k .
Ei,2j−1 ← Ei,2j−1 + Ei,2k−2U2k−2,2j−1, i = 1, 2, . . . , 2k − 2 .

end

Comment. Annihilate blocks E2k−2,2j−1, for j = k, k + 1, . . . , `.
for j = k, k + 1, . . . , `

Compute W2k−2,2j−1 such that W2k−2,2j−1E2j−1,2j−1 + E2k−2,2j−1 = 0.
A2k−2,i ← A2k−2,i + W2k−2,2j−1A2j−1,i, i = 2j − 2, 2j − 1, . . . , 2` .
E2k−2,i ← E2k−2,i + W2k−2,2j−1E2j−1,i, i = 2j, 2j + 1, . . . , 2` .

end

end
Let Ã := WÂU , Ẽ := WÊU , and B̃ = [ B̃1 B̃2 ] := WB̂ be the system matrices resulted at the end of

Stage II. Define also the feedback matrix F̃ ∈ IRm2×n partitioned column-wise compatibly with Ê

F̃ = [F1 O F3 · · · O F2`−1 O O ]

where F2j−1 are such that A2,0F2j−1 + A2,2j−1 = 0 for j = 1, . . . , `.
Consider now the permutation matrix defined by

P T =




I
ν
(1)
1

O O O · · · O O O

O O I
ν
(2)
1

O · · · O O O

...
...

...
...

. . .
...

...
...

O O O O · · · I
ν
(`)
1

O O

O I
ν
(1)
2

O O · · · O O O

O O O I
ν
(2)
2

· · · O O O

...
...

...
...

. . .
...

...
...

O O O O · · · O I
ν
(`)
2

O

O O O O · · · O O In−r




If we define V = ZUP , L = P T WQT and F = F̃ V −1, then overall we achieved that

L(A + B2F − λE)V =




Ă1 − λĔ1 ∗ ∗

O Ă2 − λĔ2 ∗

O O Ac − λEc


 , LB1 =




B̆1

O

O


 (10)
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where

[
B̆1 Ă1 − λĔ1

]
=




A1,−1 A1,1 − λE1,1 A1,3 − λE1,3 · · · A1,2`−1 − λE1,2`−1

O A3,1 A3,3 − λE3,3 . . . A3,2`−1 − λE1,2`−1
...

...
. . . . . .

...
O O O A2`−1,2`−3 A2`−1,2`−1 − λE2`−1,2`−1




Ă2 − λĔ2 =




A2,0 A2,2 − λE2,2 A2,4 − λE2,4 · · · A2,2` − λE2,2`

O A4,2 A4,4 − λE4,4 . . . A4,2` − λE4,2`

...
...

. . . . . .
...

O O O A2`,2`−2 A2`,2` − λE2`,2`




It follows by inspection that the pair (Ă1 − λĔ1, B̆1) is controllable. Thus, by the above choice of F ,
we made

∑`
i=1 ν

(i)
2 of eigenvalues of the pair (A+B2F −λE,B1) uncontrollable, additionally to the n− r

uncontrollable original eigenvalues. The first nc =
∑`

i=1 ν
(i)
1 columns of V1 satisfy

AV1 = V1Ĕ
−1
1 Ă1 −B2FV1, B1 = V1Ĕ

−1
1 B̆1

and thus span a dynamic cover Type I of dimension nc for the pair (A, [B1 B2 ]). The following result can
be shown using the results of [3]:

Theorem 2 The Type I dynamic cover V = span V1 has minimum dimension.

4 Numerical aspects

The key reduction of system matrices to the special controllability form can be performed by using exclu-
sively orthogonal similarity transformations. It can be shown that the computed condensed matrices Â, Ê,
and B̂ are exact for matrices which are nearby to the original matrices A, E, and B, respectively. Thus this
part of the reduction is numerically backward stable. In implementing the algorithm, the row compressions
are usually performed using rank revealing QR-factorizations with column pivoting. To make rank determi-
nations even more reliable, QR-decompositions and singular value decompositions can be combined.

To achieve an O(n3) computational complexity in Stage I reduction, it is essential to perform the row
compressions simultaneously with maintaining the upper triangular shape of E during reductions. The basic
computational technique, described in details in [5], consists in employing elementary Givens transforma-
tions from left to introduce zero elements in the rows of B, while applying from right appropriate Givens
transformations to annihilate the generated nonzero subdiagonal elements in E. By performing the rank re-
vealing QR-decomposition in this way (involving also column permutations), we can show that the overall
worst-case computational complexity of the special staircase algorithm is O(n3). In fact, when m� n, then
the maximum number of required floating-point operations (flops) is essentially the same as that required to
compute the generalized Hessenberg form of the pair (A,E), by accumulating only the left transformation
Z . This amounts to about 13/2n3 flops. Note that for solving the problem (1), the accumulation of Z is not
even necessary, since all right transformations can be directly applied to C .
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The computations at Stage II to determine a basis for the minimal dynamic cover and the computation
of feadback/feedforward matrices involve the solution of many, generally overdetermined, linear equations.
For the computation of the basis for V , we can estimate the condition numbers of the overall transformation
matrices by computing ‖V ‖2F = ‖U‖2F and ‖L‖2F = ‖W‖2F . If these norms are relatively small (e.g., ≤
10000) then practically there is no danger for a significant loss of accuracy due to nonorthogonal reduction.
Note that it is very important to compute these condition numbers, since large values of them provide a clear
hint of possible accuracy losses. In practice, it suffices to look at the largest magnitudes of elements of W
and U used at Stage II to obtain equivalent information. For the computation of the feedback/feedforward
matrices, condition numbers for solving the underlying equations can be also easily estimated. For the
Stage II reduction, a simple operation count is possible by assuming all blocks 1 × 1 and this indicates a
computational complexity of O(n3).

5 Minimum covers with stabilization

In some applications it is important to achieve simultaneously that the resulting feedback is stabilizing. For
a Type II cover, this amounts to determine F , G and V such that the resulting Ă1− λĔ1 has all eigenvalues
in an appropriate stability domain |C−. This goal can not always be achieved, but it is always possible to
move a maximum number of eigenvalues in this domain. To show how this is possible, consider the pair
(P T (Ã − λẼ)P, P T B̃), where Ã, Ẽ, and B̃ are the resulting matrices at the end of Stage II and P T is the
permutation matrix (6). The matrices of the above pair have the form

P T B̃ =




O B̃12

B̃21 B̃22

O O

O O




P T (Ã− λẼ)P =




Ã11 − λẼ11 Ã12 Ã13 − λẼ13 ∗

Ã21 Ã22 − λẼ22 Ã23 − λẼ23 ∗

O Ã32 Ã33 − λẼ33 ∗

O O O Ac̄




where the pair (Ã11 − λẼ11, B̃12) is controllable, and B̃21 and has full row rank. Note that the Stage
II special reduction achieves basically to zero the blocks Ã31 and Ẽ12, while the feedback matrix F and
feedforward matrix G achieve additionally to zero Ã21 and B̃22, respectively, by exploiting the full rank
property of B̃21.

Consider the transformation matrices

TY =




I O O O
Y I O O
O O I O

O O O I


 , TX =




I O O O
X I O O
O O I O

O O O I
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partitioned in accordance with the structure of P T ÃP . It follows that

TY P T B̃ =




O B̃12

B̃21 B22

O O

O O




TY P T (Ã− λẼ)PTX




Ã11 + Ã12X − λẼ11 Ã12 Ã13 − λẼ13 ∗

A21 − λ(Ẽ22X + Y Ẽ11) A22 − λẼ22 A23 − λE23 ∗

Ã32X Ã32 Ã33 − λẼ33 ∗

O O O Ac̄




where we denoted with bars the changed quantities. If we choose X such that Ã32X = 0, and determine Y
such that Ẽ22X +Y Ẽ11 = 0, then we can preserve the structure of the original pair (P T (Ã−λẼ)P, P T B̃).
Thus, defining V as V = ZUPTX , and L = TY P T WQT , we can compute the feedback and feedforward
matrices F and G exactly as before.

With TX and TY chosen as above, the resulting Ă1 − λĔ1 is Ã11 + Ã12X − λẼ11 and we can try to
exploit this parametric freedom to move the eigenvalues of this pencil to stable locations. The following
straightforward computations are necessary for this purpose:

1. Compute XN with orthonormal columns such that span XN is the right nullspace of Ã32.

2. Compute F̃ to place a maximum number of eigenvalues of Ã11 + Ã12XN F̃ − λẼ11 into the stability
domain |C−.

3. Define X = XN F̃ and Y = −Ẽ22XẼ−1
11 .

All steps of this algorithms can be performed using numerically reliable computations. The computation
of XN is straightforward, since Ã32 is part of a staircase form. Thus, no further rank determination is
necessary and XN results from an RQ-like decomposition of Ã32 which exploits the full row rank of its
leading nonzero rows. To determine F̃ , the most appropriate method is to apply a partial pole assignment
technique like that of [6]. This approach can easily accommodate with non-stabilizable pairs, by moving
only the controllable unstable generalized eigenvalues of the pair (Ã11, Ẽ11) into |C−. If the pair (Ã11 −
λẼ11, Ã12XN ) is stabilizable then this algorithm can assign all unstable eigenvalues to arbitrary stable
locations using minimum norm local feedbacks. In this way, the norm of X is minimized as well and thus
also the condition number of the transformation matrix TX and implicitly that of TY . A similar approach
can be devised for determining Type I minimal covers with stabilization.

A specific aspect of determining minimal dynamic covers is the non-uniqueness of the resulting so-
lution triple (F,G, V ). This non-uniqueness manifests at several points of the proposed approach and
can have negative or positive influence on the stabilizability properties determined by the triple (Ã11 −

λẼ11, Ã12, Ã32). For example, selecting differently at Stage I the linearly independent columns in B
(j−1)
1

and B
(j−1)
2 or computing differently the blocks of U at Stage II when solving the underdetermined linear

systems can lead to different minimal covers and different stabilizability properties. For numerical im-
plementations, we recommend those solutions which ensure the best numerical properties of the proposed
approach (e.g., selecting independent columns using column pivoting or determining least-norm solutions
of all underdetermined linear systems).
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6 Conclusions

We proposed efficient algorithms to compute two types of minimal dynamic covers, which have many
important applications in various structural synthesis problems of linear systems. The proposed algorithms
rely on the extensive use of orthogonal transformations. The use of non-orthogonal transformations at the
final step of the reduction process allows to also obtain a precise estimation of possible accuracy losses
induced by the overall reduction. Thus the proposed algorithm, although not numerically stable, can be
considered numerically reliable. An interesting open problem is how to determine F and G to ensure the
maximum number of uncontrollable poles cancellation in the case when E is singular. This problem is
relevant to computing least McMillan degree solutions of linear rational equations [10]. A solution of this
problem in a particular setting has been provided in [10].

The Stage I algorithm has been implemented in Fortran 77 and can be used via a mex-file interface
from MATLAB. Furthermore, the Stage II of the proposed approach has been implemented in MATLAB
and underlies the implementation of methods to compute least order left or right inverses and least order
solutions of linear rational equations [10]. All this software is part of the DESCRIPTOR SYSTEMS Toolbox
for MATLAB developed by the author [7].
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