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Abstract— Efficient calculation of the inverse dynamics of
robotic mechanisms serves as a basis for a variety of control
schemes. Classical algorithms for rigid multibody systems do not
apply when more realistic modeling is required. The computa-
tional treatment of the emerging non-linear equations augmented
by drivetrain dynamics and elasticity imposes various challenges
on the algorithmic solutions. This paper presents a method
for recursive calculation of the inverse dynamics of real-world
robots considering elasticity and gyroscopic effects introduced by
the drivetrains. A study of the equations of motion elucidates
the demand for analytical derivatives of the dynamics up to
a maximum order depending on the number of joints. This
problem is solved for the first time by means of higher-order
time derivatives of spatial operators proposed by the Spatial
Operator Algebra.

I. INTRODUCTION

In the context of robotics inverse dynamics denotes the com-
putation of driving forces from predefined trajectories, e. g.,
joint positions. The ability to calculate the inverse dynamics
is a basic prerequisite for path planning algorithms and feed
forward controllers in robotic systems. The computation of the
inverse dynamics for rigid robots is a standard task [1]. Using
the well-known equations of motion for tree-structured rigid
multibody systems (MBS)

M(q)q̈ + C(q, q̇) + G(q) = τ , (1)

and given the desired joint positions q(t) and their derivatives
w. r. t. time up to a order of two, the force exerted by the drives
τ(t) can be calculated algebraically. When more realistic
models including drive dynamics and elasticity in the joints are
taken into account the computation becomes more complex:
Derivatives of the desired trajectory must be given up to a
certain order [2], [3], because the equations of motion must
be differentiated several times in order to calculate τ(t).

When formulating the dynamics of an elastic robot it is con-
venient to use the Euler-Lagrange formalism, as shown for the
cases of elastic links [4] and elastic joints [5]. This approach
reveals the equations’ structure without the necessity to ex-
press them explicitly. But, on the other hand, application of the
Euler-Lagrange formalism for non trivial robots having many
degrees of freedom (dof) imposes several difficulties. While
the demanding formulation of the Lagrangian can be handled
with special tools one drawback is inherent: depending on the
chosen coordinates the formalism results in a small system

of large equations. Differentiation additionally increases their
size and simplification by symbolic computational tools is still
hardly tractable.

From this point of view it seems favourable to employ a
recursive formalism, which leads to more compact equations
and is scalable to a large number of dof. Forming the required
derivatives of recursive equations is non-trivial for elastic joint
robots, but since Rodriguez, et al. have introduced the Spatial
Operator Algebra [6] and Park et al., have employed geometric
arguments [7], symbolic manipulation of recursive equations
has become feasible. This approach has been used, e. g.
to linearize forward and inverse dynamics of tree-structured
systems by first-order derivatives of rigid MBS equations [8],
[9], [10], [11] and to calculate the forward dynamics of a
certain class of elastic joint robots [12].

This paper is organized as follows: In Section II the inves-
tigated class of robots is presented, rigid link flexible joint
robots including the complex gyroscopic couplings between
drives and links. The 7-axes DLR light-weight robot is chosen
as an example. The properties of the equations of motion
and standard solution strategies are described in Section III.
Section IV presents a method to differentiate the Newton-Euler
equations expressed by spatial operators an arbitrary number
of times symbolically. These results are linked to the drivetrain
model and lead to a new algorithm discussed in Section V and
an interesting closed-form interpretation of expressions from
known Lagrangian approaches. Its application to the example
system is shown in Section VI and Section VII presents
conclusions and ideas for further work.

II. INVESTIGATED ROBOTS

The robots considered in this paper have fixed base, rigid
links and linear elasticity in the joints. For simplicity the
analysis shown is restricted to chain-structured mechanisms,
though all arguments given are valid for tree-structured MBS,
too. Joints and links are labelled sequentially from base to tip
starting from index i = 1 as shown in Fig. 1, where link i

follows joint i. Index 0 denotes the robot’s base. Joints are
supposed to have one mechanical dof and the total number
of joints and dof is N . The drives are rotatory and mounted
on the links, and the motor driving joint i is located on link
i − 1 as shown in Fig. 1. The drivetrain actuating joint i is
modeled by the rotor of drive i controlled by torque τi, driving



ii-11 i+1
1 i-1 ii-2

i+1i1 N
N-1

N

0

Fig. 1. Schematic view of an N -joint kinematic chain where each link is
a gyrostat. Small circles are joints, ellipses rigid links, tilted cylinders are
rotors. Numbering ascending from base to tip.

an ideal gear connected to a spring which is connected to link
i as shown in Fig. 2. Dissipative effects like bearing friction
and gear efficiency as well as nonlinear effects like spring
stiffening, hysteresis and backlash are neglected. When the
rotors of the drives show axial symmetry, they do not affect
the mass distribution of the complete MBS. In consequence
the robot can be viewed as a rigid MBS, where each link
contains an internal source of angular momentum, i. e. each
link is a gyrostat [13].

Fig. 2. Schematic view of drive-train model. From left to right: rotor with
inertia I, gear with ratio R, torsional spring with spring constant K, and link.

The method and algorithm presented will be applied to
the DLR lightweight robot LBR 2 shown in Fig. 3a. This
manipulator arm of approximately 1 m length is able to handle
a payload of 8 kg with a total weight as low as 17 kg. The
LBR 2 is a good example for practically relevant robots
and clearly indicates the problems in computation of the
inverse dynamics for non-trivial robots. It is a chain-structured
mechanism with seven revolute joints as shown in Fig. 3b.
The motors are mounted in the joints, their rotors’ axes of
rotation coincide with the joint axes, as depicted in Fig. 3c.
The drivetrains are known to be elastic due to harmonic
drive reduction gears and torque sensors. Joint stiffnesses are
roughly 104 Nm

rad . A more detailed description of the LBR 2
can be found in [14], [15].

(a) (b) (c)

Fig. 3. DLR lightweight robot LBR 2. (a) Complete manipulator arm, (b)
Sketch of kinematic structure, (c) View inside joint showing rotor and drive.

III. CLASSICAL LAGRANGIAN APPROACH

A Lagrangian derivation of the equations of motion for an
elastic joint robot using independent joint variables can be

found in, e. g. [16], and results in

M(q)q̈ + C(q, q̇) + G(q) = u − urotor (2)
−K(q −Rθ) = u (3)

S(q)θ̈ + Crotor(q, q̇, θ̇) = urotor (4)
S(q)T q̈ + Ccarrier(q, q̇) + I θ̈ + Ru = τ , (5)

where q/θ ∈ IRN are joint/motor position variables, u/τ ∈ IRN

are generalized joint/motor forces. M ∈ IRN×N is the mass
matrix, C ∈ IRN the vector of Coriolis and centrifugal terms
of the links, K the diagonal matrix of spring constants, R the
diagonal matrix of gear ratios, G the vector of gravitational
forces, and S is the matrix of inertial couplings between
links and motors. Crotor is due to the spatial motion of the
rotors’ angular momentum, Ccarrier corrects for motion of the
’carrier’ links and I is the diagonal matrix of rotor inertias.
R, K, and I are supposed to be constant. When the drives are
mounted as described in Section II, S is upper triangular [16]:

S =




0 S12(q1) S13(q1, q2) . . . S1N (q1, . . . , qN−1)
0 0 S23(q2) . . . S2N (q2, . . . , qN−1)
...

...
. . . . . .

...

0 0 0
. . . SN−1N (qN−1)

0 0 0 . . . 0




(6)

The ith component of Crotor explicitly depends on link vari-
ables and θi+1, . . . , θ̇N

Crotor =




Crotor1(q, q̇, θ̇2, . . . θ̇N )

Crotor2(q, q̇, θ̇3, . . . θ̇N )
...

CrotorN−1(q, q̇, θ̇N)
CrotorN (q, q̇)




. (7)

This model is similar to the one described in [3] but includes
the more general case of non constant S and, hence a non-zero
Crotor. Besides it shows the dependency on the gear ratios R.

For calculation of the inverse dynamics using equations (2)-
(7) one starts with the N th component equation of (2). Due
to (6) and (7) this equation only depends on link variables
and one is able to solve for θN . Differentiating this equation
twice w. r. t. time gives θ̇N and θ̈N . Now one can solve the
N th equation of (5) for τN . Proceeding from tip to base
it is possible to solve the second-last equation of (2) for
θN−1 using θ̇N and θ̈N . Again this equation needs to be
differentiated twice to calculate θ̇N−1 and θ̈N−1 what in
turn requires θ

(3)
N and θ

(4)
N and therefore the third and forth

derivative of the N th equation of (2). Repeating this way
one completes calculating τ1 which requires derivatives of the
equations of motion up to order α = 2N and derivatives of
the desired joint positions up to order 2(N + 1). Greek index
α denotes the number of derivations.

This approach results in N very large algebraic equations
for the motor forces which are awkward to handle and
inefficient for computation. In the following sections a new
non-Lagrangian approach is presented, which is amenable to
efficient implementation while preserving the structure of the
governing equations.



IV. SYMBOLIC HIGHER-ORDER TIME DERIVATIVES OF
MULTIBODY EQUATIONS

In this section a method is developed to calculate deriva-
tives of equation (2) in a symbolic and recursive manner
employing the Spatial Operator Algebra (SOA) [6]. The SOA
has proven to be a powerful formalism to derive equations
for a wide range of MBS problems from spatial operator
identities. It maintains maximum insight into the underlying
physics and the structure of the equations, essential for further
manipulation and efficient implementation. Key requisites are
the notion of spatial vectors ∈ IR6, a stacked notation of
spatial operators [6], [17], and a flexible choice of coordinate
representations for kinematics and dynamics equations [9].
Spatial vectors are composed of two vectors ∈ IR3, where the
first one represents rotational and the second one translational
quantities, e. g. spatial velocity V :=

„

ω

v

«

, with ω angular and
v translational velocity.

It turns out that an appropriate coordinate representation of
the dynamics is a key issue to obtain compact expressions
for higher-order spatial derivatives. The body-fixed represen-
tation [13] presents an efficient means, because expressing
dynamics w. r. t. a body-fixed frame allows for recursions
based on local time derivatives and essential spatial operators
remain constant [17]. This leads to simpler construction of
the recursions than in [7], so in the analysis below body-fixed
representation will be applied. The local derivative of a spatial
vector Vx w. r. t. an accelerated frame Fx is defined by

◦

Vx :=
dVx

dt
− Ω̃xVx (8)

where dVx

dt
is the absolute time derivative w. r. t. to an inertial

frame and the spatial angular velocity of Fx is Ωx :=
„

ωx

03

«

.
◦

Vx can be viewed as derivative w. r. t. a moving but non-
rotating frame. The spatial generalization of the tilde-operator
ãb = a × b, a,b ∈ IR3 is used, the spatial cross product
operator [17] defined as

X̃ :=

(
ã 03×3

b̃ ã

)
, where X =

(
a

b

)
and a,b ∈ IR3 .

For further use the notion of the α-times local derivative
◦

V
(α)

is introduced, with α denoting the number of differentiations.
The rigid body transformation operator [9], [6]

φi,i−1 :=

(
iRi−1 03×3

−(i)p̃i−1,i
iRi−1

iRi−1

)

relates spatial quantities expressed in local frame Fi−1 located
in the joint i − 1 to those expressed in Fi in link i, where
iRi−1(qi) and (i)pi−1,i are rotation and displacement from
Fi−1 to Fi. The spatial recursions are defined in terms of the
stacked operators

Eφ :=




06×6

φ2,1
. . .
. . . . . .

φN,N−1 06×6




(9)

Φ :=




I6×6

φ2,1
. . .

...
. . .

. . .
φN,1 · · · φN,N−1 I6×6




(10)

which are related by the identity [6]

Φ−1 = I6N×6N − Eφ . (11)

Please note symbols and definitions slightly differ from the
original ones introduced by Rodriguez, Jain, and Delgado [6],
especially the numbering of bodies is reverted and follows
robotics literature. When using a body-fixed dynamics repre-
sentation and full stacked notation equations (2) and (4) can be
expressed as the following recursive Newton-Euler equations

V = Φ∆ (12)
◦

V = Φ(Hq̈ − ∆̃V) (13)

f = ΦT {M(
◦

V + V̇g) − ṼT MV + L̇} (14)
u = HT f . (15)

The stacked operators used here are defined in the following,
a right lower index X [i] or X [i,j] denotes the block matrix
corresponding to link i or one pair of links i, j:

• spatial velocity V := col{V[i]}
• relative link velocity across ith joint ∆[i] := H[i]q̇i and

∆ := col{H[i]q̇i}
• joint projection operator H := diag{H[i], . . . , H[N ]}, the

linear mapping between joint and spatial coordinates. In
case of revolute joints with axis ni it is H[i] =

„

ni

03

«

.
• spatial force f := col{f [i]}

• spatial gravitational acceleration V̇g := col{V̇g [i]}
• spatial inertia matrix M := diag(M[1], . . . , M[N ]) where

M[i] :=

(
Ji mip̃i,cmi

−mip̃i,cmi
miI3×3

)

is the spatial inertia of link i including the motor mounted
on it w. r. t. to frame Fi, where mi is the total mass, Ji

the inertia matrix w. r. t. Fi and pi,cmi
the vector from Fi

to the center of mass.
• rotor axis projection operator Hr, that shows the direc-

tions of the rotors’ axes and on which link each motor
is mounted. In case rotor i is mounted on link i − 1 the
operator writes

Hr :=




06 Hr [2]

. . . . . .
. . . Hr [N ]

06




, (16)

i. e., changing angular momentum L̇[i] contributes to f [i].
• vector of internal angular momentum of each gyrostatic

link L := col{L[i]}.
Except for operators M and Φ which are ∈ IR6N×6N , and
H, Hr ∈ IR6N×N , all stacked spatial entities are ∈ IR6N .
For any stacked X ∈ IR6N the stacked tilde operator
X̃ denotes a block-diagonal matrix ∈ IR6N×6N where
X̃ = diag(X̃ [1], . . . , X̃ [N ]). For a more comprehensive treat-
ment of this notation the reader is referred to, e. g., [9],



[6], [17]. A common approach to account for gravition is to
consider the base system accelerated by a gravitational accel-

eration [1] of
◦

V[0] ≡ V̇g [0] and the gravitational acceleration
matrix V̇g can be omitted. Important to note is, that H, Hr

and M remain constant in body-fixed representation which
simplifies derivatives w. r. t. time drastically.

Expanding Φ using (11) leads to the well-known two sweep
calculation, one outboard sweep from base to tip (12) and (13)
and one tip-to-base inboard sweep (14) and (15). The main
idea is to establish a recursion w. r. t. differentiation order α for
the standard recursive equations w. r. t. link index i analogously
to equations (12)-(15). The goal is to arrive at an algorithm
which is amenable to an efficient and straightforward imple-
mentation.

A. Kinematics derivatives

When restricting to the rigid MBS model described by
(1) the calculation of the α-times derivative of the dynamics
requires derivatives of M and C up to an order of α. As a
consequence the spatial velocity V has to be differentiated for
α + 1 times. In absence of collision and contact it is possible
to obtain derivatives of the equations of motion of arbitrary
order what is due to the structure of the underlying smooth
kinematics and dynamics equations [18]. To obtain a recursion
w. r. t. α we assume the α-times local derivative of V obeys
the identity

◦

V(α) = Φ (Aα + Bα) . (17)

From (12) follow

A0 = ∆ = Hq(1) and B0 = 0 (18)

needed to start the recursion. Differentiating (17) once locally
w. r. t. time and using operator identities for the time deriva-
tives of (9) and (10) found in [17]

◦

Eφ = −∆̃Eφ (19)
◦

Φ = −Φ∆̃EφΦ (20)

leads to
◦

V(α+1) = Φ

(
◦

Aα − ∆̃Eφ

◦

V(α) +
◦

Bα

)
. (21)

The equivalences

Aα+1 ≡
◦

Aα = Hq(α+2)

Bα+1 ≡ −∆̃Eφ

◦

V(α) +
◦

Bα

formally lead to the desired form of equation (17). By
construction Bα always fulfills Bα =

∑
i bα,i where each

summand is a product bα,i := ki

∏
j∈Ji

[
◦

∆̃(αj)]Eφ

◦

V(αi) with
ki is scalar and Jj ⊂ {0, 1, . . . , α − 1}. This follows from
identities (18) and (19).

B. Dynamics derivatives

If motor j is mounted on link i all of its inertia properties
Mr [j] can be added to the link resulting in a total M[i]. The
rotor angular momentum relative to the link Li := Ijnrj θ̇j

has to be considered separately in order to calculate the correct

dynamics. Hereby nrj is the rotor axis of rotation and Ij the
inertia about nrj . The rotor spatial angular momentum hence
is

L[i] := Hr [i,j]Ij θ̇j =

(
Li

03

)
.

A change in angular momentum
d

dt
L[i] =

◦

L[i] + Ω̃[i]L[i] = Ii(Hr [i,j]θ̈j + Ω̃[i]Hr [i,j]θ̇j) (22)

expressed conveniently with circle derivative and stacked
representation

L̇ =
◦

L + Ω̃L

causes a torque which contributes to the dynamics. There is
no need to apply a rigid body transformation from the center
of rotor to the center of link, because this pure torque is
independent of the point of application. When calculating the
MBS dynamics the contribution of each link to the spatial
force

fδ := M
◦

V +
◦

L − ṼT MV + Ω̃L (23)

allows for a compact expression of the spatial recursion (14),
f = ΦT fδ . Analogously to (17) one again can assume

◦

f (α) = ΦT (Cα + Dα) (24)

and for α = 0 follows

C0 =
◦

fδ
(0) and D0 = 0 .

Differentiating (23) α-times and using a binomial expansion
one arrives at a compact non-recursive

◦

fδ
(α) = M

◦

V(α+1) +
◦

L(α+1) (25)

+
α∑

j=0

(
α

j

) [
−

◦

Ṽ(j)

T

M
◦

V(α−j) +
◦

Ω̃(j)
◦

L(α−j)

]
.

Differentiating (24) w. r. t. time
◦

f (α+1) = ΦT

(
◦

Cα − ET
φ ∆̃T

◦

f (α) +
◦

Dα

)

again leads to a symbolic recursion when identifying

Cα+1 ≡
◦

Cα =
◦

fδ
(α+1)

Dα+1 ≡
◦

Dα − ET
φ ∆̃T

◦

f (α) .

V. RECURSIVE ALGORITHM

In this section it is shown how elastic drivetrain and rigid
multibody models are combined for computation of the inverse
dynamics.

A. Combining elastic drivetrain and rigid multibody models

A strategy for solution of the complete problem becomes
clear when expressions from (2)-(5) are identified in (12)-(15).
Combining the latter together and using (22) gives

u = HT ΦT MΦHq̈ (26)
+HT ΦT (−MΦ∆̃ − ṼT M)V (27)
+HT ΦT HrI θ̈ + HT ΦT Ω̃HrI θ̇ (28)



where (26) and (27) are standard factorizations of M and
C [8]. Comparing expression (28) with (4) leads to the
important operator factorizations of S and Crotor:

S(q) = HT ΦT HrI (29)
Crotor(q, q̇, θ̇) = HT ΦT Ω̃HrI θ̇ . (30)

Equation (29) restates (6) in an explicit manner and it ob-
viously results in the upper triangular shape derived in (6)
from pure structural arguments. An arbitrary axis of rotation
ni is invariant under its generated rotation, iRi−1ni = ni. It
follows that φi,i−1(qi)H[i] =

„

ni

−(i)
p̃i−1,ini

«

is independent of
qi. This observation shows that row i of the operator product
HT ΦT in (29) is independent of qi, thus revealing one more
structural property of S(q):

Si,j = S(qi+1, . . . , qj−1)i,j , 1 < i < j < N . (31)

Drivetrain dynamics (5) depends on the absolute spatial angu-
lar momentum of rotor j mounted on link i

Labs[i] = L[i] + Ω[i]Ij .

Its absolute time derivative projected onto its axis of rotation
using (13) is in case of revolute joints

Hr
T L̇abs = I θ̈ + Hr

T Φ(Hq̈ − ∆̃V)I .

Now it is possible to establish the torque balance of the rotors

τ = Ru + I θ̈ + Hr
T ΦHq̈I − Hr

T Φ∆̃VI (32)

which allows to identify

Ccarrier(q, q̇) = −Hr
T Φ∆̃VI (33)

using (5) and (29) and reveals

Ccarrier(q, q̇) + S(q)T q̈ = Hr
T Ω̇I .

These were the last missing identities to express equations
(2)-(5) completely in closed form by means of spatial opera-
tors. The algorithm presented in the following section is based
on these symbolic operator factorizations.

B. Numerical computation of the inverse dynamics

From operator expressions (17) and (24) one concludes
the recursive algorithm will comprise two sweeps, one out-
board to calculate velocities and all required higher order
derivatives followed by one inboard sweep to do force and
force derivative computations for rigid body and drive-train
parts. The arguments discussed in Section III show how the
structural properties of Hr and S modify the simple two sweep
execution logic of rigid MBS inverse dynamics. This leads to
Algorithm 1.

It is important to note, that the required number of differ-
entiations of the dynamics decreases from tip to base. The
maximum order αmax is required just for the outermost link.

Concerning code generation it is worthwhile to note a great
potential for optimization. Hr is sparse when each Hr [i] is
a unit vector in local coordinates and H̃r [i]H̃r [i] = I6×6

results in simple expressions for Bα needed in (17), even
for large α. Loss in numerical precision might occur likewise
for all evaluations of higher-order Taylor expansions. The
explicitness of spatial operator expressions helps in taking
precautions against that problem.

Algorithm 1 Inverse dynamics algorithm
Detect permanent zeros of S(q) from MBS topology

Require: S(q) is upper triangular
Calc. max. order αmax[i] for each ui from (4)
αmax = maxi=1,...,N αmax[i]
◦

V(α)
[0] = 06, α ∈ {0, . . . , αmax + 1}

for i=1 to N do /* Outboard sweep */
for α=0 to αmax+1 do

◦

V(α)
[i] = φi,i−1

◦

V(α)
[i−1] + Aα[i] + Bα[i]

end for
end for
◦

f (α)
[N+1] = 06, α ∈ {0, . . . , αmax}

for i=N to 1 do /* Inboard sweep */
for α=0 to αmax[i] do

◦

f (α)
[i] = φT

i+1,i

◦

f (α)
[i+1] + Cα[i] + Dα[i]

θ
(α)
i =

(
u(α)

i

Ki,i
+ q(α)

)
1

Ri,i

end for
τi = Ri,iui + Ii,iθ̈i + Hr

T
[i,i]Ω̇[i]Ii,i

end for

The complexity of the Newton-Euler inverse dynamics for
a rigid robot is O(N). The maximum possible number of
differentiations is 2(N + 1) as discussed in Section III. The
complexity of expressions (17) and (24) grows linearly in α.
Analysis of the nested loops in outboard and inboard sweeps
in Algorithm 1 shows that without any further symbolic
simplifications this algorithm is at the worst O(N 3).

VI. INVERSE DYNAMICS FOR THE DLR LBR 2

Application of the methods introduced in Sections IV and V
to the LBR 2 model reveals additional properties of this robot.
As pointed out in Section III the equations of motion need to
be differentiated up to an order of 2N in the general case.
The first off-diagonal of S(q) vanishes according to equation
(29) because consecutive axes of the robot are orthogonal as
depicted in Figure 3b. Considering (31) S(q) gives

S(q) =




0 0 S13(q2) . . . S17(q2, . . . , q6)

0
. . . . . . . . .

...
...

...
. . .

. . . S57(q6)

0 0 0
. . . 0

0 0 0 . . . 0




.

This reduces the required number of derivatives to 12 since
solution of the sixth equation of (2) no longer depends on θ̈7.

The example trajectory q1(t) = . . . = q7(t), t ∈ [0, 2.5s]
shown in the inset of Figure 4 was chosen to be a step
input of 2 rad at time t = 0 filtered by a filter of order 16
what ensures the required smoothness for differentiation [19].
The filter dynamics chosen provides a trajectory that satisfies
motor torque and velocity constraints. Algorithm 1 has been
implemented using C++ methods presented in [20] to calculate
the elastic joint inverse dynamics. The obtained motor torques
of three axes τ1, τ2, τ3 are shown in Figure 4. The influence
of drivetrain effects on the dynamics are shown in Fig. 5



illustrated by the difference in motor torques between the full
elastic model and the rigid model. The results significantly
differ even for the very smooth trajectory chosen. For faster
motion this effect increases due to larger derivatives. In case
of high-speed movements and high precision requirements
drivetrain effects should be taken into account.
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Fig. 4. Inset: Example trajectory used in simulations. Large plot: Resulting
motor torques τ1,τ2, and τ3 from elastic joint inverse dynamics computed
using Algorithm 1.
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Fig. 5. Differences between elastic model and rigid model inverse dynamics
for the trajectory from Fig. 4.

VII. CONCLUSION

This paper presented a new method for symbolic, recursive
calculation of the inverse dynamics of elastic joint robots in-
cluding gyroscopic effects introduced by the drivetrains. It was
shown that the computation of higher-order time derivatives
of the rigid-body equations is a key problem. To overcome
the difficulties arising from standard Lagrangian approaches
the problem was solved for the first time using higher-order
time derivatives of spatial operators. This approach results
in an efficient algorithm while preserving the structure of
the system’s equations leading to valuable explicit operator
factorizations for expressions stemming from the Lagrangian
approach. These permit analysis of, e. g., gyroscopic effects
directly and ameliorates the potential for efficient code gen-
eration. The algorithm presented applies to a wide range of
schemes, e. g., path planning and feedforward control. The
relevance of the considered physical effects was shown using
simulation results. For the LBR 2 motor torques differ signifi-
cantly when comparing standard rigid-body inverse dynamics

and the presented elastic joint inverse dynamics. Future work
will complete the robot model by adding drive train effects
like non-linear springs and friction and increase efficiency by
further exploitation of the complex structure of the elastic joint
dynamics equations.
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