

Proceedings

of the 3rd International Modelica Conference,
Linköping, November 3-4, 2003,

Peter Fritzson (editor)

Paper presented at the 3rd International Modelica Conference, November 3-4, 2003,
Linköpings Universitet, Linköping, Sweden, organized by The Modelica Association
and Institutionen för datavetenskap, Linköpings universitet

All papers of this conference can be downloaded from
http://www.Modelica.org/Conference2003/papers.shtml

Program Committee
� Peter Fritzson, PELAB, Department of Computer and Information Science,

Linköping University, Sweden (Chairman of the committee).
� Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
� Hilding Elmqvist, Dynasim AB, Sweden.
� Martin Otter, Institute of Robotics and Mechatronics at DLR Research Center,

Oberpfaffenhofen, Germany.
� Michael Tiller, Ford Motor Company, Dearborn, USA.
� Hubertus Tummescheit, UTRC, Hartford, USA, and PELAB, Department of

Computer and Information Science, Linköping University, Sweden.

Local Organization: Vadim Engelson (Chairman of local organization), Bodil
Mattsson-Kihlström, Peter Fritzson.

Hilding Elmqvist, Hubertus Tummescheit and Martin Otter
Dynasim, Sweden; UTRC, USA; DLR, Germany:
Object-Oriented Modeling of Thermo-Fluid Systems
pp. 269-286

Object-Oriented Modeling of Thermo-Fluid Systems

Hilding Elmqvist1, Hubertus Tummescheit2, and Martin Otter3
1Dynasim AB, Lund, Sweden, www.dynasim.se, Elmqvist@dynasim.se

2UTRC, Hartford, U.S.A., Hubertus@control.lth.se
3DLR, Germany, www.robotic.dlr.de/Martin.Otter, Martin.Otter@dlr.de

Abstract
Modelica is used since 1998 to model thermo-fluid
systems. At least eight different libraries in this field
have been developed and are utilized in
applications. In the last year the Modelica
Association has made an attempt to standardize the
most important interfaces, provide good solutions
for the basic problems every library in this field
have and supply sophisticated base elements,
especially media descriptions. This paper
summarizes the design, new Modelica language
elements, new symbolic transformation algorithms
and describes two new libraries – for media
description and for fluid base components – that will
be included in the Modelica standard library.

1 Introduction
Careful decomposition of a thermodynamic system
is essential to achieve reusable components. This
paper discusses appropriate Modelica interfaces to
handle thermodynamic properties, empirical closure
relations like pressure drop correlations, mass
balances and energy balances. Special attention has
been placed on allowing flows with changing
directions and allowing ideal splitting and merging
of flows by connecting several components at one
junction as well as parallel flow paths having zero
(neglected) volume. A purely declarative approach
solves the problem of splitting and merging flows in
a physically based way. For mixing, the resulting
specific enthalpy or temperature is implicitly defined
and is obtained by solving a system of equations.

All balance equations are provided in their
natural form. Necessary differentiations are carried
out by a tool through index reduction. Due to newly
developed symbolic transformation algorithms, the
described approach leads to the same simulation
efficiency as previously developed thermo-fluid
libraries, but without having their restrictions.

The discussed method is implemented in two
new Modelica libraries, “Modelica_Fluid” and
“Modelica_Media” that will become part of the free
Modelica standard library as Modelica.Fluid and

Modelica.Media. “Media” contains a generic
interface to media property calculations with
required and optional media variables. A large
amount of pre-defined media models are provided
based on media models of the ThermoFluid library
Tummescheit and Eborn (2001). Especially, about
1200 gases and mixtures of these gases, as well as a
high precision water model based on the IF97
standard are included. The “Fluid” library provides
the generic fluid connectors and the most important
basic devices, such as sources, sensors, and pipes
for quasi 1-dimensional flow of media with single or
multiple phases and single or multiple substances.
The same device model is used for incompressible
and compressible flow. A tool will perform the
necessary equation changes by index reduction
when, e.g., an incompressible medium model is
replaced by a compressible one in a device model.

The “Fluid” and “Media” libraries are a good
starting point for application specific libraries, such
as for steam power plants, refrigeration systems,
machine cooling, or thermo-hydraulic systems.

2 Devices, medium models,
balance volumes and ports

We will consider thermodynamic properties of
fluids in coupled devices, such as tanks, reactors,
valves as well as pipes, Figure 1. Control volumes
(or balance volumes) will be considered for all
devices.

Figure 1. Connected devices

2.1 Medium models
The thermodynamic state of the fluid at any point is
represented by two variables, e.g., pressure p and

R.port

Device R

Device S

Device T

S.port_a

S.port_b

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

specific enthalpy h. Other thermodynamic quantities
may be calculated from the chosen thermodynamic
state variables. It is important that a model for a
device can be written in such a way that it can be
used in combination with different media models.
This property is achieved by representing the media
as a replaceable package. The details are given in
Section 5. Such a media package contains, among
other definitions, a model with three equations as
shown in the following partial example for a simple
model of air based on the ideal gas law:

package SimpleAir
 ...
 constant Integer nX = 0;
 model BaseProperties
 AbsolutePressure p;
 Temperature T;
 Density d;
 SpecificInternalEnergy u;
 SpecificEnthalpy h;
 MassFraction X[nX];
 constant Real R_air = 287.0506;
 constant Real h0 = 274648.7;
 equation
 p = d*R_air*T;
 h = 1005.45*T + h0;
 u = h – p/d;
 end BaseProperties;
 ...

end SimpleAir;

How such a media package can be utilized in a
model is shown in the following heated device
model without incoming or leaving mass flows.

model ClosedDevice
 import M = Modelica.Media;
 replaceable package Medium=
 M.Interfaces.PartialMedium;
 Medium.BaseProperties medium
 parameter …
equation
 // Mass balance
 der(m) = 0;
 m = V*medium.d;

 // Energy balance
 der(U) = Q;
 U = m*medium.u;

 end ClosedDevice;

When using this device model, a specific medium
has to be defined:

ClosedDevice device(redeclare
 package Medium = SimpleAir);

The device model is not influenced by the fact that
the medium model is compressible or
incompressible.

2.2 Ports
Figure 2 shows a detailed view of a connection
between two devices. An important design decision

Figure 2. Details of device connection

is the selection of the Modelica connector that
describes a device port. For the Modelica_Fluid
library the connector is defined for quasi one-
dimensional fluid flow in a piping network, with
incompressible or compressible media models, one
or more phases, and one or more substances. The
connector variables are selected such that the
equations of the connect(...) statements of connected
components fulfill the following balance equations:
• mass balance
• substance mass balance (of a medium with

several substances).
• energy balance in the form of the “internal

energy balance” (see Section 3).
Additionally, a non-redundant set of variables is
used in the connector in order to not have any
restrictions how components can be connected
together (restrictions would be present, if an
overdetermined set of describing variables would be
used in the connector). These design requirements
lead to a unique selection of variables in the
connector:

Pressure p, specific (mixing) enthalpy h,
independent (mixing) mass fractions X, mass flow
rate m_dot, enthalpy flow rate H_dot, and the
independent substance mass flow rates mX_dot
connector FluidPort
 replaceable package Medium =
 Modelica_Media.Interfaces.PartialMedium;

 Medium.AbsolutePressure p;
 flow Medium.MassFlowRate m_dot;

 Medium.SpecificEnthalpy h;
 flow Medium.EnthalpyFlowRate H_dot;

 Medium.MassFraction X [Medium.nX]
 flow Medium.MassFlowRate mX_dot[Medium.nX]
end FluidPort;

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

Due to the design of the connectors, the mass and
energy balance is fulfilled in connection points (see
also discussion of perfect mixing in the next
Section). Since the momentum balance is not taken
into account, device couplings with a considerable
amount of losses (e.g., if pipes with different
diameters are connected) have to be modeled with a
dedicated loss model.

2.3 Splitting, Joining and Reverse Flow
Figure 2 also shows the control volumes associated
with the devices and the boundary conditions. The
flow through the port of a device is equal to the flow
through the corresponding boundary of the control
volume. Note that the specific enthalpy might have
a discontinuity.

The connector variable FluidPort.h represents
the specific enthalpy outside the control volume of
the device. In fact, for two connected devices R and
S, with FluidPort instances named “port”, R.port.h =
S.port.h represent the specific enthalpy of an
infinitesimally small control volume associated with
the connection. The relation between the boundary
and the port specific enthalpy depends on the flow
direction. It is established indirectly by considering
the enthalpy flow. We will introduce the notation
hport = R.port.h = S.port.h and will for simplicity of
notation neglect spatial variation of the specific
enthalpy, hR and hS, within each control volume. The
enthalpy flow rate into device R, RH& is then
dependent on the mass flow rate, Rm& as follows.

 >

=
otherwise

0

RR

RportR
R hm

mhm
H

&

&&
&

This equation has to be present within the model of
device R. Such conditional expressions could be
written as if-then-else expressions, but to facilitate a
recently identified set of powerful symbolic
simplifications a new function, semiLinear(...), has
been proposed for inclusion in the Modelica
language (see also Figure 3), that can be used as
follows in model R:

port.H_dot =
semiLinear(port.m_dot, port.h, h);

The corresponding equation for a device S is

 >

=
otherwise

0

SS

SportS
S hm

mhm
H

&

&&
&

Devices R and S, see Figure 2, are connected
together with a connect(...) statement of the form:

connect(R.port, S.port);

leading to the following zero sum equations that are
equivalent to the mass and energy balance of the
infinitesimal small control volume at the connection
point:

SR

SR

HH

mm
&&

&&

+=

+=

0

0

Figure 3. The semiLinear(...) function

From these four equations, hport can be solved

=
<
>

=
0undefined
0
0

R

RR

RS

port

m
mh
mh

h
&

&

&

According to Modelica flow semantics, 0>Rm&
corresponds to flow into component R and therefore
the specific enthalpy flowing across the boundary is
hS at the device boundary, hport. It should be noted
that although hport is undefined for zero mass flow
rate, RH& and SH& are well-defined as zero, i.e., the
dynamics of the system are independent of what
value is chosen for hport.

We will now consider the connection of three
ports R.port, S.port and T.port. A symbolic solution
of the common specific enthalpy,

h = R.port.h = S.port.h = T.port.h
is given by

h = -(
(if R.port.m_dot > 0 then 0 else
 R.port.m_dot*R.h)+
(if S.port.m_dot > 0 then 0 else
 S.port.m_dot*S.h)+
(if T.port.m_dot > 0 then 0 else
 T.port.m_dot*T.h))
/ (
(if R.port.m_dot > 0 then
 R.port.m_dot else 0)+
(if S.port.m_dot > 0 then
 S.port.m_dot else 0)+
(if T.port.m_dot > 0 then
 T.port.m_dot else 0))

For a splitting flow, for example from R to S and T,
i.e., R.port.m_dot < 0, S.port.m_dot > 0
and T.port.m_dot > 0, we get

H&

m&

porth

h
slope

slope

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

h = -R.port.m_dot*R.h /
 (S.port.m_dot + T.port.m_dot)

Since
0 = R.port.m_dot + S.port.m_dot +

 T.port.m_dot

the specific enthalpy h in the port is computed as
h=-R.port.m_dot*R.h/(-R.port.m_dot)

or
h = R.h

For a merging flow, for example, from R and T into
S (i.e., R.port.m_dot < 0, S.port.m_dot <
0 and T.port.m_dot > 0) we get

h = -(R.port.m_dot*R.h +
 S.port.m_dot*S.h) / T.port.m_dot

or
h=(R.port.m_dot*R.h+S.port.m_dot*S.h)
 /(R.port.m_dot + S.port.m_dot)

i.e., the perfect mixing condition.
The degenerate case that all mass flows are

zero can be handled symbolically by the tool, as it
does not influence the dynamics: For two connected
devices R and S, the division with R.port.m_dot can
be performed symbolically leading to

h = if R.port.m_dot > 0 then R.h
 else S.h

As a result, for zero mass flow rate h = S.h. For
three and more connected devices, the equation
system is underdetermined. From the infinitely
many solutions the one can be picked that is closest
to the solution in the previous integrator step.

It should be noted that a similar approach
could be used to handle flow composition for flows
with several substances.

Earlier attempts tried to solve a restricted
problem of changing flow direction in a
programming style, i.e., by explicitly defining the
temperature depending on the flow direction. Such a
method cannot be generalized to mixing flows,
because the temperature is not given by equations in
just one volume. The presented solution for splitting
and joining flows is derived by considering the
equations of a small connection volume. By setting
it's mass to zero, the usual sum-to-zero equations for
mass flow rate and energy flow rate are obtained.
This means that the usual flow semantics is
appropriate for modeling of splitting and merging
flows.

3 Mass-, momentum- and energy-
balances

We will show a general implementation of the
governing equations, which might serve as a

template for specialized models. Consider the
equations (mass, momentum and energy balances)
for quasi-one-dimensional flow in a device with
flow ports in the ends such as a pipe, Thomas
(1999) [16], Anderson (1995) [1].

2

22

() ()
0

() ()

(())(())

()

22

1
2

F

F

F

A Av
t x
vA v A p z

A F A g
t x x x

v u Au A

t x
T

kA
x x

p vv

zF v A vg
x

F v v fS

ρ ρ

ρ ρ ρ

ρρ ρ

ρ

ρ

∂ ∂
+ =

∂ ∂
∂ ∂ ∂ ∂

+ = − −
∂ ∂ ∂ ∂

∂ + +∂ +
+ =

∂ ∂
∂ ∂
∂ ∂

−

∂− − +
∂

=

where t represents time, x is the spatial coordinate
along device, ρ is the density, v is the velocity, A
is the area, p is the pressure, FF represents the
friction force per length, f is the Fanning friction
factor, S is the circumference, g is the gravity
constant, z is the vertical displacement, k is the
thermal conductivity and medium properties:

ρ
ρ
ρ

/
),(
),(

puh
Tuu
Tpp

+=
=
=

where h is the specific enthalpy and u is the specific
internal energy.

The energy equation can be considerably
simplified by subtracting the momentum balance
multiplied by v. Simplifications that are shown in
the appendix, give the result.

(())
()

()
v u A

uA p T
vA kA

t x x x x

pρ
ρ ρ

∂ +
∂ ∂ ∂ ∂

+ =
∂ ∂ ∂ ∂ ∂

+

Finite volume method
Such partial differential equations can be solved by
various methods like finite difference, finite element
or finite volume methods. The finite volume method
is chosen because it has good properties with
regards to maintaining the conserved quantities. The
device is split into segments, for which the PDEs are
integrated and approximated by ODEs. Let x=a and
x=b be the coordinates for the ends of any such
segment. Integrating the mass balance equation over
the spatial coordinate, x, gives

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

()
0

b

x b x a
a

A
Av Av

t
dxρ ρ ρ

= =

∂
+ − =

∂∫

Assuming the segment boundaries (a, b) to be
constant, we can interchange the integral and
derivative:

0
()

x b x a

b

a Av Av
d Adx

dt
ρ ρ

ρ

= =
+ − =

∫

In order to handle the general case of changing
volumes for, e.g., displacement pumps, tanks, or
moving boundary models of two phase flows, this
formula needs to be extended by use of the Leibnitz
formula.

Introducing appropriate mean values for
density and area and introducing incoming mass
flow rates m& , i.e. b x b

m Avρ
=

= −& and a x a
m Avρ

=
=& ,

we can rewrite the mass balance as:
()()m m

a b

d A
m m

dt
b aρ

= +
−

& &

Introducing m mm A Lρ= and L b a= − gives the
desired form of the mass balance

a b
dm m m
dt

= +& &

We proceed in a similar way with the momentum
balance:

2 2()

1
2

b

x b x a
a

b

x b x a
a

b b

a a

vA
dx v A v A

t

A
Ap Ap pdx

x

z
v v fSdx A g dx

x

ρ ρ ρ

ρ ρ

= =

= =

∂
+ −

∂

∂
= − + + −

∂

∂
−

∂

∫

∫

∫ ∫

and introducing appropriate mean values gives:

zgALSfvv

ppA

AvAvL
dt

Avd

mmmmmmm

bam

axbx
mmm

∆−−

−=

−+ ==

ρρ

ρρρ

2
1

)(

)(22

with 2/)(bam AAA += . Substitution by m& and the
values at the respective boundaries and introducing

the approximation
2

a b
m

m m
m

+
=
& &

& gives

()

zgALSfmm
A

ppA
pA

m
pA

mL
dt
md

mmmmmm
mm

bam
bb

b

aa

am

∆−−

−+−=

ρ
ρ

&&

&&&

2

22

1
2
1

We will make the approximation that a b mρ ρ ρ= =

evaluated at mean pressure
2

a b
m

p p
p

+
= .

Integrating the energy balance for internal energy
gives:

()b

x b x a
a

x ax b

b

a

uA
hvA hvA

t

T T
kA kA

x x

dx

pvA dx
x

ρ ρ ρ
= =

==

∂
+ − =

∂

∂ ∂
−

∂ ∂
∂ +
∂

∫

∫

Substitution and approximation gives
()

()

m m m
b b a a

m m b a
x b x a

d u A
m m h

dt
T T

v A p p k k
x x

L hρ

= =

− − =

∂ ∂
−

∂ ∂
− +

& &

Introducing m m m mU A muu Lρ= = , the inner energy
and hmH ⋅= && , the enthalpy flow rate give

axbx

abmmba

x
TkA

x
TkA

ppAvHH
dt

dU

== ∂
∂−

∂
∂+

−++=)(&&

The diffusion term contains the temperature
gradients at the segment boundaries. A first order
approximation of the gradient is

() ()
2 2

x a

x x
T a T aT

x x=

∆ ∆
+ − −∂

=
∂ ∆

It should be noticed that ()
2
x

T a
∆

− is a property of

an adjacent segment, i.e. not directly accessible.
However, such diffusion terms are already available
in the model ThermalConductor of the
Modelica.Thermal.HeatTransfer library. This means
that we can introduce a heat flow port with mT and

Q& and write the energy equation as

QppAvHH
dt

dU
abmmba

&&& +−++=)(

The flow variable Q& will be the sum of the
diffusion from neighboring segments at x=a and x=b

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

and external heat transfer (for example in a heat
exchanger).

Modelica model
The Modelica model equations corresponding to the
mass- momentum and energy balances derived
above are given below. In addition, a medium
component is used for the mean quantities. The
semiLinear function is used to handle the interfacing
of the balance volume boundary quantities with the
quantities of the device ports as discussed earlier.
model DeviceSegment

replaceable package Medium =
Modelica_Media.Interfaces.PartialMedium;
FluidPort port_a (redeclare package
 Medium=Medium);
FluidPort port_b (redeclare package
 Medium=Medium);
Medium.BaseProperties medium;
// Variable and parameter declarations
equation
// Mean values
medium.p =(port_a.p + port_b.p)/2;
m_dot_m = (port_a.m_dot-port_b.m_dot)/2;
d_m = medium.d;

// Mass balance
der(m) = port_a.m_dot + port_b.m_dot;
m = medium.d*A_m*L;

// Substance balances
port_a.mX_dot = semiLinear(port_a.m_dot,
 port_a.X, medium.X);
port_b.mX_dot = semiLinear(port_b.m_dot,
 port_b.X, medium.X);
der(mX) = port_a.mX_dot + port_b.mX_dot;
mX = m*medium.X;

// Momentum balance
L*der(m_dot_m) =
 A_m*(port_a.p - port_b.p)
 + port_a.m_dot*port_a.m_dot/(A_a*d_m)
 - port_b.m_dot*port_b.m_dot/(A_b*d_m)
 - m_dot_m*abs(m_dot_m)/
 (2*d_m*A_m^2)*f*S*L
 - A_m*d_m*g*(Z_b - Z_a);

// Energy balance
port_a.H_dot = semiLinear(port_a.m_dot,
 port_a.h, medium.h);
port_b.H_dot = semiLinear(port_b.m_dot,
 port_b.h, medium.h);
der(U) = port_a.H_dot + port_b.H_dot +
m_dot_m/d_m*(port_b.p - port_a.p) +

 heatPort.Q_dot;
U = m*medium.u;
heatPort.T = medium.T;

end DeviceSegment;

The model derivation given above is generic. It can
be generalized and extended in many ways. For
example, to allow changing volume of the segment,
the integrations can be carried out with variable

boundaries, using the Leibnitz rule. In the above
derivations, simple definitions of the mean values
were used. It is possible to get better accuracy, for
example, by using an upwind scheme taking into
account the flow direction when calculating the
mean values.

A staggered grid is sometimes used for
solving such PDEs. It is claimed to give better
convergence properties in certain cases by a better
approximation of the pressure gradient. It is possible
to make such an implementation in Modelica. In
fact, the ThermoFluid library uses the staggered grid
approach. In this case, the equation for momentum

is integrated over another interval ,
2 2

L L
a a− +

.

This momentum can be included in a flow element
model. The mass and energy balances are included
in a finite volume model. There are special problems
of communicating, for example, the momentum
term 2 2

/ 2 / 2x a L x a L
v A v Aρ ρ

= + = −
− since the flow

element is assumed to have the same mass flow rate
at both its connectors. Additional, non-physical,
connectors or additional connector variables need to
be introduced in order to communicate these
variables to neighboring flow elements.

4 Pressure Loss due to Friction
The momentum balance contains a term for the
friction force

LSfmm
A

F mmmm
mm

fric &&
2

1
2
1

ρ
=

Often, the pressure loss is used instead of the
friction force (pLoss = Ffric/Am) and different
equations are in use to compute the pressure loss
from the mass flow rate. In the Modelica_Fluid
library a component to model this pressure loss is
available that provides two versions of a generic
pressure loss equation:

if end

else

thenif

,...)(

,...)(
 from_dp

2

1

mLoss

Lossm

mfp

pfm

&

&

=

=

Using the parameter “from_dp” in the “Advanced”-
menu, users can select whether the mass flow rate is
computed from the pressure loss (this is the default)
or whether the pressure loss is computed from the
mass flow rate. Depending on how the device is
connected in a network, there might be fewer non-
linear equations if parameter “from_dp” is selected

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

correspondingly. In a future version, this selection
might be performed automatically by a tool.

The user can currently choose between three
variants of the pressure loss model:
1. Constant Laminar: mkpLoss &⋅=

It is assumed that the flow is only laminar. The
constant k is defined by providing Lossp and m&
for nominal flow conditions that, for example,
are determined by measurements.

2. Constant Turbulent: mmkpLoss && ⋅⋅= .
It is assumed that the flow is only turbulent.
Again, the constant k is defined by providing

Lossp and m& for nominal flow conditions. For
small mass flow rates, the quadratic, or in the
inverse case the square root, characteristic is
replaced by a cubic polynomial. This avoids the
usual problems at small mass flow rates.

3. Detailed Friction: provides a detailed model of
frictional losses for commercial pipes with non-
uniform roughness (including the smooth pipe
as a special case) according to.:

m
A
D

k
D
L

D
LpLoss

&⋅
⋅

=⋅⋅=

⋅∆=⋅∆=

⋅⋅⋅⋅∆=

ηη
ρ

λ
ρ

ηλ

ρλ

DvRe

)(Re,
2

)(Re,

|v|v
2

)(Re,

2233

2

2

with
λ : friction coefficient (= 4·fm)
λ2 : used friction coefficient (= λ·Re·|Re|)
Re : Reynolds number.
L : length of pipe
A : cross-sectional area of pipe
D : hydraulic diameter of pipe

 = 4*A/wetted perimeter
 (circular cross Section: D = diameter)

δ : Absolute roughness of inner pipe wall
 (= averaged height of asperities)

∆ : Relative roughness (=δ/D)
ρ : density
η : dynamic viscosity
v : Mean velocity
k2 abbreviation for Lη2/(2D3ρ3)

Note that the Reynolds number might be negative if
the velocity or the mass flow rate is negative. The
"Detailed Friction" variant will be discussed in more
detail, since several implementation choices are
non-standard: The first equation above to compute
the pressure loss as a function of the friction
coefficient λ and the mean velocity v is usually used
and presented in textbooks, see Figure 4. This form

is not suited for a simulation program since λ =
64/|Re| if |Re| < 2000, i.e., a division by zero occurs
for zero mass flow rate because Re = 0 in this case.
More useful for a simulation model is the friction
coefficient λ2 = λ·Re·|Re| introduced for the pipe loss
component, because λ2

 = 64·Re if Re < 2000 and
therefore no problems for zero mass flow rate occur.
The characteristic of λ2 is shown in Figure 5 and is
implemented in the pipe loss model. The absolute
roughness δ of the pipe is a parameter of this model.

Figure 4. Moody Chart: lg(λ) = f (lg(Re), ∆)

The pressure loss characteristic is divided into three
regions:

Region 1: For Re ≤ 2000, the flow is laminar and
the exact solution of the 3-dim. Navier-Stokes
equations (momentum and mass balance) is used
under the assumptions of steady flow, constant
pressure gradient and constant density and viscosity
(= Hagen-Poiseuille flow):

λ2
 = 64·Re or m

A
DkpLoss &⋅

⋅
⋅⋅=

η
264

Figure 5. λ2 = λ2(Re, ∆) = λ·Re·|Re|.

(x-axis: lg(Re), y-axis: lg(λ2))

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

Region 3: For Re ≥ 4000, the flow is turbulent.
Depending on parameter “from_dp” either of two
explicit equations are used: If from_dp = true
()(1 Losspfm =&), λ2

 is computed directly from pLoss
using λ2

 = pLoss/k2. The Colebrook-White equation
(Colebrook (1939); Idelchik (1994) p. 83, eq. (2-9))

∆⋅+⋅−= 27.0

Re
51.2lg21

λλ

gives an implicit relationship between Re and λ.
Inserting λ2 = λ·Re·|Re| allows to solve this equation
analytically for Re:

)sign(27.051.2lg2Re 2
2

2 λ
λ

λ ⋅

∆⋅+⋅−=

These are the full-line curves in Figure 4 and
Figure 5. If from_dp = false ()(2 mfpLoss &=), λ2
is computed by an approximation of the inverse of
the Colebrook-White equation (Swamee and Jain
(1976); Miller (1990) p. 191, eq. (8.4)) adapted to
λ2:

sign(Re)
Re

74.5
7.3

lgRe/25.0

2

9.02 ⋅

+∆⋅=λ

These are the dotted-line curves in Figure 4 and
Figure 5.

Region 2: For 2000 ≤ Re ≤ 4000 there is a
transition region between laminar and turbulent
flow. The value of λ2 depends on more factors than
just the Reynolds number and the relative
roughness, therefore only crude approximations are
possible in this area. A laminar flow up to Re =
2000 is only reached for smooth pipes. The
deviation Reynolds number Re1 at which the
transition region starts is computed according to
(Idelchik (1994), p. 81, sect. 2.1.21):

∆≤∆=
⋅=

/0065.010.00653
7451Re 3

elsethenifk
ek

Between Re1 = Re1(∆) and Re2 = 4000, λ2 is
approximated by a cubic polynomial in the "lg(λ2) =
f(lg(Re))" chart (see Figure 5) such that the first
derivative is continuous at these two points. In order
to avoid the solution of non-linear equations, two
different cubic polynomials are used for the direct
and the inverse formulation (from_dp = false/true).
This leads to some discrepancies in λ and λ2 if ∆ >
0.003 (= differences between the full and the dotted
curves in the above Figures). This is acceptable,
because the transition region is not precisely known
since the actual friction coefficient depends on

additional factors and since the operating points are
usually not in this region.

The pressure loss equations above are valid
for incompressible flow. According to (Idelchick
(1994) p. 97, sect. 2.1.81) they can also be applied
for compressible flow up to a Mach number of
about Ma = 0.6 with a maximum error in λ of about
3 %. In a wide region the effect of gas
compressibility can be taken into account by:

47.0
2Ma

2
11

−

 ⋅−+⋅= κλλcomp

where κ is the isentropic coefficient (for ideal gases,
κ is the ratio of specific heat capacities cp/cv). This
effect is not yet included in the pipe friction model.
Another restriction is that the pressure loss model is
valid only for steady state or slowly changing mass
flow rate. For large fluid acceleration, the pressure
drop depends additionally on the frequency of the
changing mass flow rate.

To summarize, the pipe friction component
provides a detailed pressure loss model in pipes in
the form),(1 ∆= Losspfm& or),(2 ∆= mfpLoss & .
These functions are continuous and differentiable,
are provided in an explicit form without solving
non-linear equations, and do behave well also at
small mass flow rates. This pressure loss model can
be used stand-alone in a static momentum balance
and in a dynamic momentum balance as the friction
pressure drop term. It is valid for incompressible
and compressible flow up to a Mach number of 0.6.

5 Standard Medium Interface
The main properties of a single substance medium
are described by 3 algebraic equations between the 5
thermodynamic variables pressure (p), temperature
(T), density (d), specific internal energy (u) and
specific enthalpy (h). In a medium model, three of
these variables are given as function of the
remaining two. For multiple substance media,
additionally nX independent mass fractions X[nX]
are present. For example, if p and T are selected as
independent variables besides X, a medium model
provides the algebraic equations

),,(
),,(
),,(

XTphh
XTpuu
XTpdd

=
=
=

The mass and energy balance equations in a device
structurally have the following form for a single
substance medium (see Section 3):

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

balanceenergy //

balance mass//

∑∑

∑

+=

=

⋅=
⋅=

Qhm
dt

dU

m
dt
dm

umU
Vdm

i
i

i

i
i

&

&

where m is the mass and U is the internal energy in
the control volume. Since the time derivatives of m
and U appear, the derivatives of density d and
internal energy u are implicitly needed which in turn
means that the partial derivatives of d(p,T) and
u(p,T) with respect to the independent variables p
and T have to be calculated. As a result, the balance
equations are reformulated in the variables p, T and
this requires differentiation and formula
manipulation.

Depending on the modeled device, additional
fluid properties are needed, e.g., the dynamic
viscosity if friction is modeled directly or the
thermal conductivity for heat transfer coefficients or
if diffusion is taken into account. Finally, a fluid
may undergo phase changes and/or multiple
substances may be involved.

Obtaining and computing the discussed fluid
properties often takes the most effort in the
modeling process. The availability of measurement
data or correlations defines the level of accuracy
that can be obtained with a thermo-fluid model. The
needs of applications vary broadly from very simple
properties with constant density and constant heat
capacity to highly accurate non-linear models.

In order to ease fluid
modeling with
Modelica, a free
Modelica library has
been developed that
provides (a) a
standardized interface
to media models and
(b) a growing number
of at once useable
media models based
on this interface, see
Figure on the left. The
temporary name of
this library is
“Modelica_Media”. It
is planned to include

this package in the Modelica standard library as
Modelica.Media after an evaluation phase.

The Modelica_Media library is designed such
that it can be used in different thermo-fluid libraries
that may, e.g., have completely different connector

definitions and design philosophies. In particular,
the Modelica_Fluid library discussed in previous
sections is based on this library, but it might also be
useful for other thermo-fluid libraries. The
Modelica_Media library has the following
fundamental properties:
• Different independent medium variables may be

used for media description, e.g., p,T or p,h or
d,T or p,d.

• The definition of the medium is decoupled from
the formulation of the balance equations in
order that the balance equations can be
formulated in their most natural form. There is
enough information available for a tool to
transform the medium equations into the form
needed by the balance equations. This is
achieved with the same efficiency as a usually
used balance equation dedicated to a particular
set of independent medium variables.

• Device models can be implemented
independently of the choice of medium model.
For example, exchanging an incompressible by
a compressible medium model or a single by a
multiple substance medium model is usually
possible and has no major influence on the
design of the device model.

5.1 Structure of Medium Interface
A medium model of Modelica_Media is essentially
a package that contains the following definitions
(the basic idea for this approach is from Newman et
al (2002)):
• Definition of constants, such as the medium

name or the number of substances.
• A model in the package that contains the 3 basic

thermodynamic equations that relate the 5+nX
primary medium variables.

• Optional functions to compute medium
properties that are only needed in certain
circumstances, such as dynamic viscosity. These
optional functions need not be provided by
every medium model.

• Type definitions, which are adapted to the
particular medium. For example, a type
“Temperature” is defined where the attributes
“min” and “max” define the validity region of
the medium. In a device model, it is advisable to
use these type definitions, e.g., for parameters,
in order that medium limits are checked as early
as possible.

Note, although we use the term “medium model”,
this is actually a Modelica “package” that contains
all the constants and definitions required for a
complete “medium model”. The basic interface to a

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

medium is defined by Modelica_Media.
Interfaces.PartialMedium that has the following
structure:

partial package PartialMedium
 import SI = Modelica.SIunits;

 constant String mediumName;
 constant String substanceNames;
 constant Boolean incompressible;
 constant Boolean reducedX;
 constant Integer nX = size(
 substanceNames,1);

 record BasePropertiesRecord
 AbsolutePressure p;
 Temperature T;
 Density d;
 SpecificInternalEnergy u;
 SpecificEnthalpy h;
 MassFraction X[nX];
 end BasePropertiesRecord;

 replaceable model BaseProperties
 extends BasePropertiesRecord;
 // parameter declarations
 end BaseProperties;

 // optional medium properties
 replaceable partial function
 dynamicViscosity
 input BasePropertiesRecord
 medium;
 output DynamicViscosity eta;
 end dynamicViscosity;
 // other optional functions

 // medium specific types
 type AbsolutePressure =
 SI.AbsolutePressure (
 min = 0,
 max = 1.e8,
 nominal = 1.e5,
 start = 1.e5);
 type DynamicViscosity = ...;
 // other type definitions

 end PartialMedium;

We will discuss all parts of this package in the
following paragraphs. An actual medium model
should extend from PartialMedium and has to
provide implementations of the various parts.

The constants at the beginning of the package
(with exception of nX) do not have a value yet (this
is valid in Modelica), but a value has to be provided
when extending from package PartialMedium. Once
a value is given, it cannot be changed any more. The
reason to use constants instead of parameters in the
model BaseProperties is that some of these
constants have to be used in connector definitions

(such as the number of mass fractions nX). When
defining the connector, only constants in packages
can be accessed, but not parameters in a model,
because a connector cannot contain an instance of
BaseProperties.

The record BasePropertiesRecord contains the
variables primarily used in balance equations. Three
equations for these variables have to be provided by
every medium in model BaseProperties. Optional
medium properties are defined by functions, such as
the function “dynamicViscosity” (see code Section
above) to compute the dynamic viscosity. Model
BaseProperties extends from the record and the
optional functions have an instance of this record as
an input argument. This construction simplifies the
usage considerably as demonstrated in the following
code fragment:
 replaceable package

 Medium = PartialMedium;
Medium.BaseProperties medium;
Medium.DynamicViscosity eta;
 ...
U =m*medium.u; //Internal energy

 eta=Medium.dynamicViscosity(medium);

“Medium” is the medium package that satisfies the
requirements of a “PartialMedium” (when using the
model above, a value for Medium has to be
provided by a redeclaration). The “medium”
component is an instance of the model
“Medium.BaseProperties” and contains the core
medium equations. Variables in this model can be
accessed just by dot-notation, such as medium.u or
medium.T. If an optional medium variable has to be
computed, the corresponding function from the
actual Medium package is called, such as
“Medium.dynamicViscosity”. The medium instance
can be given as input argument to this function,
because model Medium.BaseProperties is a subclass
of BasePropertiesRecord – the argument required
from the function.

If a medium model does not provide
implementations of all optional functions and one of
these functions is called in a model, an error occurs
during translation since the not redeclared optional
functions have the “partial” attribute. For example,
if function dynamicViscosity is not provided in the
medium model when it is used, only simple pressure
drop loss models without a reference to the viscosity
can be used and not the sophisticated ones.

At the bottom of the PartialMedium package
type declarations are present that are used in all
other parts of the PartialMedium package and that
should be used in all models and connectors where a
medium model is accessed. The reason is that
minimum, maximum, nominal and sometimes also

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

start values are defined and these values can be
adapted to the particular medium at hand. For
example, the nominal value of AbsolutePressure is
1.0e5 Pa. If a simple model of water steam is used
that is only valid above 100 °C, then the minimum
value in the Temperature type should be set to this
value. The minimum and maximum values are also
important for parameters in order to get an early
message if data outside of the validity region is
given. The “nominal” attribute is important as a
scaling value if the variable is used as a state in a
differential equation or as an iteration variable in a
non-linear system of equations. The “start” attribute
is useful to provide a meaningful default start or
guess value if the variable is used, e.g., as iteration
variable in a non-linear system of equations. Note,
all these attributes can be set specifically for a
medium in the following way:

package MyMedium
 extends PartialMedium(
 ...
 Temperature(min=373);
);
 ...

 end MyMedium;

The type PartialMedium.MassFlowRate is defined
as

type MassFlowRate = SI.MassFlowRate
 (quantity =

 "MassFlowRate." + mediumName);

Note that the constant “mediumName”, that has to
be defined in every medium model, is used in the
quantity attribute. For example, if mediumName =
“SimpleLiquidWater”, then the quantity attribute
has the value “MassFlowRate.SimpleLiquidWater”.
This type should be used in a connector definition of
a fluid library:

connector FluidPort
 replaceable package Medium =
 PartialMedium;
 flow Medium.MassFlowRate m_dot;
 ...

 end FluidPort;

In the model where this connector is used, the actual
Medium has to be defined. Connectors can only be
connected together, if the corresponding attributes
are either not defined or have identical values. Since
mediumName is part of the quantity attribute of
MassFlowRate, it is not possible to connect
connectors with different media models together. In
Dymola this is already checked when models are
connected together in the diagram layer of the
graphical user interface.

5.2 Defining Medium Models
The definition of a new medium model based on the
PartialMedium interface is demonstrated using a
simple model for air. First, the template package
“Modelica_Media.Interfaces.TemplateMedium”
should be copied and renamed. Afterwards, all parts
of this template should be adjusted to the actual
medium model. In particular:

package SimpleAir
 extends Modelica_Media.Interfaces.
 PartialMedium(
 mediumName = "SimpleAir";
 substanceNames = fill("",0);
 incompressible = false;
 reducedX = true;
);
 ...

 end SimpleAir;

The new medium package is extended from
PartialMedium and all constants that do not have a
value in PartialMedium are defined now. If the
medium consists of only one substance, set the
dimension of the substanceNames vector to zero
with the fill(..) operator. If the medium defines the
density to be a constant, set “incompressible” to
true. If there is only one substance, set reducedX
also to true (the meaning of this flag will be
explained below).

In a next step, implementations of model
BaseProperties and of all supported functions have
to be provided. With the current Modelica language,
this is cumbersome, since new classes with different
names have to be introduced and then the
PartialMedium classes have to be redeclared to the
new names. A more convenient Modelica definition
could be:

redeclare model BaseProperties
 extends;
 ...

 end BaseProperties;

This just means that model BaseProperties, which is
available due to “extends PartialMedium” is
replaced by a model with the same name and all
properties defined in PartialMedium.BaseProperties
are included via the “extends” statement. This
proposed language construct is available as a test
implementation in Dymola. At the next Modelica
design meeting, a formal decision will be made
whether this or something similar will be included
into the Modelica language. For the simple air
model the redeclaration takes the form:

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

package SimpleAir
 ...
redeclare model BaseProperties
 import Modelica.SIunits.
 conversions.*;
 extends(
 p(stateSelect = ..),
 T(stateSelect = ..)
);
 constant Real R_air = 287.0506;
 constant Real h0 = 274648.7;
equation
 p = d*R_air*T;
 h = 1005.45*T + h0;
 u = h – p/d;
end BaseProperties;
 ...

 end SimpleAir;

The “stateSelect = ...” statements read
stateSelect =
 if preferedMediumStates then
 StateSelect.prefer
 else
 StateSelect.default

This is the essential definition to decouple balance
and medium equations: “preferedMediumStates” is
a Boolean parameter defined in PartialMedium. In
every device that needs medium properties for
balance equations in the form of differential
equations, this flag has to be set to true. If no
derivatives of any of the 5+nX basic thermodynamic
variables are needed, this flag has to be set to false.
Due to the above if-expression, the stateSelect
attributes of the independent medium variables are
set to “prefer” if preferedMediumStates = true.
This in turn means that implicitly equations of the
form “pd = der(p)“ and „Td = der(T)“ are present
and that p and T should be selected as states, if this
is possible. This is important, if the property
functions, such as u(p,T) are non-linear in the
independent variables. If the independent variables
would not be selected as states, this would result in
non-linear systems of equations for the inversion of
the property function.

The balance equations and the medium
equations together with the above definition of
preferred states define a DAE (= Differential
Algebraic Equation system) of index 2. For
example, if p and T are used as independent medium
variables, this DAE consists of the following
equations:

TTd
ppd

Tphh
Tpuu
Tpdd

&

&

=

=
=
=
=

),(
),(
),(

equations medium//

balanceenergy //...

balance mass//...

equations balance//

=

=

⋅=
⋅=

dt
dU
dt
dm

umU
Vdm

Modelica models often result in higher index DAEs.
Dymola solves this problem by using (a) the
Pantelides algorithm (Pantelides (1988)) to
determine the equations that have to be
differentiated and (b) the dummy derivative method
(Mattsson and Söderlind (1993), Mattsson et.al.
(2000)) to select appropriate states. For the above
code fragment, the Pantelides algorithm determines
that the equations of m, U and therefore also of d
and u need to be differentiated resulting in the
following additional equations:

T
T
up

p
uu

T
T
dp

p
dd

umumU
dVm

&&&

&&&

&&&

&&

⋅
∂
∂+⋅

∂
∂=

⋅
∂
∂+⋅

∂
∂=

⋅+⋅=

⋅=

With the dummy derivative method it is possible to
select p and T as states from the original set of
potential states (p,T,m,U), especially since p and T
have the “prefer” attribute. Using symbolic formula
manipulation it is possible to solve the above
equations efficiently for Tp && , .

Note, it is important to set the stateSelect
attribute to its default value when
preferedMediumStates = false. Otherwise, a tool
would have to compute the derivative of p and T,
although these derivatives are not needed. Worse, in
order to compute these derivatives most likely other
device equations would have to be differentiated.

After implementation of the BaseProperties
model, the optional functions supported by the
medium model have to be defined, e.g., a constant
dynamic viscosity for the simple air model:

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

package SimpleAir
 ...
redeclare function dynamicViscosity
 input BasePropertiesRecord medium;
 output DynamicViscosity eta;
 algorithm
 eta := 1.82e-5;
end dynamicViscosity;
 ...

 end SimpleAir;

Note, instead of using the short “extends;” as in the
BaseProperties model, it is also possible to just
repeat the declaration of the function (this is
possible with Modelica’s type system). For the
optional functions, this is a bit longer but seems to
be easier to understand for someone looking up the
function definition.

The essential part of the medium model is
now defined and can be utilized. However, there are
additional issues that have to be taken into account,
especially for non-linear medium models. This is
discussed in the next subsections.

5.3 Initialization
Since variables of the medium are used as states,
and the device models using the medium model do
(on purpose) not know what independent variables
are defined in the medium, initialization has to be
defined in the medium model.

For fluid modeling, two types of standard
initializations are common: steady state and
prescribed initial conditions. A third alternative is
additionally supported in the Modelica_Media
library: The time scales of the energy- and mass
balance related dynamics can be very different for
fluid systems and are therefore treated differently in
the initialization. A potential state that is determined
by the mass balance dynamics (pressure or density)
is initialized in steady state i.e., der(d)=0 or
der(p)=0. A potential state that is determined by
the energy balance equation (temperature or specific
enthalpy) is directly set (e.g. T = 300.0 or h =
2.5e6). This case occurs also when, e.g., initial
temperatures are determined by measurements.

In package PartialMedium, several parameters
are declared in order to define the initialization. A
Dymola screen shot of the “Initialization” menu tab
is shown in Figure 6. In the lower part, start values
for p or d, T or h, and X can be defined. The
meaning of a start value, e.g., whether it is a guess
value or a definite start value is defined by the first
parameter “initType”. It is defined with a selection
box containing several alternatives (this is
implemented as Integer with annotations to specify
the content of the selection box, since Dymola does

Figure 6 Initialization menu of PartialMedium

not yet support Modelica enumerations):
• Selection NoInit (the default) does nothing, to

allow user-specific initialization.
• Selection InitialStates means that the

independent variables of the medium model
should be initialized with start values.

• Selection SteadyState sets the time derivatives
of the independent medium variables to zero.
The start values are interpreted as guess values
for the occurring non-linear algebraic equations.

• Selection SteadyMass sets one of the equations
der(p) = 0.0 or der(d) = 0, depending whether p
or d is an independent variable of the medium
model. The start value for p or d is interpreted
as a guess value. The start value for T or h is
used to initialize the remaining independent
variable of the medium model.

In the lower part of the “Initialization” menu, start
values can be defined. If the Boolean init_p =
true, then the start value p_start for pressure is
used, otherwise the start value d_start for
density. Correspondingly, if init_T = true, the
start value T_start for temperature is used,
otherwise the start value h_start for specific
enthalpy. Additionally, for multiple substance
fluids, start values for mass fractions X_start can
be defined. Start values that are not needed are used
as initial guesses, where appropriate.

While this is not a fully exhaustive list of
useful initializations for fluid models, it provides a
broad range of practically important cases.

The above parameters are defined in package
PartialMedium. An actual implementation must be
provided by every medium model. For example, the
simple air model, needs the following additions:

package SimpleAir
 ...
redeclare model BaseProperties
 import C = Choices.Init;
 protected
 parameter T_start2 =
 if init_T then
 T_start
 else

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

 (h_start – h0)/cp_air;
 parameter h_start2 =
 if init_T then
 cp_air*T_start + h0
 else h_start;
 parameter p_start2 =
 if init_p then
 p_start
 else R_air*d_start*T_start2;
 parameter d_start2 =
 if init_p then
 p_start/(R_air*T_start2)
 else d_start)
 public
 extends(
 p(start = p_start2, stateSelect=..,),
 T(start = T_start2, stateSelect=..,),
 d(start = d_start2),
 h(start = h_start2),
 u(start = h_start2 – p_start2/
 d_start2)
);
 constant Real R_air = 287.0506;
 constant Real cp_air = 1005.45;
 constant Real h0 = 274648.7;

Above is the first part of the initialization. In the
extends clause of the BaseProperties model together
with the new protected Section, start values for all
variables are calculated from the given start values.
This requires to evaluate the medium equations with
the given start values. In situations with more
complex equations, it is often useful to define them
with functions and call the functions for start value
calculation and in the equation section. The reason
to provide consistent start values for all variables is
that these variables are potentially iteration variables
in non-linear algebraic loops and need therefore
reasonable guess values. It is not known beforehand
which iteration variable the symbolic translator will
select. In the remaining code, the initialization
equations and the medium equations are defined:

initial equation
 if preferedMediumStates then
 if initType == C.InitialStates then
 p = p_start2;
 T = T_start2;
 elseif initType==C.SteadyState then
 0 = der(p);
 0 = der(T);
 elseif initType == C.SteadyMass then
 0 = der(p);
 T = T_start2;
 end if;
 end if;
equation
 p = d*R_air*T;
 h = cp_air*T + h0;
 u = h – p/d;
end BaseProperties;
 ...

 end SimpleAir;

Initial equations are only provided if
preferedMediumStates = true, i.e., if medium
variables should be used as states. Depending on
parameter initType, the different initialization
equations are defined. These equations depend on
the independent variables of the medium model.

5.4 Multiple Substance Media
Media that consist of several (non-reacting)
substances are both supported from the
Modelica_Media and the Modelica_Fluid library. In
Modelica_Media essentially the mass fractions X of
the substances are used as independent variables to
compute the medium properties. Two common
approaches are supported by the Modelica_Media
library:
• From the n substances, n-1 substances are

treated as independent, i.e., n-1 mass fractions
are additional independent variables. If needed,
the n-th mass fraction is computed from the
algebraic equation X_n = 1- sum(X[1:n-1]).

• All n substances are treated as independent
during simulation, i.e., n mass fractions are used
as independent variables and there are n
additional substance mass balance equations.
Since the constraint that the mass fractions sum
up to one, is not utilized, a slight drift of the
mass fractions may occur. Of course, the initial
mass fractions have to be defined such that they
are summed up to one (this is checked in the
PartialMedium package).

In order to not have special cases, the
Modelica_Media and Modelcia_Fluid libraries
define the constant “nX” of PartialMedium to be the
“number of independent” mass fractions. This might
be n-1 or n substances of a multiple substance
medium. In order to be able to make some checks,
such as for initialization, the constant “reducedX”
must be defined. If true, nX characterizes n-1
substances, if this flag is false, nX characterizies n
substances.

Note, for single substance media, no mass
fraction vector or substance mass flow rate vector is
present, because nX = 0 in this case and zero sized
vectors are removed in the code generation phase.

6 Medium Models in
Modelica_Media

In this Section, some of the more advanced medium
models available in the Modelica_Media package
are discussed in more detail. All of them are based
on the medium interface described in the last
Section.

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

6.1 High Accuracy Water Model IF97
The Modelica_Media library contains a very
detailed medium model of water in the liquid, gas
and two phase region based on the IF97 standard
[6]. It is an adapted and slightly improved version
from the ThermoFluid library (Tummescheit and
Eborn (2001), Tummescheit (2002)).

High accuracy thermodynamic properties of
fluids are modeled with two kinds of multi-
parameter, fundamental equations of state:

• An equation for the specific Helmholtz free
energy f(ρ,T) or f(v=1/ρ,T)

• An equation for the Gibbs free enthalpy
g(p,T)

For numerical reasons the fundamental equations
use dimensionless variables which are most often
scaled with the critical parameters. The IF97
industrial steam tables uses both equation types and
furthermore divides the overall fluid state into 5
regions in order to achieve high accuracy
everywhere with a lower number of parameters. In
spite of the complexities of the underlying
formulation, the user interface for calling the
properties is very simple. The medium interface is
implemented with utility functions that have a
simple interface, e.g.

rho = Water.IF97.rho_ph(p,h);
 //density
T = WaterIF97.T(p,h);
 //temperature
s = WaterIF97.s_ph(p,h);

 //specific entropy

Common sub-expression elimination and nested
inlining of function calls ensure that the
computationally expensive call to one of the
fundamental equations happens only once. A record
containing the fundamental derivatives of the
equation of states is used by Dymola in the common
sub-expression elimination and is thus only
computed once. The fundamental derivatives for the
free Helmholtz energy f(ρ,T) are:

TTv

TT

T

T

Tfc

ffp

fp

fs

ffp

−=

+=

=

−=
∂
∂==

ρρρρ

ρ

ρ

ρρ

ρ

ρ
ρρ

2

2

22

2

Here the short subscript notation is used for partial
derivatives, see explanation above. A similar set of
fundamental derivatives exists for the Gibbs free
enthalpy g(p,T):

ppp

ppp

pTT

p

T

Tgc

gv

gv

gv
gs

−=

=

=

=
−=

From these fundamental derivatives, all other partial
derivatives of thermodynamic properties with
respect to other properties can be computed using
thermodynamic determinants, e.g.

22

2

22 ,)(

Tv

T

Tv

Tv

Tpcp
p

phTpcp
pc

hp +
=

∂
∂

+
+=

∂
∂

ρρ ρ
ρρ

ρ
ρρρ

When needed, e.g. for index reduction to change the
states to numerically favorable ones, these partial
derivatives can be computed with minimal effort
from the fundamental derivatives in the property
record. In order to add other Helmholtz-or Gibbs-
based equations of state to Modelica_Media, only
the fundamental derivatives need to be computed,
the functions to compute the standard properties are
part of the library.

The partial derivatives are used in two
situations where the Modelica_Media properties
provide unique features for efficiency and model
order reduction. For all property calls that may have
to be differentiated for index reduction, efficient
derivative functions are provided. A very useful
model order reduction for large two-phase heat
exchangers is to equate the metal mass and boiling
water temperatures, e.g. as in the drum Boiler model
in [3]. Equating the temperatures leads to an index
reduction problem. The algorithm for index
reduction needs to compute the time derivative of
temperature as a function of the time derivatives of
the states. When pressure p and specific enthalpy h
are the states, the expansion reads:

region phase twoin the if

phase singlein if

p
T

dt
dT

h
T

p
T

dt
dT

sat

ph

∂
∂=

∂
∂+

∂
∂=

These derivatives are automatically computed when
needed without user interaction. This allows writing
the equations in the most natural form, as
demonstrated in [3]. The same algorithmic
procedure is used to transform the “natural” form of
the mass- and energy balances into equations using
the input to the property routines as states.

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

Density as a Function of Enthalpy and Pressure

200

1000

2000

4000 1

0.1

1

10

100

1000

Density [kg/m3]

Enthalpy [kJ/kg]
100 1000

10
Pressure [bar]

400

x = 0

x = 1

Figure 7: log.-plot of ρ(p,h) for IF97 water

6.2 High Accuracy Ideal Gas Models
Ideal gas properties cover a broad range of
interesting engineering applications: air
conditioning and climate control, industrial and
aerospace gas turbines, combustion processes,
automotive engines, fuel cells and many chemical
processes. Critically evaluated parameter sets are
available for a large number of substances. The
coefficients and data used in the Modelica_Media
library are from [9]. Care has been taken to enable
users to create their own gas mixtures with minimal
effort. For most gases, the region of validity is from
200 K to 6000 K, sufficient for most technical
applications. The equation of state consists of the
well-known ideal gas law TRp ⋅⋅= ρ with R the
specific gas constant, and polynomials for the
specific heat capacity)(Tcp , the specific enthalpy

)(Th and the specific entropy),(pTs :

−=

+

−
++−−=

+

−
++−=

=

−

=

−

=

=

−

∑

∑

∑

0
0

2

37

4
3

2
2

1
0

1
37

3
22

1

7

1

3

ln)(),(

3
)log(

2
)(

2
)log()(

)(

p
pRTspTs

b
i
TaTa

T
a

T
aRTs

T
b

i
Ta

T
Ta

T
aRTTh

TaRTcp

i

i
i

i

i
i

i

i
i

The polynomials for)(Th and)(0 Ts are derived via
integration from the one for)(Tcp and contain the
integration constants 21,bb that define the reference
specific enthalpy and entropy. For entropy
differences the reference pressure p0 is arbitrary, but
not for absolute entropies. It is chosen as 1 standard
atmosphere (101325 Pa). Depending on the intended
use of the properties, users can choose between
different reference enthalpies:

1. The enthalpy of formation Hf of the molecule
can be included or excluded.

2. The value 0 for the specific enthalpy without Hf

can be defined to be at 298.15 K (25 °C) or at 0
K.

For some of the species, transport properties are also
available. The form of the equations is:

()

() ()
ρνη

λ

ν

λ
λλ

λ

⋅=

+++⋅=

+++⋅=

D
T
C

T
BTA

D
T
C

T
BTAk

2

2

lglg

lg
10

lg

with the kinematic viscosity ν , dynamic viscosity
η , thermal conductivity λ and parameters A,B,C,D
and k. Note, though, that the thermal conductivity is
only the “frozen” thermal conductivity, i.e., not
valid for fast reactions.

6.3 Ideal Gas Mixtures
For mixtures of ideal gases, the standard, ideal
mixing rules apply:

() ,ln)ln()()(

)()(

01

1

−−=

=

∑

∑

=

=

p
pRxyRTsTs

xThTh

nspecies

i
iiiimix

nspecies

i
iimix

where the ix are the mass fractions, the iR are the
specific gas constants and the iy are the molar
fractions of the components of the mixture. Most
other properties are then computed just as for single
species media. Dynamic viscosity and thermal
conductivity for mixtures require interaction
parameters of a similar functional form as the
viscosity itself and are (not yet) implemented.

For mixtures of ideal gases, three usage
scenarios can be distinguished:

1. The composition is fixed and is the same
throughout the system. This means that a
new data record can be computed by
preprocessing the component property data
that can be treated as a new, single species
data record (assuming ideal mixing).

2. The composition is variable, but changes in
composition occur only through convection,
i.e. slowly.

3. The composition is variable and may
change through reactions too, i.e.
composition changes are possibly very fast.

Case 1 and 2 above can be handled within a single
model with a Boolean switch, case 3 needs to extend
from that model because usually a number of

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

additional properties are needed, e.g. the parameters
to compute chemical equilibrium reaction constants.
Modelica_Media will initially not contain models
for reactive flows, but all data is present for users
who wish to define such models.

7 Conclusions
Thermodynamic fluid modeling is complex in many
ways. This paper has shown a careful structuring of
libraries for medium and fluid components in such a
way that the same component models can be used
with different easily replaceable media. To our
knowledge this is the first approach that is able to
treat compressible and incompressible fluids in a
unified framework. A careful consideration of
numerous issues concerning numerical efficiency,
model structuring and user friendliness has been
presented in this paper:

• Suitable device interfaces
• Principles for handling of reversing, joining

and splitting flows
• The governing partial differential equations

and their transformation into ODEs
• Pressure loss calculations
• Medium interface design
• Initialization
• Media available in Modelica_Media

Much design effort has been spent on considerations
for robust and efficient simulation. The presented
framework and libraries have the potential to serve
as a powerful base for the development of
application-oriented libraries.

Appendix – Energy balance
This appendix contains the derivation of the
equivalent but simpler energy balance.

Multiplication of the momentum balance by v
gives

2() ()

F

vA v A
v

t x

p z
vA vF vA g

x x

ρ ρ

ρ

∂ ∂
+ =

∂ ∂

∂ ∂
− − −

∂ ∂

Utilizing the mass balance, this equation can be
rewritten as

2 3((/ 2)) ((/ 2))

F

v A v A

t x
p z

vA vF vA g
x x

ρ ρ

ρ

∂ ∂
+ =

∂ ∂
∂ ∂

− − −
∂ ∂

To show the equivalence, consider the two left hand
sides:

2

1

() ()

() ()

() ()

vA v A
LH v v

t x
v A v vA

v A v vA v
t t x x

v v A vA
v A vA v

t x t x

v v
v A vA

t x

ρ ρ

ρ ρ
ρ ρ

ρ ρ
ρ ρ

ρ ρ

∂ ∂
= + =

∂ ∂
∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂

∂ ∂
+

∂ ∂

2 3

2

2
2

2
2

2

2

((/ 2)) ((/ 2))

(/ 2) ()
(/ 2)

(/ 2) ()
(/ 2)

()
(/ 2)

()
(/ 2)

v A v A
LH

t x

v A
A v

t t

v vA
vA v

x x
v A

v A v
t t
v vA

v vA v
x x

v v
v A vA

t x

ρ ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ ρ

∂ ∂
= + =

∂ ∂

∂ ∂
+ +

∂ ∂

∂ ∂
+ =

∂ ∂
∂ ∂

+ +
∂ ∂
∂ ∂

+ =
∂ ∂

∂ ∂
+

∂ ∂

i.e. 1 2LH LH= .
Subtracting the equation derived above from

the energy balance gives

(())
()

()

p
v u A

uA p T
vA kA

t x x x x

ρ
ρ ρ

∂ +
∂ ∂ ∂ ∂

+ = +
∂ ∂ ∂ ∂ ∂

Acknowledgements
The design of this library has been a collaborative
effort and many have contributed. Many thanks to
Mike Tiller for suggesting the package concept and
useful discussions and proofreading the paper.
Many thanks to Rüdiger Franke for the first realistic
tests of the libraries and his feedback, many thanks
to Daniel Bouskela, Andreas Idebrant, Gerhart
Schmitz, John Batteh, Charles Newman, Jonas
Eborn, Sven Erik Mattsson, Hans Olsson and the
users of the ThermoFluid library for many useful
comments and feedback.

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

Bibliography
[1] Andersson J.D., Jr. (1995): Computational Fluid

Dynamics – The Basics with Applications,
McGraw-Hill International Editions, ISBN 0 07
001685 2.

[2] Colebrook F. (1939): Turbulent flow in pipes with
particular reference to the transition region
between the smooth and rough pipe laws. J. Inst.
Civ. Eng. no. 4, pp. 14-25.

[3] Dymola (2003): Dymola Users Guide, Version
5.1. Dynasim AB, http://www.dynasim.se/

[4] Elmqvist, H. (1978): A Structured Model
Language for Large Continous Systems. PhD-
Thesis, Lund Institute of Technology, Lund,
Sweden.

[5] Idelchik I.E. (1994): Handbook of Hydraulic
Resistance. 3rd edition, Begell House, ISBN 0-
8493-9908-4

[6] IAPWS (1997); Release on the IAPWS Industrial
Formulation 1997 for the Thermodynamic
Properties of Water and Steam. The International
Association for the Properties of Water and Steam.

[7] Mattsson S.E.; Söderlind G. (1993): Index
reduction in differential-algebraic equations
using dummy derivatives. SIAM Journal of
Scientific and Statistical Computing, Vol. 14 pp.
677-692, 1993.

[8] Mattsson S.E., Olsson H., Elmqvist H. (2000):
Dynamic Selection of States in Dymola. Modelica
Workshop 2000 Proceedings, pp. 61-67,
http://www.modelica.org/workshop2000/-
proceedings/Mattsson.pdf

[9] McBride B.J., Zehe M.J., and Gordon S. (2002):
NASA Glenn Coefficients for Calculating
Thermodynamic Properties of Individual
Species. NASA report TP-2002-211556

[10] Miller D.S. (1990): Internal flow systems. 2nd
edition. Cranfield:BHRA(Information Services).

[11] Newman C.E., Batteh J.J., Tiller M. (2002): Spark-
Ignited-Engine Cylce Simulation in Modelica. 2nd
International Modelica Conference, Proceedings,
pp. 133-142.

[12] Pantelides C. (1988): The Consistent Initialization
of Differential-Algebraic Systems. SIAM Journal
of Scientific and Statistical Computing, pp. 213-
231.

[13] Rüdiger Franke (2003): On-line Optimization of
Drum Boiler Startup. Proceedings of the 3rd
International Modelica Conference, Linköping,
2003

[14] Span R. (2000): Multiparameter Equations of
State – An Accurate Source of Thermodynamic
Property Data, Springer-Verlag.

[15] Swamee P.K., Jain A.K. (1976): Explicit equations
for pipe-flow problems. Proc. ASCE, J.Hydraul.
Div., 102 (HY5), pp. 657-664.

[16] Thomas P. (1999): Simulation of Industrial
Processes – For Control Engineers, Butterworth,
Heinemann, ISBN 0 7506 4161 4.

[17] Tummescheit H. (2002): Design and
Implementation of Object-Oriented Libraries
using Modelica, PhD thesis, Department of
Automatic Control, Lund Institute of Technology.

[18] Tummescheit H., Eborn J. (2001): ThermoFluid
Modelica Library. Homepage:
http://www.control.lth.se/~hubertus/ThermoFluid/

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

